Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T22:12:51.748Z Has data issue: false hasContentIssue false

5 - Effects of climate change on dynamics and stability of multiregional populations

Published online by Cambridge University Press:  05 July 2011

Mark C. Andersen
Affiliation:
New Mexico State University
Jianguo Liu
Affiliation:
Michigan State University
Vanessa Hull
Affiliation:
Michigan State University
Anita T. Morzillo
Affiliation:
Oregon State University
John A. Wiens
Affiliation:
PRBO Conservation Science
Get access

Summary

Climate change is one of the greatest long-term potential threats to the functional integrity of the biosphere. Although the likely effects of climate change on ecosystem function and the geographic distributions of organisms have been extensively studied, their demographic effects are less well understood. In order to examine the effects of climate change on populations in their landscape context, I integrate results from two different modeling approaches to examine the effects of climate change on the demography and dispersal of organisms. I use simple two-patch metapopulation models and more complex stochastic stage-structured multiregional models of stream fish populations. Plausible effects of climate change on dispersal rates, and on spatial population structure, may destabilize metapopulations and make them susceptible to further anthropogenic or natural perturbations. The findings suggest several hypotheses to be tested empirically, and imply that future biodiversity conservation strategies will need to account for the landscape-level effects of climate change and attendant changes in land use.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amarasekare, P. (1998). Interactions between local dynamics and dispersal: insights from single species models. Theoretical Population Biology 53: 44–59.CrossRefGoogle ScholarPubMed
Andersen, M. A. (2007). Global climate change and biodiversity conservation: the role of ecological risk assessment. Forum on Public Policy 3: 267–276.Google Scholar
Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D. and Whittaker, J. B. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8: 1–16.CrossRefGoogle Scholar
Beaumont, L. J., Pitman, A. J., Poulsen, M. and Hughes, L. (2007). Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Global Change Biology 13: 1368–1385.CrossRefGoogle Scholar
Broennimann, O., Thuiller, W., Hughes, G., Midgley, G., Alkemade, J. M. R. and Guisan, A. (2006). Do geographic distribution, niche property and life form explain plants’ vulnerability to global change?Global Change Biology 12: 1079–1093.CrossRefGoogle Scholar
Caswell, H. (2001). Matrix Population Models: Construction, Analysis, and Interpretation, 2nd edition. Sinauer Associates, Sunderland, MA.Google Scholar
Christensen, M. R., Graham, M. D., Vinebrooke, R. D., Findlay, D. L., Paterson, M. J. and Turner, M. A. (2006). Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Global Change Biology 12: 2316–2322.CrossRefGoogle Scholar
Cumming, G. S. (2007). Global biodiversity scenarios and landscape ecology. Landscape Ecology 22: 671–685.CrossRefGoogle Scholar
De Boeck, H. J., Lemmens, C. M. H. M., Gielen, B., Bossuyt, H., Malchair, S., Carnol, M., Merckx, R., Ceulemans, R. and Nijs, I. (2007). Combined effects of climate warming and plant diversity loss on above- and below-ground grassland productivity. Environmental and Experimental Botany 60: 95–104.CrossRefGoogle Scholar
Donahue, M. J., Holyoak, M. and Feng, C. (2003). Patterns of dispersal and dynamics among habitat patches varying in quality. American Naturalist 162: 302–317.CrossRefGoogle Scholar
Donovan, T. M. and Thompson, F. R. (2001). Modeling the ecological trap hypothesis: a habitat and demographic analysis for migrant songbirds. Ecological Applications 11: 871–882.CrossRefGoogle Scholar
Flake, G. W. (1998). The Computational Beauty of Nature. The MIT Press, Cambridge, MA.Google Scholar
Guisan, A. and Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993–1009.CrossRefGoogle Scholar
Hannah, L., Midgley, G. and Millar, D. (2002). Climate change-integrated conservation strategies. Global Ecology and Biogeography 11: 485–495.CrossRefGoogle Scholar
Hastings, A. (1991). Structured models of metapopulation dynamics. Biological Journal of the Linnean Society 42: 57–71.CrossRefGoogle Scholar
Hastings, A. (1993). Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology 74: 1362–1372.CrossRefGoogle Scholar
Hijmans, R. J. and Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology 12: 2272–2281.CrossRefGoogle Scholar
Hilborn, R. and Mangel, M. (1997). The Ecological Detective: Confronting Models with Data. Princeton University Press, Princeton, NJ.Google Scholar
Hilderbrand, R. H. (2003). The roles of carrying capacity, immigration, and population synchrony on persistence of stream-resident cutthroat trout. Biological Conservation 110: 257–266.CrossRefGoogle Scholar
Hilderbrand, R. H., Gardner, R. H., Ratnaswamy, M. J. and Keller, C. E. (2007). Evaluating population persistence of Delmarva fox squirrels and potential impacts of climate change. Biological Conservation 137: 70–77.CrossRefGoogle Scholar
Holman, I. P., Nicholls, R. J., Berry, P. M., Harrison, P. A., Audsley, E., Shackley, S. and Rounsevell, M. D. A. (2005). A regional, multi-sectoral and integrated assessment of the impacts of climate and socio-economic change in the UK. Part II. Results. Climatic Change 71: 43–73.CrossRefGoogle Scholar
IPCC (2007a). Climate Change 2007: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
IPCC (2007b). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
Jenssen, B. J. (2006). Endocrine-disrupting chemicals and climate change: a worst-case combination for Arctic marine mammals and seabirds?Environmental Health Perspectives 114: 76–80.CrossRefGoogle ScholarPubMed
Jetz, W., Wilcove, D. S. and Dobson, A. P. (2007). Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology 5: 1211–1219.CrossRefGoogle Scholar
Kendall, B. E. and Fox, G. A. (1998). Spatial structure, environmental heterogeneity, and population dynamics: analysis of the coupled logistic map. Theoretical Population Biology 54: 11–37.CrossRefGoogle ScholarPubMed
Korner, C. (2003). Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. Philosophical Transactions of the Royal Society of London, Series A – Mathematical Physical and Engineering Sciences 361: 2023–2041.CrossRefGoogle ScholarPubMed
le Roux, P. C. and McGeoch, M. A. (2008). Rapid range expansion and community reorganization in response to warming. Global Change Biology 14: 2950–2962.CrossRefGoogle Scholar
Lebreton, J. D. (1996). Demographic models for subdivided populations: the renewal equation approach. Theoretical Population Biology 49: 291–313.CrossRefGoogle ScholarPubMed
Lloyd, A. L. (1995). The coupled logistic map: a simple model for the effects of spatial heterogeneity on population dynamics. Journal of Theoretical Biology 173: 217–230.CrossRefGoogle Scholar
Maclean, I. M. D., Austin, G. E., Rehfisch, M. M., Blew, J., Crowe, O., Delany, S., Devos, K., Deceuninck, B., Gunther, K., Laursen, K., Van Roomen, M. and Wahl, J. (2008). Climate change causes rapid changes in the distribution and site abundance of birds in winter. Global Change Biology 14: 2489–2500.Google Scholar
McRae, B. H., Schumaker, N. H., McKane, R. B., Busing, R. T., Solomon, A. M. and Burdick, C. A. (2008). A multi-model framework for simulating wildlife population response to land-use and climate change. Ecological Modelling 219: 77–91.CrossRefGoogle Scholar
Metzger, M. J., Leemans, R. and Schroter, D. (2005). A multidisciplinary multi-scale framework for assessing vulnerabilities to global change. International Journal of Applied Earth Observation and Geoinformation 7: 253–267.CrossRefGoogle Scholar
Metzger, M. J., Rounsevell, M. D. A., Acosta-Michlik, L., Leemans, R. and Schroter, D. (2006). The vulnerability of ecosystem services to land use change. Agriculture Ecosystems and Environment 114: 69–85.CrossRefGoogle Scholar
Midgley, G., Hannah, L., Millar, D., Rutherford, M. C. and Powrie, L. W. (2002). Assessing the vulnerability of species richness to anthropogenic change in a biodiversity hotspot. Global Ecology and Biogeography 11: 445–451.CrossRefGoogle Scholar
Midgley, G., Hughes, G. O., Thuiller, W. and Rebelo, A. G. (2006). Migration rate limitations on climate change-induced range shifts in Cape Proteaceae. Diversity and Distributions 12: 555–562.CrossRefGoogle Scholar
Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B. and Satzinger, P. (2008). Bird migration times, climate change, and changing population sizes. Global Change Biology 14: 1959–1972.CrossRefGoogle Scholar
Mills, L. S. (2007). Conservation of Wildlife Populations: Demography, Genetics, and Management. Blackwell Publishing, Malden, MA.Google Scholar
Mitchell, C. E., Reich, P. E., Tilman, D. and Groth, J. V. (2003). Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Global Change Biology 9: 438–451.CrossRefGoogle Scholar
Peters, D. P. C., Groffmann, P. M., Nadelhoffer, K. J., Grimm, N. B., Collins, S. L., Michener, W. K. and Huston, M. A. (2008). Living in an increasingly connected world: a framework for continental-scale environmental science. Frontiers in Ecology and the Environment 6: 229–237.CrossRefGoogle Scholar
Peterson, J. T. and Kwak, T. J. (1999). Modeling the effects of land use and climate change on riverine smallmouth bass. Ecological Applications 9: 1391–1404.CrossRefGoogle Scholar
Pulliam, H. R. (1988). Sources, sinks, and population regulation. American Naturalist 132: 652–661.CrossRefGoogle Scholar
Pulliam, H. R., Dunning, J. B. Jr. and Liu, J. (1992). Population dynamics in complex landscapes: a case study. Ecological Applications 2: 165–177.CrossRefGoogle ScholarPubMed
Rounsevell, M. D. A., Berry, P. M. and Harrison, P. A. (2006). Future environmental change impacts on rural land use and biodiversity: a synthesis of the ACCELERATES project. Environmental Science and Policy 9: 93–100.CrossRefGoogle Scholar
Rowe, R. J. (2007). Legacies of land use and recent climatic change: the small mammal fauna of the mountains of Utah. American Naturalist 170: 242–257.CrossRefGoogle ScholarPubMed
Rupp, T. S., Starfield, A. M. and Chapin, F. S. (2000). A frame-based spatially explicit model of subarctic vegetation response to climatic change: comparison with a point model. Landscape Ecology 15: 383–400.CrossRefGoogle Scholar
Schroter, D., Cramer, W., Leemans, R., Prentice, I. C., Araujo, M. B., Arnell, N. W., Bondeau, A., Bugmann, H., Carter, T. R., Garcia, C. A., de la Vega-Leinert, A. C., Erhard, M., Ewert, F., Glendening, M., House, J. I., Kankaanpaa, S., Klein, R. J. T., Lavorel, S., Lindner, M., Metzger, M. J., Meyer, J., Mitchell, T. D., Reginster, I., Rounsevell, M. D. A., Sabate, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M. T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S. and Zierl, B. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science 310: 1333–1337.CrossRefGoogle Scholar
Schumacher, S., Reineking, B., Sibold, J. and Bugmann, H. (2006). Modeling the impact of climate and vegetation on fire regimes in mountain landscapes. Landscape Ecology 21: 539–554.CrossRefGoogle Scholar
Semlitsch, R. D. (2008). Differentiating migration and dispersal processes for pond-breeding amphibians. Wildlife Management 72: 260–267.CrossRefGoogle Scholar
Serra, H., Rodrigues da Silva, I. C., Mancera, P. F., Faria, L., Von Zuben, C. J., Von Zuben, F. J., dos Reis, S. F. and Godoy, W. A. C. (2007). Stochastic dynamics in exotic and native blowflies: an analysis combining laboratory experiments and a two-patch metapopulation model. Ecological Research 22: 686–695.CrossRefGoogle Scholar
Sinclair, A. R. E., Fryxell, J. M. and Caughley, G. (2006). Wildlife Ecology, Conservation, and Management, 2nd edition. Blackwell Publishing, Malden, MA.Google Scholar
Sole, R. V. and Gamarra, J. G. P. (1998). Chaos, dispersal and extinction in coupled ecosystems. Journal of Theoretical Biology 193: 539–541.CrossRefGoogle ScholarPubMed
Sprott, J. C. (2003). Chaos and Time-Series Analysis. Oxford University Press, Oxford, UK.Google Scholar
Stranko, S. A., Hilderbrand, R. H., Morgan, R. P., Staley, M. W., Becker, A. J., Roseberry-Lincoln, A., Perry, E. S. and Jacobson, P. T. (2008). Brook trout declines with land cover and temperature changes in Maryland. North American Journal of Fisheries Management 28: 1223–1232.CrossRefGoogle Scholar
Thuiller, W. (2003). BIOMOD: optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9: 1353–1362.CrossRefGoogle Scholar
Thuiller, W., Lavorel, S., Sykes, M. T. and Araujo, M. B. (2006). Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Diversity and Distributions 12: 49–60.CrossRefGoogle Scholar
Trivedi, M. R., Berry, P. M., Morecroft, M. D. and Dawson, T. P. (2008). Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Global Change Biology 14: 1089–1103.CrossRefGoogle Scholar
Vinebrooke, R. D., Cottingham, K. L., Norberg, J., Scheffer, M., Dodson, S. I., Maberly, S. C. and Sommer, U. (2004). Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104: 451–457.CrossRefGoogle Scholar
Williams, J. W., Jackson, S. T. and Kutzbach, J. E. (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the USA 104: 5738–5742.CrossRefGoogle ScholarPubMed
Yao, J., Peters, D. P. C., Havstad, K. M., Gibbens, R. P. and Herrick, J. E. (2006). Multi-scale factors and long-term responses of Chihuahuan Desert grasses to drought. Landscape Ecology 21: 1217–1231.CrossRefGoogle Scholar
Zavaleta, E. S. and Hulvey, K. B. (2004). Realistic species losses disproportionately reduce grassland resistance to biological invaders. Science 306: 1175–1177.CrossRefGoogle ScholarPubMed
Zavaleta, E. S., Shaw, M. R., Chiarello, N. R., Mooney, H. A. and Field, C. B. (2003). Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proceedings of the National Academy of Sciences of the USA 100: 7650–7654.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×