Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T23:19:09.587Z Has data issue: false hasContentIssue false

10 - Multigrain Crystallography at Megabar Pressures

Published online by Cambridge University Press:  03 August 2023

Yingwei Fei
Affiliation:
Carnegie Institution of Washington, Washington DC
Michael J. Walter
Affiliation:
Carnegie Institution of Washington, Washington DC
Get access

Summary

Applications of synchrotron X-ray diffraction techniques have enabled crystallographic characterization of pressure-induced phase transitions in diamond anvil cells (DACs) at megabar pressures. Accurate determination of high-pressure structures is crucial for understanding all other pressure-induced property changes. This chapter discusses current capabilities, technical challenges, and future perspectives of the multigrain techniques for high-pressure studies. Through single-crystal structure analysis of seifertite SiO2 at 129 GPa, we conclude that single-crystal structure determination and refinement is possible in general cases at megabar pressures. A nearly full convergence of the structure can be achieved applying the multigrain method, and high-quality crystallographic data can then be obtained. In addition, multigrain indexation can be applied for fast online analysis of multiphase systems during synchrotron sessions. Future development of software will certainly promote wide application of the multigrain techniques. The multigrain capabilities can be further extended to multimegabar pressures. Combination of in situ X-ray powder diffraction, multigrain indexation, and single-crystal structure determination on individual grains provides new opportunities to characterize new phases at megabar pressures and beyond.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boehler, R., De Hantsetters, K. (2004). New anvil designs in diamond-cells. High Pressure Research, 24(3), 391396.Google Scholar
Busing, W. R., Levy, H. A. (1967). Angle calculations for 3- and 4- circle X-ray and neutron diffractometers. Acta Crystallographica, 22, 457464.Google Scholar
Bykova, E., Dubrovinsky, L., Dubrovinskaia, N., et al. (2016). Structural complexity of simple Fe2O3 at high pressures and temperatures. Nature Communications, 7(1), 10661.CrossRefGoogle ScholarPubMed
Cerantola, V., Bykova, E., Kupenko, I., et al. (2017). Stability of iron-bearing carbonates in the deep Earth’s interior. Nature Communications, 8(1), 15960.Google Scholar
Dera, P., Zhuravlev, K., Prakapenka, V., et al. (2013). High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Pressure Research, 33(3), 466484.CrossRefGoogle Scholar
Dewaele, A., Loubeyre, P., Occelli, F., Marie, O., Mezouar, M. (2018). Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nature Communications, 9(1), 2913.Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339341.Google Scholar
Dubrovinsky, L., Boffa-Ballaran, T., Glazyrin, K., et al. (2010). Single-crystal X-ray diffraction at megabar pressures and temperatures of thousands of degrees. High Pressure Research, 30(4), 620633.CrossRefGoogle Scholar
Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B., Abakumov, A. M. (2012). Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nature Communications, 3(1), 1163.Google Scholar
Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., Prakapenka, V. (2007). Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182.CrossRefGoogle ScholarPubMed
Gregoryanz, E., Lundegaard, L. F., McMahon, M. I., Guillaume, C., Nelmes, R. J., Mezouar, M. (2008). Structural diversity of sodium. Science, 320(5879), 1054.CrossRefGoogle ScholarPubMed
Hirao, N., Kawaguchi, S. I., Hirose, K., Shimizu, K., Ohtani, E., Ohishi, Y. (2020). New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8. Matter and Radiation at Extremes, 5(1), 018403.Google Scholar
Kabsch, W. (2010). XDS. Acta Crystallographica Section D, 66(2), 125132.Google Scholar
Lavina, B., Dera, P., Kim, E., et al. (2011). Discovery of the recoverable high-pressure iron oxide Fe<sub>4</sub>O<sub>5</sub&gt. Proceedings of the National Academy of Sciences, 108(42), 17281.Google Scholar
Lavina, B., Meng, Y. (2015). Unraveling the complexity of iron oxides at high pressure and temperature: synthesis of Fe5O6. Science Advances, 1(5), e1400260Google Scholar
Li, B., Ji, C., Yang, W., et al. (2018). Diamond anvil cell behavior up to 4 Mbar. Proceedings of the National Academy of Sciences, 115(8), 1713.Google Scholar
Liermann, H.-P., Konopkova, Z., Morgenroth, W., et al. (2015). The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA III. Journal of Synchrotron Radiation, 22(4), 908924.Google Scholar
Lundegaard, L. F., Weck, G., McMahon, M. I., Desgreniers, S., Loubeyre, P. (2006). Observation of an O8 molecular lattice in the ɛ phase of solid oxygen. Nature, 443(7108), 201204.Google Scholar
Mao, H. K., Bell, P. M. (1978). High-pressure physics: sustained static generation to 1.36–1.72 megabars. Science, 200, 11451147.Google Scholar
Meng, Y., Hrubiak, R., Rod, E., Boehler, R., Shen, G. (2015). New developments in laser-heated diamond anvil cell with in situ synchrotron X-ray diffraction at high pressure collaborative access team. Review of Scientific Instruments, 86(7), 072201.Google Scholar
Merlini, M., Cerantola, V., Gatta, G. D., et al. (2017). Dolomite-IV: candidate structure for a carbonate in the Earth’s lower mantle. American Mineralogist, 102(8), 17631766.CrossRefGoogle Scholar
Merlini, M., Hanfland, M. (2013). Single-crystal diffraction at megabar conditions by synchrotron radiation. High Pressure Research, 33(3), 511522.Google Scholar
Merlini, M., Hanfland, M., Salamat, A., Petitgirard, S., Müller, H. (2015). The crystal structures of Mg2Fe2C4O13, with tetrahedrally coordinated carbon, and Fe13O19, synthesized at deep mantle conditions. American Mineralogist, 100(8-9), 20012004.Google Scholar
Miletich, R., Allan, D. R., Kuhs, W. F. (2000). High-pressure single-crystal techniques. Reviews in Mineralogy and Geochemistry, 41(1), 445519.Google Scholar
Murakami, M., Hirose, K., Kawamura, K., Sata, N., Ohishi, Y. (2004). Post-perovskite phase transition in MgSiO3. Science, 304(5672), 855858.Google Scholar
Nisr, C., Ribárik, G., Ungár, T., Vaughan, G. B. M., Cordier, P., Merkel, S. (2012). High resolution three-dimensional X-ray diffraction study of dislocations in grains of MgGeO3 post-perovskite at 90 GPa. Journal of Geophysical Research, 117(B3), B03201.CrossRefGoogle Scholar
Ohira, I., Ohtani, E., Sakai, T., et al. (2014). Stability of a hydrous δ-phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth and Planetary Science Letters, 401, 1217.Google Scholar
Oszlanyi, G., Suto, A. (2004). Ab initio structure solution by charge flipping. Acta Crystallographica Section A, 60(2), 134141.Google Scholar
Oxford Diffraction Ltd. (2006). CrysAlis Red.Google Scholar
Prakapenka, V. B., Kubo, A., Kuznetsov, A., et al. (2008). Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Pressure Research, 28(3), 225235.Google Scholar
Rosa, A. D., Hilairet, N., Ghosh, S., et al. (2015). In situ monitoring of phase transformation microstructures at Earth’s mantle pressure and temperature using multi-grain XRD. Journal of Applied Crystallography, 48(5), 13461354.Google Scholar
Sørensen, H. O., Schmidt, S., Wright, J. P., et al. (2012). Multigrain crystallography. Zeitschrift für Kristallographie, 227(1), 6378.CrossRefGoogle Scholar
Schmidt, S. (2014). GrainSpotter: a fast and robust polycrystalline indexing algorithm. Journal of Applied Crystallography, 47(1), 276284.Google Scholar
Sheldrick, G. M. (2015). SHELXT – integrated space-group and crystal-structure determination. Acta Crystallographica. Section A, Foundations and Advances, 71(1), 38.CrossRefGoogle ScholarPubMed
Shen, G., Mao, H. K. (2017). High-pressure studies with X-rays using diamond anvil cells. Reports on Progress in Physics, 80(1), 016101.Google Scholar
Tateno, S., Hirose, K., Ohishi, Y., Tatsumi, Y. (2010). The structure of iron in Earth’s inner core. Science, 330(6002), 359361.Google Scholar
Teter, D. M., Hemley, R. J., Kresse, G., Hafner, J. (1998). High pressure polymorphism in silica. Physical Review Letters, 80(10), 21452148.CrossRefGoogle Scholar
Wang, L., Ding, Y., Yang, W., et al. (2010). Nanoprobe measurements of materials at megabar pressures. Proceedings of the National Academy of Sciences, 107(14), 6140.Google Scholar
Wright, J. P. (2005). ImageD11. https://sourceforge.net/p/fable/code/HEAD/tree/ImageD11/, ESRF, Grenoble.Google Scholar
Yagi, T., Sakai, T., Kadobayashi, H., Irifune, T. (2020). Review: high pressure generation techniques beyond the limit of conventional diamond anvils. High Pressure Research, 40(1), 148161.CrossRefGoogle Scholar
Yuan, H., Zhang, L., Ohtani, E., Meng, Y., Greenberg, E., Prakapenka, V. B. (2019). Stability of Fe-bearing hydrous phases and element partitioning in the system MgO–Al2O3–Fe2O3–SiO2–H2O in Earth’s lowermost mantle. Earth and Planetary Science Letters, 524, 115714.CrossRefGoogle Scholar
Zhang, L., Meng, Y., Dera, P., Yang, W., Mao, W. L., Mao, H. K. (2013). Single-crystal structure determination of (Mg,Fe)SiO3 postperovskite. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 62926295.Google Scholar
Zhang, L., Meng, Y., Mao, H.-k. (2016a). Unit cell determination of coexisting post-perovskite and H-phase in (Mg,Fe)SiO3 using multigrain XRD: compositional variation across a laser heating spot at 119 GPa. Progress in Earth and Planetary Science, 3(1), 13.Google Scholar
Zhang, L., Popov, D., Meng, Y., et al. (2016b). In-situ crystal structure determination of seifertite SiO2at 129 GPa: studying a minor phase near Earth’s core–mantle boundary. American Mineralogist, 101(1), 231234.Google Scholar
Zhang, L., Yuan, H., Meng, Y., Mao, H. K. (2018) Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH. Proceedings of the National Academy of Sciences USA, 115(12), 29082911.Google Scholar
Zhang, L., Yuan, H., Meng, Y., Mao, H.-K. (2019) Development of high-pressure multigrain X-ray diffraction for exploring the Earth’s interior. Engineering, 5(3), 441447.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×