Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T21:00:40.292Z Has data issue: false hasContentIssue false

2 - Systems Science and Sustainability Assessment

from Part I - Theoretical Background

Published online by Cambridge University Press:  27 March 2020

Claudia R. Binder
Affiliation:
École Polytechnique Fédérale de Lausanne
Romano Wyss
Affiliation:
École Polytechnique Fédérale de Lausanne
Emanuele Massaro
Affiliation:
École Polytechnique Fédérale de Lausanne
Get access

Summary

This chapter provides an insight into the role of systems science for sustainability assessment. In the first part, we present seven axioms that have been derived from system-theoretical perspectives and show their relevance for sustainability assessment. Following these axioms, we propose a way to structure and analyse systems following four system characteristics: (1) system boundary and interactions with the external environment; (2) purpose, goals, and associated decision-making drivers and criteria for the system; (3) system structure (subsystems, elements, and their interactions), dynamics, and emerging behaviour; and (4) system information, outcomes monitoring, and learning. These four characteristics were applied to study, first, the historical development of the energy system analysis and, second, an Australian urban systems-transformation initiative. The systems-analysis framework presented provides a good basis for putting the elements of a system analysis into their broader context, and designing purposeful interventions. Especially for more transformational change, the alignment of stakeholder values, institutional arrangements, and available knowledge become key leverage points.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abson, D. J., Fischer, J., Leventon, J., et al. (2017). Leverage points for sustainability transformation. Ambio, 46(1), 3039.Google Scholar
Adams, K., Hester, P., Bradley, J., T. J., Meyers, & Keating, C. (2014). Systems theory as the foundation for understanding systems. Systems Engineering, 17(1). DOI:http://10.1002/sys.21255.Google Scholar
Adetunji, I. O., Price, A. D. F., Fleming, P. R., & Kemp, P. (2003). The application of systems thinking to the concept of sustainability. https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/19873.Google Scholar
Aristotle, . (2002). Metaphysics, Book H: Form and being at work, J. Sachs, Trans., 2nd edition. Santa Fe: Green Lion Press.Google Scholar
Ashby, W. R. (1947). Principles of the self-organizing dynamic system. The Journal of General Psychology, 37(2), 125128. DOI:http://10.1080/00221309.1947.9918144.Google Scholar
Ashby, W. R. (1956). An Introduction to Cybernetics. New York: J. Wiley.Google Scholar
Audouin, M., & de Wet, B. (2012). Sustainability thinking in environmental assessment. Impact Assessment and Project Appraisal, 30(4), 264274. DOI:http://10.1080/14615517.2012.742695.Google Scholar
Aulin‐Ahmavaara, A. (1979). The law of requisite hierarchy. Kybernetes, 8(4), 259266.Google Scholar
Baccini, P., & Bader, H.-P. (1996). Regionaler Stoffhaushalt. Heidelberg7 Spektrum Akademischer Verlag. www.ulb.tu-darmstadt.de/tocs/48751952.pdf.Google Scholar
Basile, P. S., Agnew, M., Hölzl, A., et al. (1980). The IIASA set of energy models: Its design and application. Laxenburg, Austria: International Institute for Applied Systems Analysis. http://pure.iiasa.ac.at/12459/.Google Scholar
Batty, M. (2009). Cities as complex systems: Scaling, interaction, networks, dynamics and urban morphologies. In Meyers, R. A. (ed.), Encyclopaedia of Complexity and Systems Science. New York: Springer, pp. 10411071. DOI:https://doi.org/10.1007/978-0-387-30440-3_69.Google Scholar
Beer, S. (1979). The Heart of Enterprise. New York: John Wiley & Sons.Google Scholar
Bertalanffy, L. von. (1949). General systems theory. Biologia Generalis, 19(1), 114129.Google Scholar
Bertalanffy, L. von. (1950). An outline of general system theory. The British Journal for the Philosophy of Science, 1(2), 134165.Google Scholar
Bertalanffy, L. von. (1962). Modern Theories of Development: An Introduction to Theoretical Biology, J. H. Woodger, Trans. New York: Harper.Google Scholar
Bertalanffy, L. von. (1968). General System Theory: Foundations, Development, Applications, revised ed. New York: George Braziller.Google Scholar
Bettencourt, L. (2013). The kind of problem a city is (Working Paper 2013–03-008). Santa Fe, USA: Santa Fe Institute. www.santafe.edu/research/results/working-papers/the-kind-of-problem-a-city-is.Google Scholar
Binder, C. R., Baldi, M. G., Gex, B., & Massaro, E. (2020b). The sustainability solution space. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 181208.Google Scholar
Binder, C. R., Mühlemeier, S., & Wyss, R. (2017). An indicator-based approach for analyzing the resilience of transitions for energy regions. Part I: Theoretical and conceptual considerations. Energies, 10(1), 36. DOI:http://10.3390/en10010036.Google Scholar
Blackmore, C., Reynolds, M., Ison, R., & Lane, A. (2015). Embedding sustainability through systems thinking in practice: some experiences from the Open University. In Wyness, L (ed.), Education for Sustainable Development Pedagogy: Criticality, Creativity, and Collaboration. Pedrio Occasional Paper 8, pp. 3235.Google Scholar
Boesch, A., & de Montmollin, A. (2020). Indicators for assessing the sustainability of cities. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 311331.Google Scholar
Bohr, N. (1928). The quantum postulate and the recent development of atomic theory. Nature, 121(3050), 580590.Google Scholar
Bossel, H. (1999). Indicators for sustainable development: Theory, method, applications. A report to the Balaton Group, International Institute for Sustainable Development. www.ulb.ac.be/ceese/STAFF/Tom/bossel.pdf.Google Scholar
Bossel, H. (2003). Assessing viability and sustainability: A systems-based approach for deriving comprehensive indicator sets. Conservation Ecology, 5(2). DOI:http://10.5751/ES-00332-050212.Google Scholar
Boulding, K. E. (1956). General systems theory: The skeleton of science. Management Science, 2(3) 197208. DOI:http://10.1287/mnsc.2.3.197.Google Scholar
Boulding, K. E. (1966). The Impact of the Social Sciences. Bombay: Vakils, Feffer and Simons Private.Google Scholar
Buckley, W. (1967). Sociology and Modern Systems Theory. Oxford, UK: Prentice-Hall.Google Scholar
Bunge, M. (1997). Mechanism and explanation. Philosophy of the Social Sciences, 27(4), 410465.Google Scholar
Bunge, M. (2004). How does it work?: The search for explanatory mechanisms. Philosophy of the Social Sciences, 34(2), 182210. DOI:http://10.1177/004839319702700402.Google Scholar
Cannon, W. B. (1929). Organisation for physiological homeostasis. Physiological Reviews, 9(3), 399431. DOI:http://10.1152/physrev.1929.9.3.399.Google Scholar
Checkland, P. B. (1993). Systems Thinking, Systems Practice. New York: Wiley.Google Scholar
Cherns, A. (1976). The principles of sociotechnical design. Human Relations, 29(8), 783792. DOI:http://10.1177/001872677602900806.Google Scholar
Cherns, A. (1987). Principles of sociotechnical design revisited. Human Relations, 40(3), 153161. DOI:http://10.1177/001872678704000303.Google Scholar
Cilliers, P. (1998). Complexity and Postmodernism: Understanding Complex Systems. London: Routledge.Google Scholar
Cilliers, P. (2005). Complexity, deconstruction and relativism. Theory, Culture & Society, 22(5), 255267. DOI:http://10.1177/0263276405058052.Google Scholar
Cilliers, P. (2008). Complexity theory as a general framework for sustainability science. Exploring Sustainable Science: A South African Perspective, 39–57.Google Scholar
Clark, W. C., Jones, D. D., & Holling, C. (1979). Lessons for ecological policy design: a case study of ecosystem management. Ecological Modelling, 7(1), 153.Google Scholar
Costanza, R. (2014). A theory of socio-ecological system change. Journal of Bioeconomics, 16(1), 3944.Google Scholar
Cruz, I., Stahel, A., & Max-Neef, M. (2009). Towards a systemic development approach: Building on the Human-Scale Development paradigm. Ecological Economics, 68(7), 20212030.Google Scholar
d’Alembert, J. le R. (1743). Traité de l’équilibre et du mouvement des fluids. Librarie David, l’aîné: Paris.Google Scholar
Fiksel, J. (2006). Sustainability and resilience: toward a systems approach. Sustainability: Science, Practice, & Policy, 2(2), 1421.Google Scholar
Fritz, L., & Meinherz, F. (2020). The politics of participatory sustainability assessments: an analysis of power. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 87122.Google Scholar
Forrester, J. W. (1961). Industrial Dynamics. Cambridge, MA: MIT Press.Google Scholar
Forrester, J. W. (1969). Urban Dynamics. Cambridge, MA: MIT Press.Google Scholar
Forrester, J. W. (1971). World Dynamics. Cambridge, MA: MIT Press.Google Scholar
Future Earth. (2014). Future Earth Strategic Research Agenda 2014: Priorities for a global sustainability research agenda. Science Committee and Interim Engagement Committee. www.futureearth.org/sites/default/files/strategic_research_agenda_2014.pdf.Google Scholar
Gallopín, G. (2003). A Systems Approach to Sustainability and Sustainable Development. United Nations Publications.Google Scholar
Gasparatos, A., El-Haram, M., & Horner, M. (2009). The argument against a reductionist approach for measuring sustainable development performance and the need for methodological pluralism. Accounting Forum, 33(3), 245256.Google Scholar
Gorddard, R., Colloff, M. J., Wise, R. M., Ware, D., & Dunlop, M. (2016). Values, rules and knowledge: Adaptation as change in the decision context. Environmental Science & Policy, 57, 6069.Google Scholar
Grace, W., & Pope, J. (2015). A systems approach to sustainability assessment. In Morrison-Saunders, A, Pope, J, & Bond, A. (eds.), Handbook of Sustainability Assessment. Northampton, MA: Edward Elgar, pp. 285320. DOI:http://10.4337/9781783471379.Google Scholar
Graf, R. (2014). Öl und Souveränität: Petroknowledge und Energiepolitik in den USA und Westeuropa in den 1970er Jahren. Walter de Gruyter.Google Scholar
Grimm, N. B., Cook, E. M., Hale, R. L., & Iwaniec, D. M. (2015). A Broader Framing of Ecosystem Services in Cities. Routledge Handbooks Online. DOI:10.4324/9781315849256.ch14.Google Scholar
Häfele, W. (1974). Future Energy Resources. Laxenburg, Austria: International Institute of Applied Systems Analysis. http://pure.iiasa.ac.at/id/eprint/74/1/RR-74-020.pdf.Google Scholar
Häfele, W. (1976). Second Status Report of the IIASA Project on Energy Systems. Laxenburg, Austria: International Institute of Applied Systems Analysis. http://pure.iiasa.ac.at/542/.Google Scholar
Halla, P., & Binder, C.R. (2020). Sustainability Assessment: Introduction and Framework. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 729.Google Scholar
Hammond, D. (2002). Exploring the genealogy of systems thinking. Systems Research and Behavioral Science, 19(5), 429439. DOI:http://10.1002/sres.499.Google Scholar
Hammond, D. (2003). The Science of Synthesis: Exploring the Social Implications of General Systems Theory. Boulder: University Press of Colorado.Google Scholar
Helmer, O. (1967). Memorandum M-2027 15 March 1967. Sent to Tom Brown, Herbert Coldhamer, Oleg Hoeffding, Arnold Horelick, Roger Levien, Richard Nelson, Ed Quade, Harry Rowen, Sid Winter, Albert Wholstetter, and Charles Wolf, “Addendum to my previous Memo M-1929, On the East-West Center.” Ford Foundation Archive.Google Scholar
Hester, P. T., & Adams, K. M. (2017). Systemic Decision Making:Fundamentals for Understanding Problems and Messes, 2nd ed. Cham: Springer International Publishing.Google Scholar
Hieronymi, A. (2013). Understanding Systems Science: A Visual and Integrative Approach. Systems Research and Behavioral Science, 30(5), 580595.Google Scholar
Hitch, C. (1953). Sub-optimization in operations problems. Journal of the Operations Research Society of America, 1(3), 8799. DOI:http://10.1287/opre.1.3.87.Google Scholar
Holling, C. S. (1996). Engineering resilience versus ecological resilience. In Schulze, P., ed., Engineering within Ecological Constraints. Washington DC: National Academies Press, pp. 3143.Google Scholar
Hunt, P. (1975). Funds position: Keystone in financial planning. Harvard Business Review, 53(3), 106115.Google Scholar
IAEA Archives. (1975). Letter from Jan M. Døderlein, Director Safety Dept., Institut for Atomeneri, Kjeller, Norway to Otway. 16.12.1975, IAEA/IIASA Joint Cooperation.Google Scholar
IIASA. (1973). IIASA Annual Report 1973. Laxenburg, Austria: International Institute for Applied Systems Analysis.Google Scholar
IIASA. (1974). IIASA Annual Report 1974. Laxenburg, Austria: International Institute for Applied Systems Analysis.Google Scholar
IIASA. (1975). IIASA Annual Report 1975. Laxenburg, Austria: International Institute for Applied Systems Analysis.Google Scholar
IIASA. (1976). IIASA Annual Report 1976. Laxenburg, Austria: International Institute for Applied Systems Analysis.Google Scholar
IIASA. (1977). IIASA Annual Report 1977. Laxenburg, Austria: International Institute for Applied Systems Analysis.Google Scholar
IIASA. (1978). IIASA Annual Report 1978. Laxenburg, Austria: International Institute for Applied Systems Analysis.Google Scholar
IIASA. (1979). IIASA Annual Report 1979. Laxenburg, Austria: International Institute for Applied Systems Analysis.Google Scholar
Ison, R. (1999). Applying systems thinking to higher education. Systems Research & Behavioral Science, 16(2), 107112. DOI:http://10.1002/(SICI)1099-1743(199903/04)16:2<07::aid-sres278>3.0.CO;2-E.3.0.CO;2-E>CrossRefGoogle Scholar
Jasanoff, S., & Kim, S.-H. (2009). Containing the atom: Sociotechnical imaginaries and nuclear power in the United States and South Korea. Minerva, 47(2), 119.Google Scholar
Kaplan, M. M. (1976). 26th Pugwash Conference Mühlhausen, Report of the Director-General. In Leo Szilard Papers, California Digital Library. https://library.ucsd.edu/dc/object/bb7578448 h.Google Scholar
Kauffman, S. A. (1990). The Sciences of Complexity and “Origins of Order.” In PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association. Chicago: Philosophy of Science Association, pp. 299322.Google Scholar
Kay, J. J., Regier, H. A., Boyle, M., & Francis, G. (1999). An ecosystem approach for sustainability: Addressing the challenge of complexity. Futures, 31(7), 721742.CrossRefGoogle Scholar
Keppie, D. M. (2006). Context, emergence, and research design. Wildlife Society Bulletin, 34(1), 242246.Google Scholar
Klir, G. J. (1968). An Approach to General Systems Theory. Princeton, NJ: Nostrand.Google Scholar
Korzybski, A. (1994). Science and Sanity: an Introduction to Non-Aristotelian Systems and General Semantics, 5th edition. Englewood, NJ: Institute of General Semantics.Google Scholar
Lambert, J. H. (1782). Logische und philosophische Abhandlungen, vol. 1. Berlin/Dessau/Leipzig.Google Scholar
Laszlo, E. (1972). Introduction to Systems Philosophy: Towards a New Paradigm of Contemporary Thought. New York: Gordon and Breach, Science Publishers.Google Scholar
Laszlo, E. (1975). The Systems View of the World: The Natural Philosophy of the New Developments in the Sciences. Creskill, NJ: Hampton Press.Google Scholar
Levai, A. (1977). 27th Pugwash Conference Munich, FRG- – Where lies the real danger of nuclear power? In Leo Szilard Papers, California Digital Library. https://library.ucsd.edu/dc/object/bb0138107 n.Google Scholar
Levien, R. E. (2000). RAND, IIASA, and the conduct of systems analysis. In Hughes, A. C. & Hughes, T. P. (eds.), Systems, Experts, and Computers: The Systems Approach in Management and Engineering, World War II and After. Cambridge, MA: MIT Press.Google Scholar
Linton, J. D., Klassen, R., & Jayaraman, V. (2007). Sustainable supply chains: An introduction. Journal of Operations Management, 25(6), 10751082.Google Scholar
Luhmann, N. (1995). Social Systems (Bednarz, J. trans., Baecker, D. ed.). Stanford University Press.Google Scholar
Maiteny, P., & Ison, R. (1997).“Learner-Centred Evaluation of Systems, Systems Courses, and Future Needs in Systems Learning. In Stowell, Frank A., Ison, Ray L., Armson, Rosalind, Holloway, Jacky, Jackson, Sue, & McRobb, Steve (eds.), Systems for Sustainability. Boston: Springer, pp. 257262.Google Scholar
Meinherz, F., Fritz, L., & Schneider, F. (2020). How Values Play into Sustainability Assessments: Challenges and a Possible Way Forward. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, (pp. 6586).Google Scholar
Max-Neef, M. A., Elizalde, A., & Hopenhayn, M. (1991). Human Scale Development: Conception, Application and Further Reflections. New York: Apex Press.Google Scholar
McCulloch, W. S., Arbib, M. A., Lettvin, J. Y., & Papert, S. A. (1959). Embodiments of Mind. Cambridge, MA: MIT Press.Google Scholar
McPhearson, T., Pickett, S. T. A., Grimm, N. B., et al. (2016). Advancing urban ecology toward a science of cities. BioScience, 66(3), 198212.Google Scholar
Meadows, D. H., Meadows, D. L., Randers, J., & Behrens, W.W. (1972). The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind. New York: Universe Books.Google Scholar
Meadows, D. H. (1998). Indicators and Information Systems for Sustainable Development: A Report to the Balaton Group. Hartland Four Corners, VT: The Sustainability Institute.Google Scholar
Meadows, D. H. (2008). Thinking in Systems: A Primer. White River Junction, VT: Chelsea Green Publishing.Google Scholar
Mesarovic, M. D. (1967). General systems theory and its mathematical foundation. In Record of the IEEE Systems Science and Cybernetics Conference, vol. 3. New York: Institute of Electrical and Electronic Engineers, pp.122.Google Scholar
Miller, G. A. (1956). The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 8197. DOI:http://10.1037/h0043158.Google Scholar
Miller, J. G. (1978). Living systems. New York: McGraw Hill.Google Scholar
M’Pherson, P. K. (1974). A perspective on systems science and systems philosophy. Futures, 6(3), 219239.Google Scholar
Newman, M. E. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323351. DOI:http://10.1080/00107510500052444.Google Scholar
Odum, E. P. (1977). The emergence of ecology as a new integrative discipline. Science, 195(4284), 12891293.Google Scholar
Ossimitz, G., & Lapp, C. (2006). Das Metanoia-Prinzip: eine Einführung in systemisches Denken und Handeln. Hildesheim: Franzbecker.Google Scholar
Otway, H. J. (1975). Risk Assessment and Societal Choices (IIASA Research Memorandum). Laxenburg, Austria: International Institute of Applied Systems Analysis. http://pure.iiasa.ac.at/514/.Google Scholar
Otway, H. J., & Fishbein, M. (1977). Public Attitudes and Decision Making. Laxenburg, Austria: International Institute of Applied Systems Analysis. http://pure.iiasa.ac.at/id/eprint/761/.Google Scholar
Pahl, G., Beitz, W., Feldhusen, J., & Grote, K.-H. (2011). Engineering Design: A Systematic Approach, 3rd edition. Darmstadt: Springer.Google Scholar
Pareto, V. (1896). Cours d’économie politique. Lausanne: Rouge.Google Scholar
Parsons, T. (1970). On building social system theory: A personal history. Daedalus, 99(4), 826881. DOI:http://10.2307/20023975.Google Scholar
Pattee, H. H. (1973). Hierarchy Theory: The Challenge of Complex Systems. New York: George Braziller.Google Scholar
Pickett, S. T. A., Cadenasso, M. L., Childers, D. L., McDonnell, M. J., & Zhou, W. (2016). Evolution and future of urban ecological science: Ecology in, of, and for the city. Ecosystem Health and Sustainability, 2(7), e01229.Google Scholar
Polk, M. (2015). Transdisciplinary co-production: Designing and testing a transdisciplinary research framework for societal problem solving. Futures, 65, 110122.Google Scholar
Portugali, J., Meyer, H., Stolk, E., & Tan, E. (Eds.). (2012). Complexity Theories of Cities Have Come of Age: An Overview with Implications to Urban Planning and Design. Berlin/Heidelberg: Springer-Verlag. www.springer.com/gp/book/9783642245435.Google Scholar
Rindzevičiūtė, E. (2016). The Power of Systems: How Policy Sciences Opened up the Cold War World. Ithaca, NY: Cornell University Press.Google Scholar
Ropohl, G. (1999). Philosophy of Socio-Technical Systems. Techné: Research in Philosophy and Technology, 4(3), 186194. DOI:http://10.5840/techne19994311.Google Scholar
Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology. Philosophy of Science, 10(1), 1824.Google Scholar
Sala, S., Ciuffo, B., & Nijkamp, P. (2015). A systemic framework for sustainability assessment. Ecological Economics, 119, 314325.Google Scholar
Schilling, T., Mühlemeier, S., Wyss, R., & Binder, C.R. (2020). A Concept for Sustainability Transition Assessment (STA): A Dynamic Systems Perspective Informed by Resilience Thinking. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 123138.Google Scholar
Scholz, R., & Tietje, O. (2002). Embedded Case Study Methods. Thousand Oaks, CA: SAGE Publications. DOI:http://10.4135/9781412984027.Google Scholar
Seefried, E. (2015). Zukünfte: Aufstieg und Krise der Zukunftsforschung 1945–1980, vol. 106. Walter de Gruyter.Google Scholar
Shannon, C. E. (1948a). A Mathematical Theory of Communication, Part 1. The Bell System Technical Journal, 27, 379423.Google Scholar
Shannon, C. E. (1948b). A Mathematical Theory of Communication, Part 2. The Bell System Technical Journal, 27, 623656.Google Scholar
Shannon, C. E., & Weaver, W. (1949). The Mathematical Theory of Communication. Champaign: University of Illinois Press.Google Scholar
Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99118. DOI:http://10.2307/1884852.Google Scholar
Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129138. DOI:http://10.1037/h0042769.Google Scholar
Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2009). An overview of sustainability assessment methodologies. Ecological Indicators, 9(2), 189212.Google Scholar
Smuts, J. C. (1926). Holism and Evolution. New York: Viking Press.Google Scholar
Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society Interface, 4(15), 707719.Google Scholar
Straussfogel, D., & Von Schilling, C. (2009). Systems theory. In Kitchin, R & Thrift., N (eds.), International Encyclopaedia of Human Geography. Oxford: Elsevier, pp.151158.CrossRefGoogle Scholar
The Ecological Sequestration Trust. (2013). Review of Current Advanced Integrated Models for City-Regions, Presented at the Technology Strategy Board’s Future Cities Catapult, London, UK. https://ecosequestrust.org/latest/publications/review-of-current-advanced-integrated-models-for-city-regions/.Google Scholar
Ukidwe, N. U., & Bakshi, B. R. (2008). Resource intensities of chemical industry sectors in the United States via input–output network models. Computers & Chemical Engineering, 32(9), 20502064.Google Scholar
United Cities and Local Governments. (2015). The Sustainable Development Goals: What Local Governments Need to Know. Barcelona: United Cities and Local Governments.Google Scholar
United Nations. (2015). Transforming our world: the 2030 Agenda for Sustainable Development. New York, USA. https://sustainabledevelopment.un.org/post2015/transformingourworld.Google Scholar
Vester, F. (1988). The bio cybernetic approach as a basis for planning our environment. Systems Practice, 1(4), 399413.Google Scholar
Waltner-Toews, D., & Kay, J. (2005). The evolution of an ecosystem approach: The diamond schematic and an adaptive methodology for ecosystem sustainability and health. Ecology and Society, 10(1). DOI:http://10.5751/ES-01214-100138.Google Scholar
Webb, R., Bai, X., Smith, M. S., & Thomson, G. (2018a). Sustainable urban systems: Co-design and framing for transformation. Ambio, 47(1), 5777.Google Scholar
Webb, R., Rissik, D., Petheram, L., Beh, J.-L., & Smith, M. S. (2018b). Co-designing adaptation decision support: meeting common and differentiated needs. Climatic Change, 1–17. DOI:https://doi.org/10.1007/s10584-018-2165-7.Google Scholar
Wedding, G. C., & Crawford-Brown, D. (2007). Measuring site-level success in brownfield redevelopments: A focus on sustainability and green building. Journal of Environmental Management, 85(2), 483495.Google Scholar
Wiek, A., & Binder, C. (2005). Solution spaces for decision-making: A sustainability assessment tool for city-regions. Environmental Impact Assessment Review, 25(6), 589608.Google Scholar
Wiener, N. (1948). Cybernetics. Scientific American, 179(5), 1419.Google Scholar
Wilber, K. (2011). The Marriage of Sense and Soul: Integrating Science and Religion. New York: Random House Publishing Group.Google Scholar
Williams, J. (2013). Carbon Dioxide, Climate and Society: Proceedings of a IIASA Workshop cosponsored by WMO, UNEP, and SCOPE, February 21–24, 1978. Elsevier.Google Scholar
Wise, R. M., Fazey, I., Stafford Smith, M., & Campbell, B. (2014). Reconceptualising adaptation to climate change as part of pathways of change and response. Global Environmental Change, 28, 325336.Google Scholar
World Commission on Environment and Development. (1987). Our Common Future. Oxford/ New York: Oxford University Press.Google Scholar
Wymore, W. (1967). A Mathematical Theory of Systems Engineering: The Elements. New York: John Wiley & Sons.Google Scholar
Wymore, W. (1993). Model-Based Systems Engineering. Boca Raton, FL: CRC Press.Google Scholar
Wynne, B. (1984). The institutional context of science, models, and policy: The IIASA Energy Study. Policy Sciences, 17(3), 277320.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×