Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:15:42.783Z Has data issue: false hasContentIssue false

22 - Mirror Neuron Formation via Associative Learning

from Part V - Learning and Development

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Abstract

This volume discusses the evidence for – and implications of – the existence of shared representations in the human brain. When we perceive another person’s actions, emotional states or even tactile sensations, we activate the same motor programs, emotional circuitry and somatosensory networks that would be active if we were to perform those actions, or feel those emotions or sensations. Thus our own representation of an action, emotion or sensation becomes ‘shared’: activated not only by our own action, emotion or touch, but also by the perception of the same events in other people. There is now extensive evidence, discussed in earlier chapters, for the presence of such ‘shared representations’; in contrast, what this chapter addresses is how the brain acquires these shared representations. In this chapter, I focus on shared representations of action, as instantiated by mirror neurons. This is because historically it is shared action representations that have been subject to the most investigation; however, I will conclude with some thoughts on how this work may generalize to other types of shared representation.

Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 460 - 479
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 11091116.CrossRefGoogle ScholarPubMed
Aziz-Zadeh, L., Koski, L., Zaidel, E., Mazziotta, J., & Iacoboni, M. (2006). Lateralization of the human mirror neuron system. Journal of Neuroscience, 26(11), 29642970. doi: 10.1523/JNEUROSCI.2921-05.2006.CrossRefGoogle ScholarPubMed
Babiloni, C., Marzano, N., Infarinato, F., Iacoboni, M., Rizza, G., et al. (2010). ‘Neural efficiency’ of experts’ brain during judgment of actions: A high-resolution EEG study in elite and amateur karate athletes. Behavioural Brain Research, 207(2), 466475. doi: 10.1016/j.bbr.2009.10.034.CrossRefGoogle ScholarPubMed
Balser, N., Lorey, B., Pilgramm, S., Stark, R., Bischoff, M., et al. (2014). Prediction of human actions: Expertise and task-related effects on neural activation of the action observation network. Human Brain Mapping, 8(568). doi: 10.1002/hbm.22455.Google Scholar
Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., et al. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30(3), 917926. doi: 10.1016/j.neuroimage.2005.10.044.CrossRefGoogle ScholarPubMed
Bird, G., Catmur, C., Silani, G., Frith, C., & Frith, U. (2006). Attention does not modulate neural responses to social stimuli in autism spectrum disorders. NeuroImage, 31(4), 16141624. doi: 10.1016/j.neuroimage.2006.02.037.CrossRefGoogle Scholar
Bonini, L., Rozzi, S., Serventi, F. U., Simone, L., Ferrari, P. F., & Fogassi, L. (2010). Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cerebral Cortex, 20(6), 13721385. doi: 10.1093/cercor/bhp200.CrossRefGoogle ScholarPubMed
Brass, M., Bekkering, H., Wohlschläger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial, and imitative cues. Brain and Cognition, 44(2), 124143. doi: 10.1006/brcg.2000.1225.Google Scholar
Brass, M., & Heyes, C. (2005). Imitation: Is cognitive neuroscience solving the correspondence problem? Trends in Cognitive Sciences, 9(10), 489495. doi: 10.1016/j.tics.2005.08.007.CrossRefGoogle ScholarPubMed
Brass, M., & Muhle-Karbe, P. (2014). More than associations: An ideomotor perspective on mirror neurons. Behavioral and Brain Sciences, 37(2), 195196. doi: 10.1017/S0140525X13002239.CrossRefGoogle ScholarPubMed
Buccino, G., Vogt, S., Ritzl, A., Fink, G., & Zilles, K. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42, 323334.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15(8), 12431249. doi: 10.1093/cercor/bhi007.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 19051910. doi: 10.1016/j.cub.2006.07.065.CrossRefGoogle ScholarPubMed
Casile, A., Caggiano, V., & Ferrari, P. F. (2011). The mirror neuron system: A fresh view. The Neuroscientist, 17(5), 524538. doi: 10.1177/1073858410392239.CrossRefGoogle ScholarPubMed
Catmur, C., Gillmeister, H., Bird, G., Liepelt, R., Brass, M., & Heyes, C. (2008). Through the looking glass: Counter-mirror activation following incompatible sensorimotor learning. European Journal of Neuroscience, 28(6), 12081215. doi: 10.1111/j.1460-9568.2008.06419.x.CrossRefGoogle ScholarPubMed
Catmur, C., Mars, R. B., Rushworth, M. F., & Heyes, C. (2011). Making mirrors: Premotor cortex stimulation enhances mirror and counter-mirror motor facilitation. Journal of Cognitive Neuroscience, 23(9), 23522362. doi: 10.1162/jocn.2010.21590.CrossRefGoogle ScholarPubMed
Catmur, C., Press, C., Cook, R., Bird, G., & Heyes, C. M. (2014). Mirror neurons: Tests and testability. Behavioral and Brain Sciences, 37(2), 221241.CrossRefGoogle ScholarPubMed
Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current Biology, 17(17), 15271531. doi: 10.1016/j.cub.2007.08.006.CrossRefGoogle ScholarPubMed
Cavallo, A., Heyes, C., Becchio, C., Bird, G., & Catmur, C. (2014). Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation. Social Cognitive and Affective Neuroscience, 9(8), 10821088. doi: 10.1093/scan/nst085.CrossRefGoogle ScholarPubMed
Chong, T. T.-J., Cunnington, R., Williams, M. A., Kanwisher, N., & Mattingley, J. B. (2008). fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 18(20), 15761580. doi: 10.1016/j.cub.2008.08.068.CrossRefGoogle ScholarPubMed
Cook, R., Bird, G., Catmur, C., Press, C., & Heyes, C. M. (2014). Mirror neurons: From origin to function. Behavioral and Brain Sciences, 37(2), 177192. doi: 10.1017/S0140525X13000903.CrossRefGoogle ScholarPubMed
Cook, R., Dickinson, A., & Heyes, C. (2012). Contextual Modulation of Mirror and Countermirror Sensorimotor Associations. Journal of Experimental Psychology. General, 141(4), 774787. doi:10.1037/a0027561CrossRefGoogle ScholarPubMed
Cook, R., Press, C., Dickinson, A., & Heyes, C. (2010). Acquisition of automatic imitation is sensitive to sensorimotor contingency. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 840852. doi: 10.1037/a0019256.Google ScholarPubMed
Cosmides, L., & Tooby, J. (1994). Beyond intuition and instinct blindness: Toward an evolutionarily rigorous cognitive science. Cognition, 50(1–3), 4177.CrossRefGoogle ScholarPubMed
Cross, E. S., Hamilton, A. F. D. C., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31(3), 12571267. doi: 10.1016/j.neuroimage.2006.01.033.CrossRefGoogle ScholarPubMed
Cross, E. S., Hamilton, A. F. D. C., Kraemer, D. J. M., Kelley, W. M., & Grafton, S. T. (2009). Dissociable substrates for body motion and physical experience in the human action observation network. European Journal of Neuroscience, 30(7), 13831392. doi: 10.1111/j.1460-9568.2009.06941.x.CrossRefGoogle ScholarPubMed
D’Ausilio, A., Altenmüller, E., Olivetti Belardinelli, M., & Lotze, M. (2006). Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. European Journal of Neuroscience, 24(3), 955958. doi: 10.1111/j.1460-9568.2006.04960.x.CrossRefGoogle ScholarPubMed
Del Giudice, M., Manera, V., & Keysers, C. (2009). Programmed to learn? The ontogeny of mirror neurons. Developmental Science, 12(2), 350363. doi: 10.1111/j.1467-7687.2008.00783.x.CrossRefGoogle ScholarPubMed
Dushanova, J., & Donoghue, J. (2010). Neurons in primary motor cortex engaged during action observation. European Journal of Neuroscience, 31(2), 386398. doi: 10.1111/j.1460-9568.2009.07067.x.CrossRefGoogle ScholarPubMed
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73(6), 26082611.CrossRefGoogle ScholarPubMed
Ferrari, P. F., Rozzi, S., & Fogassi, L. (2005). Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. Journal of Cognitive Neuroscience, 17(2), 212226. doi: 10.1162/0898929053124910.CrossRefGoogle ScholarPubMed
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662667. doi: 10.1126/science.1106138.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593609.Google Scholar
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493501.CrossRefGoogle ScholarPubMed
Gillmeister, H., Catmur, C., Liepelt, R., Brass, M., & Heyes, C. (2008). Experience-based priming of body parts: A study of action imitation. Brain Research, 1217, 157170. doi: 10.1016/j.brainres.2007.12.076.CrossRefGoogle ScholarPubMed
Greenwald, A. G. (1970). Sensory feedback mechanisms in performance control: With special reference to the ideomotor mechanism. Psychological Review, 77, 7399.CrossRefGoogle Scholar
Haslinger, B., Erhard, P., Altenmüller, E., Schroeder, U., Boecker, H., & Ceballos-Baumann, A. O. (2005). Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience, 17(2), 282293. doi: 10.1162/0898929053124893.CrossRefGoogle ScholarPubMed
Heyes, C. (2001). Causes and consequences of imitation. Trends in Cognitive Sciences, 5(6), 253261.CrossRefGoogle ScholarPubMed
Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews, 34(4), 575583. doi: 10.1016/j.neubiorev.2009.11.007.CrossRefGoogle ScholarPubMed
Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463483. doi: 10.1037/a0022288.CrossRefGoogle ScholarPubMed
Heyes, C., Bird, G., Johnson, H., & Haggard, P. (2005). Experience modulates automatic imitation. Brain Research: Cognitive Brain Research, 22(2), 233240. doi: 10.1016/j.cogbrainres.2004.09.009.Google ScholarPubMed
Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849878.CrossRefGoogle ScholarPubMed
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 25262528.CrossRefGoogle ScholarPubMed
James, W. (1890). The principles of psychology. New York: Macmillan.Google Scholar
Jones, S. S. (1996). Imitation or exploration? Young infants’ matching of adults’ oral gestures. Child Development, 67(5), 19521969.CrossRefGoogle ScholarPubMed
Jones, S. S. (2006). Exploration or imitation? The effect of music on 4-week-old infants’ tongue protrusions. Infant Behavior and Development, 29(1), 126130. doi: 10.1016/j.infbeh.2005.08.004.CrossRefGoogle ScholarPubMed
Keysers, C., & Perrett, D. I. (2004). Demystifying social cognition: A Hebbian perspective. Trends in Cognitive Sciences, 8(11), 501507. doi: 10.1016/j.tics.2004.09.005.CrossRefGoogle ScholarPubMed
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29(32), 1015310159. doi: 10.1523/JNEUROSCI.2668-09.2009.CrossRefGoogle ScholarPubMed
Kim, Y.-T., Seo, J.-H., Song, H.-J., Yoo, D.-S., Lee, H. J., et al. (2011). Neural correlates related to action observation in expert archers. Behavioural Brain Research, 223(2), 342347. doi: 10.1016/j.bbr.2011.04.053.CrossRefGoogle ScholarPubMed
Koch, G., Versace, V., Bonnì, S., Lupo, F., Lo Gerfo, E., et al. (2010). Resonance of cortico–cortical connections of the motor system with the observation of goal directed grasping movements. Neuropsychologia, 48(12), 35133520. doi: 10.1016/j.neuropsychologia.2010.07.037.CrossRefGoogle ScholarPubMed
Kraskov, A., Dancause, N., Quallo, M. M., Shepherd, S., & Lemon, R. N. (2009). Corticospinal neurons in macaque ventral premotor cortex with mirror properties: A potential mechanism for action suppression? Neuron, 64(6), 922930. doi: 10.1016/j.neuron.2009.12.010.CrossRefGoogle ScholarPubMed
Landmann, C., Landi, S. M., Grafton, S. T., & Della-Maggiore, V. (2011). fMRI supports the sensorimotor theory of motor resonance. PLoS One, 6(11), e26859. doi: 10.1371/journal.pone.0026859.CrossRefGoogle ScholarPubMed
Liew, S.-L., Sheng, T., Margetis, J. L., & Aziz-Zadeh, L. (2013). Both novelty and expertise increase action observation network activity. Frontiers in Human Neuroscience, 7, 541. doi: 10.3389/fnhum.2013.00541.CrossRefGoogle ScholarPubMed
Margulis, E. H., Mlsna, L. M., Uppunda, A. K., Parrish, T. B., & Wong, P. C. M. (2009). Selective neurophysiologic responses to music in instrumentalists with different listening biographies. Human Brain Mapping, 30(1), 267275. doi: 10.1002/hbm.20503.CrossRefGoogle ScholarPubMed
Marshall, P. J., Young, T., & Meltzoff, A. N. (2011). Neural correlates of action observation and execution in 14-month-old infants: An event-related EEG desynchronization study. Developmental Science, 14(3), 474480. doi: 10.1111/j.1467-7687.2010.00991.x.CrossRefGoogle ScholarPubMed
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20, 118. doi: 10.1016/j.cub.2010.02.045.CrossRefGoogle ScholarPubMed
Oosterhof, N. N., Tipper, S. P., & Downing, P. E. (2012). Viewpoint (in)dependence of action representations: An MVPA study. Journal of Cognitive Neuroscience, 24(4), 975989. doi: 10.1162/jocn_a_00195.CrossRefGoogle ScholarPubMed
Orgs, G., Dombrowski, J.-H., Heil, M., & Jansen-Osmann, P. (2008). Expertise in dance modulates alpha/beta event-related desynchronization during action observation. European Journal of Neuroscience, 27(12), 33803384. doi: 10.1111/j.1460-9568.2008.06271.x.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176180.CrossRefGoogle ScholarPubMed
Petroni, A., Baguear, F., & Della-Maggiore, V. (2010). Motor resonance may originate from sensorimotor experience. Journal of Neurophysiology, 104(4), 18671871. doi: 10.1152/jn.00386.2010.CrossRefGoogle ScholarPubMed
Pinker, S. (1997). How the mind works. Harmondsworth: Penguin.Google Scholar
Prather, J. F., Peters, S., Nowicki, S., & Mooney, R. (2008). Precise auditory–vocal mirroring in neurons for learned vocal communication. Nature, 451(7176), 305310. doi: 10.1038/nature06492.CrossRefGoogle ScholarPubMed
Press, C., Catmur, C., Cook, R., Widmann, H., Heyes, C., & Bird, G. (2012). fMRI evidence of ‘mirror’ responses to geometric shapes. PLoS One, 7(12), e51934. doi: 10.1371/journal.pone.0051934.CrossRefGoogle ScholarPubMed
Press, C., Gillmeister, H., & Heyes, C. (2007). Sensorimotor experience enhances automatic imitation of robotic action. Proceedings of the Royal Society B: Biological Sciences, 274(1625), 2509. doi: 10.1098/rspb.2007.0774.CrossRefGoogle ScholarPubMed
Ray, E., & Heyes, C. (2011). Imitation in infancy: The wealth of the stimulus. Developmental Science, 14(1), 92105. doi: 10.1111/j.1467-7687.2010.00961.x.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192. doi: 10.1146/annurev.neuro.27.070203.144230.CrossRefGoogle ScholarPubMed
Santiesteban, I., Banissy, M. J., Catmur, C., & Bird, G. (2012a). Enhancing social ability by stimulating right temporoparietal junction. Current Biology, 22(23), 22742277. doi: 10.1016/j.cub.2012.10.018.CrossRefGoogle ScholarPubMed
Santiesteban, I., White, S., Cook, J., Gilbert, S. J., Heyes, C., & Bird, G. (2012b). Training social cognition: From imitation to Theory of Mind. Cognition, 122(2), 228235. doi: 10.1016/j.cognition.2011.11.004.CrossRefGoogle ScholarPubMed
Sartori, L., Cavallo, A., Bucchioni, G., & Castiello, U. (2012). From simulation to reciprocity: The case of complementary actions. Social Neuroscience, 7(2), 146158. doi: 10.1080/17470919.2011.586579.CrossRefGoogle ScholarPubMed
Southgate, V., Johnson, M. H., Osborne, T., & Csibra, G. (2009). Predictive motor activation during action observation in human infants. Biology Letters, 5(6), 769772. doi: 10.1098/rsbl.2009.0474.CrossRefGoogle ScholarPubMed
Spengler, S., von Cramon, D. Y., & Brass, M. (2009). Control of shared representations relies on key processes involved in mental state attribution. Human Brain Mapping, 30(11), 37043718. doi: 10.1002/hbm.20800.CrossRefGoogle ScholarPubMed
Strafella, A. P., & Paus, T. (2000). Modulation of cortical excitability during action observation: A transcranial magnetic stimulation study. NeuroReport, 11(10), 22892292.CrossRefGoogle ScholarPubMed
Tanaka, S., & Inui, T. (2002). Cortical involvement for action imitation of hand/arm postures versus finger configurations: An fMRI study. NeuroReport, 13(13), 15991602.CrossRefGoogle ScholarPubMed
Tkach, D., Reimer, J., & Hatsopoulos, N. G. (2007). Congruent activity during action and action observation in motor cortex. Journal of Neuroscience, 27(48), 1324113250. doi: 10.1523/JNEUROSCI.2895-07.2007.CrossRefGoogle ScholarPubMed
Turati, C., Natale, E., Bolognini, N., Senna, I., Picozzi, M., et al. (2013). The early development of human mirror mechanisms: evidence from electromyographic recordings at 3 and 6 months. Developmental Science, 16(6), 793800. doi: 10.1111/desc.12066.CrossRefGoogle ScholarPubMed
Vigneswaran, G., Philipp, R., Lemon, R. N., & Kraskov, A. (2013). M1 corticospinal mirror neurons and their role in movement suppression during action observation. Current Biology, 23(3), 236243. doi: 10.1016/j.cub.2012.12.006.CrossRefGoogle ScholarPubMed
Vogt, S., Buccino, G., Wohlschläger, A. M., Canessa, N., Shah, N. J., et al. (2007). Prefrontal involvement in imitation learning of hand actions: Effects of practice and expertise. NeuroImage, 37(4), 13711383. doi: 10.1016/j.neuroimage.2007.07.005.CrossRefGoogle ScholarPubMed
Westermann, G., & Miranda, E. R. (2002). Modelling the development of mirror neurons for auditory–motor integration. Journal of New Music Research, 31(4), 367375. doi: 10.1076/jnmr.31.4.367.14166.CrossRefGoogle Scholar
Westermann, G., & Miranda, E. R. (2004). A new model of sensorimotor coupling in the development of speech. Brain and Language, 89(2), 393400. doi: 10.1016/S0093-934X(03)00345-6.CrossRefGoogle ScholarPubMed
Wiggett, A. J., Hudson, M., Tipper, S. P., & Downing, P. E. (2011). Learning associations between action and perception: Effects of incompatible training on body part and spatial priming. Brain and Cognition, 76(1), 8796. doi: 10.1016/j.bandc.2011.02.014.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×