Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:11:05.081Z Has data issue: false hasContentIssue false

25 - Observational Motor Learning

from Part V - Learning and Development

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Abstract

To survive, we must interact with an ever-changing world. Our capacity to move accurately in a range of environments lies in the brain’s ability to flexibly modify our motor behavior. For example, simply holding an object in the hand changes the arm’s dynamic environment. That is, the additional weight of the object changes the relationship between applied forces and motion such that the brain’s motor commands and muscle forces no longer result in the intended arm movement. In order to skillfully manipulate the object, the brain must alter its motor commands to compensate for the object’s weight and achieve a desired movement. Subsequent movements are improved with time and practice; this process is called motor learning. While many of our motor skills are acquired and refined through active physical practice, we can also learn how to make movements by observing others. This is referred to as observational motor learning. This chapter will begin with a brief overview of modern studies of human motor learning, followed by a discussion of how these concepts relate to observational motor learning.

Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 525 - 540
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alaerts, K., Senot, P., Swinnen, S. P., Craighero, L., Wenderoth, N., & Fadiga, L. (2010). Force requirements of observed object lifting are encoded by the observer’s motor system: A TMS study. European Journal of Neuroscience, 31(6), 11441153.CrossRefGoogle ScholarPubMed
Albert, N. B., Robertson, E. M., & Miall, R. C. (2009). The resting human brain and motor learning. Current Biology, 19(12), 10231027.CrossRefGoogle ScholarPubMed
Bernardi, N. F., Darainy, M., Bricolo, E., & Ostry, D. J. (2013). Observing motor learning produces somatosensory change. Journal of Neurophysiology, 110(8), 18041810.CrossRefGoogle ScholarPubMed
Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561567.CrossRefGoogle Scholar
Blandin, Y., & Proteau, L. (2000). On the cognitive basis of observational learning: Development of mechanisms for the detection and correction of errors. Quarterly Journal of Experimental Psychology A, 53(3), 846867.CrossRefGoogle ScholarPubMed
Brown, L. E., Wilson, E. T., & Gribble, P. L. (2009). Repetitive transcranial magnetic stimulation to the primary motor cortex interferes with motor learning by observing. Journal of Cognitive Neuroscience, 21(5), 10131022.CrossRefGoogle Scholar
Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13, 400404.CrossRefGoogle Scholar
Buckingham, G., Wong, J. D., Tang, M., Gribble, P. L., & Goodale, M. A. (2014). Observing object lifting errors modulates cortico-spinal excitability and improves object lifting performance. Cortex, 50, 115124.CrossRefGoogle ScholarPubMed
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50(3), 11481167.CrossRefGoogle ScholarPubMed
Ellis, R. R., & Lederman, S. J. (1999). The material-weight illusion revisited. Perception & Psychophysics, 61(8), 15641576.CrossRefGoogle ScholarPubMed
Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424(6950), 769771.CrossRefGoogle ScholarPubMed
Flanagan, J. R., Vetter, P., Johansson, R. S., & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Current Biology, 13(2), 146150.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119 (Pt 2), 593609.CrossRefGoogle ScholarPubMed
Gallese, V., Fogassi, L., Fadiga, L., & Rizzolatti, G. (2002). Action representation and the inferior parietal lobule. Attention and Performance, 19, 247266.Google Scholar
Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Science, 8, 396403.CrossRefGoogle ScholarPubMed
Gandolfo, F., Mussa-Ivaldi, F. A., & Bizzi, E. (1996). Motor learning by field approximation. Proceedings of the National Academy of Sciences of the United States of America, 93(9), 38433846.CrossRefGoogle ScholarPubMed
Garrison, K. A., Winstein, C. J., & Aziz-Zadeh, L. (2010). The mirror neuron system: A neural substrate for methods in stroke rehabilitation. Neurorehabilitation and Neural Repair, 24(5), 404412.CrossRefGoogle ScholarPubMed
Gordon, A. M., Forssberg, H., Johansson, R. S., & Westling, G. (1991). Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research, 83(3), 477482.CrossRefGoogle ScholarPubMed
Grafton, S. T., Fadiga, L., Arbib, M. A., & Rizzolatti, G. (1997). Premotor cortex activation during observation and naming of familiar tools. NeuroImage, 6, 231236.CrossRefGoogle ScholarPubMed
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 25262528.CrossRefGoogle ScholarPubMed
Imamura, K., Onoe, H., Watanabe, Y., Andersson, J., Hetta, J., et al. (1996). Regional activation of human cerebral cortex upon an adaptation in mirror drawing. Neuroscience Letters, 209(3), 185188.CrossRefGoogle ScholarPubMed
Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56(3), 550564.CrossRefGoogle ScholarPubMed
Johansson, R. S., (1988). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research, 71(1), 5971.CrossRefGoogle ScholarPubMed
Krakauer, J. W., Ghez, C., & Ghilardi, M. F. (2005). Adaptation to visuomotor transformations: Consolidation, interference, and forgetting. Journal of Neuroscience, 25(2), 473478.CrossRefGoogle ScholarPubMed
Lim, S. B., Larssen, B. C., & Hodges, N. J. (2013). Manipulating visual–motor experience to probe for observation-induced after-effects in adaptation learning. Experimental Brain Research, 232(3), 114.Google ScholarPubMed
Malfait, N., Valyear, K. F., Culham, J. C., Anton, J.-L., Brown, L. E., & Gribble, P. L. (2010). fMRI activation during observation of others’ reach errors. Journal of Cognitive Neuroscience, 22(7), 14931503.CrossRefGoogle ScholarPubMed
Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996). Throwing while looking through prisms I. Focal olivocerebellar lesions impair adaptation. Brain, 119(4), 11831198.CrossRefGoogle ScholarPubMed
Mattar, A. A. G., & Gribble, P. L. (2005). Motor learning by observing. Neuron, 46(1), 153160.CrossRefGoogle ScholarPubMed
McGregor, H., Belbeck, B., Whyte, N., & Gribble, P.L. (unpublished). Does motor learning by observing depend on observer–tutor visual perspective?Google Scholar
McGregor, H., & Gribble, P. L. (unpublished). Neural basis of motor learning by observing.Google Scholar
Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42(2), 223227.CrossRefGoogle ScholarPubMed
Ong, N. T., & Hodges, N. J. (2010). Absence of after-effects for observers after watching a visuomotor adaptation. Experimental Brain Research, 205(3), 325334.CrossRefGoogle ScholarPubMed
Ong, N. T., Larssen, B. C., & Hodges, N. J. (2012). In the absence of physical practice, observation and imagery do not result in updating of internal models for aiming. Experimental Brain Research, 218(1), 919.CrossRefGoogle Scholar
Ostry, D. J., Darainy, M., Mattar, A. A., Wong, J., & Gribble, P. L. (2010). Somatosensory plasticity and motor learning. Journal of Neuroscience, 30(15), 53845393.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Reichelt, A. F., Ash, A. M., Baugh, L. A., Johansson, R. S., & Flanagan, J. R. (2013). Adaptation of lift forces in object manipulation through action observation. Experimental Brain Research, 228(2), 221234.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131141.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2(9), 661670.CrossRefGoogle ScholarPubMed
Rohbanfard, H., & Proteau, L. (2011). Learning through observation: A combination of expert and novice models favors learning. Experimental Brain Research, 215(34), 183197.CrossRefGoogle ScholarPubMed
Shadmehr, R., & Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience, 14(5), 32083224.CrossRefGoogle ScholarPubMed
Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89108.CrossRefGoogle ScholarPubMed
Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., et al. (2005). Formation of a motor memory by action observation. Journal of Neuroscience, 25(41), 93399346.CrossRefGoogle ScholarPubMed
Strafella, A. P., & Paus, T. (2000). Modulation of cortical excitability during action observation: A transcranial magnetic stimulation study. NeuroReport, 11(10), 22892292.CrossRefGoogle ScholarPubMed
Wanda, P. A., Li, G., & Thoroughman, K. A. (2013). State dependence of adaptation of force output following movement observation. Journal of Neurophysiology, 110(5), 12461256.CrossRefGoogle ScholarPubMed
Watkins, K. E., Strafella, A. P., & Paus, T. (2003). Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia, 41(8), 989994.CrossRefGoogle ScholarPubMed
Williams, A., & Gribble, P. L. (2012). Observed effector-independent motor learning by observing. Journal of Neurophysiology, 107(6), 15641570.CrossRefGoogle ScholarPubMed
Zeki, S., Watson, J. D., Lueck, C. J., Friston, K. J., Kennard, C., & Frackowiak, R. S. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11(3), 641649.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×