Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T23:24:23.206Z Has data issue: false hasContentIssue false

23 - Disorders of Shared Representations

from Part V - Learning and Development

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Abstract

This chapter will begin with a focus on a particular subtopic within the shared representations research domain: imitation. Imitation occurs when the perception of another’s actions causes the activation of the corresponding motor representation in the observer. Thus imitation relates to shared representations in that it concerns the activation of a self-related representation by an other-related representation. In this chapter, I will use examples from the autism spectrum conditions (ASCs) literature to argue that if either the self- or other-related representation is atypical this can result in atypical imitation. In other words, if action observation or action execution mechanisms are atypical, then imitation will be affected. I will conclude this chapter by drawing on research that extends this logic to other sociocognitive domains such as empathy and to conditions such as schizophrenia and alexithymia.

Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 480 - 502
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abend, W., Bizzi, E., & Morasso, P. (1982). Human arm trajectory formation. Brain, 105(Pt 2), 331348.CrossRefGoogle ScholarPubMed
Annaz, D., Campbell, R., Coleman, M., Milne, E., & Swettenham, J. (2012). Young children with autism spectrum disorder do not preferentially attend to biological motion. Journal of Autism and Developmental Disorders, 42(3), 401408. doi: 10.1007/s10803-011-1256-3.CrossRefGoogle Scholar
Annaz, D., Remington, A., Milne, E., Coleman, M., Campbell, R., et al. (2010). Development of motion processing in children with autism. Developmental Science, 13(6), 826838. doi: 10.1111/j.1467-7687.2009.00939.x.CrossRefGoogle ScholarPubMed
Atkinson, A. P. (2009). Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorders. Neuropsychologia, 47(13), 30233029. doi: 10.1016/j.neuropsychologia.2009.05.019.CrossRefGoogle ScholarPubMed
Avikainen, S., Wohlschläger, S., Liuhanen, S., Hänninen, R., & Hari, R. (2003). Impaired mirror-image imitation in Asperger and high-functioning autistic subjects. Current Biology, 13(4), 339341.CrossRefGoogle ScholarPubMed
Baaren, R. van, Holland, R., Kawakami, K., & van Knippenberg, A. (2004). Mimicry and prosocial behavior. Psychological Science: A Journal of the American Psychological Society, 15(1), 7174.CrossRefGoogle ScholarPubMed
Bach, P., & Tipper, S. P. (2007). Implicit action encoding influences personal-trait judgments. Cognition, 102(2), 151178. doi: 10.1016/j.cognition.2005.11.003.CrossRefGoogle ScholarPubMed
Bailenson, J., & Yee, N. (2005). Digital chameleons: Automatic assimilation of nonverbal gestures in immersive virtual environments. Psychological Science: A Journal of the American Psychological Society, 16(10), 814819. doi: 10.1111/j.1467-9280.2005.01619.x.CrossRefGoogle ScholarPubMed
Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., et al. (1998). A clinicopathological study of autism. Brain, 121(5), 889905. doi: 10.1093/brain/121.5.889.CrossRefGoogle ScholarPubMed
Bauman, M. L. (1991). Microscopic neuroanatomic abnormalities in autism. Pediatrics, 87(5), 791796.CrossRefGoogle ScholarPubMed
Bauman, M. L., & Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: A review and future directions. International Journal of Developmental Neuroscience, 23(23), 183187. doi: 10.1016/j.ijdevneu.2004.09.006.CrossRefGoogle ScholarPubMed
Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2003). Motion perception in autism: A complex issue. Journal of Cognitive Neuroscience, 15(2), 218225. doi: 10.1162/089892903321208150.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Anderson, J. M., Manning, S. E., Anderson, S. L., Nordgren, R. E., et al. (2001). Brief report: Macrographia in high-functioning adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 31(1), 97101.CrossRefGoogle ScholarPubMed
Bird, G., & Cook, R. (2013). Mixed emotions: The contribution of alexithymia to the emotional symptoms of autism. Translational Psychiatry, 3, e285. doi: 10.1038/tp.2013.61.CrossRefGoogle Scholar
Bird, G., Leighton, J., Press, C., & Heyes, C. (2007). Intact automatic imitation of human and robot actions in autism spectrum disorders. Proceedings of the Royal Society B: Biological Sciences, 274(1628), 30273031. doi: 10.1098/rspb.2007.1019.CrossRefGoogle ScholarPubMed
Bird, G., Silani, G., Brindley, R., White, S., Frith, U., & Singer, T. (2010). Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain, 133(Pt 5), 15151525. doi: 10.1093/brain/awq060.CrossRefGoogle Scholar
Blake, R, Turner, L., Smoski, M., Pozdol, S., & Stone, W. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological Science, 14(2), 151157.CrossRefGoogle ScholarPubMed
Bouquet, C. A., Gaurier, V., Shipley, T., Toussaint, L., & Blandin, Y. (2007). Influence of the perception of biological or non-biological motion on movement execution. Journal of Sports Sciences, 25(5), 519530. doi: 10.1080/02640410600946803.CrossRefGoogle ScholarPubMed
Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106(12), 322.CrossRefGoogle Scholar
Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13(2), 400404.CrossRefGoogle Scholar
Catmur, C., Walsh, V., & Heyes, C. (2009). Associative sequence learning: The role of experience in the development of imitation and the mirror system. Proceedings of the Royal Society B: Biological Sciences, 364(1528), 23692380. doi: 10.1098/rstb.2009.0048.Google ScholarPubMed
Cattaneo, L., Fabbri-Destro, M., Boria, S., Pieraccini, C., Monti, A., et al. (2007). Impairment of action chains in autism and its possible role in intention understanding. Proceedings of the National Academy of Sciences of the United States of America, 104(45), 1782517830. doi: 10.1073/pnas.0706273104.CrossRefGoogle ScholarPubMed
Chaminade, T., Franklin, D., Oztop, E., & Cheng, G. (2005). Motor interference between humans and humanoid robots: Effect of biological and artificial motion. Proceedings of the 4th IEEE International Conference on Development and Learning, 96101. doi: 10.1109/DEVLRN.2005.1490951.Google Scholar
Chartrand, T., & Bargh, J. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893910.CrossRefGoogle ScholarPubMed
Chong, T. T.-J., Cunnington, R., Williams, M. A., Kanwisher, N., & Mattingley, J. B. (2008). fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 18(20), 15761580. doi: 10.1016/j.cub.2008.08.068.CrossRefGoogle ScholarPubMed
Cook, J., & Bird, G. (2011). Social attitudes differentially modulate imitation in adolescents and adults. Experimental Brain Research: Special Issue on Joint Action, 211(3–4), 601612. doi: 10.1007/s00221-011-2584-4.CrossRefGoogle ScholarPubMed
Cook, J., (2012). Atypical social modulation of imitation in autism spectrum conditions. Journal of Autism and Developmental Disorders, 42(6), 10451051. doi: 10.1007/s10803-011-1341-7.CrossRefGoogle ScholarPubMed
Cook, J., Blakemore, S., & Press, C. (2013). Atypical basic movement kinematics in autism spectrum conditions. Brain, 136(Pt 9), 28162824. doi: 10.1093/brain/awt208.CrossRefGoogle ScholarPubMed
Cook, J., Saygin, A., Swain, R., & Blakemore, S. (2009). Reduced sensitivity to minimum-jerk biological motion in autism spectrum conditions. Neuropsychologia, 47(14), 32753278. doi: 10.1016/j.neuropsychologia.2009.07.010.CrossRefGoogle ScholarPubMed
Cook, J., Swapp, D., Pan, X., Bianchi-Berthouze, N., & Blakemore, S. (2014). Atypical interference effect of action observation in autism spectrum conditions. Psychological Medicine, 44(4), 731740. doi:10.1017/S0033291713001335CrossRefGoogle ScholarPubMed
Courchesne, E. (1997). Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Current Opinion in Neurobiology, 7(2), 269278. doi: 10.1016/S0959-4388(97)80016-5.CrossRefGoogle ScholarPubMed
Courchesne, E., Yeung-Courchesne, R., Press, G., Hesselink, J., & Jernigan, T. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. New England Journal of Medicine, 318(21), 13491354. doi: 10.1056/NEJM198805263182102.CrossRefGoogle ScholarPubMed
Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., et al. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 2830. doi: 10.1038/nn1611.CrossRefGoogle ScholarPubMed
Dayan, E., Casile, A., Levit-Binnun, N., Giese, M. A., Hendler, T., & Flash, T. (2007). Neural representations of kinematic laws of motion: Evidence for action–perception coupling. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 2058220587. doi: 10.1073/pnas.0710033104.CrossRefGoogle ScholarPubMed
DiCicco-Bloom, E., Lord, C., Zwaigenbaum, L., Courchesne, E., Dager, S., et al. (2006). The developmental neurobiology of autism spectrum disorder. Journal of Neuroscience, 26(26), 68976906. doi: 10.1523/JNEUROSCI.1712-06.2006.CrossRefGoogle ScholarPubMed
Dinstein, I., Thomas, C., Humphreys, K., Minshew, N., Behrmann, M., & Heeger, D. (2010). Normal movement selectivity in autism. Neuron, 66(3), 461469. doi: 10.1016/j.neuron.2010.03.034.CrossRefGoogle ScholarPubMed
Fabbri-Destro, M., Cattaneo, L., Boria, S., & Rizzolatti, G. (2009). Planning actions in autism. Experimental Brain Research, 192(3), 521525. doi: 10.1007/s00221-008-1578-3.CrossRefGoogle ScholarPubMed
Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience, 5(7), 16881703.CrossRefGoogle ScholarPubMed
Freitag, C. M., Konrad, C., Häberlen, M., Kleser, C., von Gontard, A., et al. (2008). Perception of biological motion in autism spectrum disorders. Neuropsychologia, 46(5), 14801494. doi:10.1016/j.neuropsychologia.2007.12.025CrossRefGoogle ScholarPubMed
Gillmeister, H., Catmur, C., Liepelt, R., Brass, M., & Heyes, C. (2008). Experience-based priming of body parts: A study of action imitation. Brain Research, 1217, 157170. doi: 10.1016/j.brainres.2007.12.076.CrossRefGoogle ScholarPubMed
Gowen, E., & Hamilton, A. (2013). Motor abilities in autism: A review using a computational context. Journal of Autism and Developmental Disorders, 43(2), 323344. doi: 10.1007/s10803-012-1574-0.CrossRefGoogle ScholarPubMed
Gowen, E., & Miall, R. (2007). The cerebellum and motor dysfunction in neuropsychiatric disorders. The Cerebellum, 6(3), 268279. doi: 10.1080/14734220601184821.CrossRefGoogle ScholarPubMed
Gowen, E., Stanley, J., & Miall, R. (2008). Movement interference in autism-spectrum disorder. Neuropsychologia, 46(4), 10601068. doi: 10.1016/j.neuropsychologia.2007.11.004.CrossRefGoogle ScholarPubMed
Hamilton, A. (2008). Emulation and mimicry for social interaction: A theoretical approach to imitation in autism. Quarterly Journal of Experimental Psychology, 61(1), 101115. doi: 10.1080/17470210701508798.CrossRefGoogle ScholarPubMed
Hamilton, A., Brindley, R., & Frith, U. (2007). Imitation and action understanding in autistic spectrum disorders: How valid is the hypothesis of a deficit in the mirror neuron system? Neuropsychologia, 45(8), 18591868. doi: 10.1016/j.neuropsychologia.2006.11.022.CrossRefGoogle ScholarPubMed
Heiser, M., Iacoboni, M., Maeda, F., Marcus, J., & Mazziotta, J. C. (2003). The essential role of Broca’s area in imitation. European Journal of Neuroscience, 17(5), 11231128.CrossRefGoogle ScholarPubMed
Herrington, J. D., Baron-Cohen, S., Wheelwright, S. J., Singh, K. D., Bullmore, E. T., et al. (2007). The role of MT+/V5 during biological motion perception in Asperger syndrome: An fMRI study. Research in Autism Spectrum Disorders, 1(1), 1427. doi: 10.1016/j.rasd.2006.07.002.CrossRefGoogle Scholar
Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews, 34(4), 575583. doi: 10.1016/j.neubiorev.2009.11.007.CrossRefGoogle ScholarPubMed
Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463483. doi: 10.1037/a0022288.CrossRefGoogle ScholarPubMed
Iacoboni, M., Woods, R., Brass, M., Bekkering, H., Mazziotta, J., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 25262528. doi: 10.1126/science.286.5449.2526.CrossRefGoogle ScholarPubMed
Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201211.CrossRefGoogle Scholar
Kaiser, M., Delmolino, L., Tanaka, J., & Shiffrar, M. (2010a). Comparison of visual sensitivity to human and object motion in autism spectrum disorder. Autism Research, 3(4), 191195. doi: 10.1002/aur.137.CrossRefGoogle ScholarPubMed
Kaiser, M., Hudac, C., Shultz, S., Lee, S., Cheung, C., et al. (2010b). Neural signatures of autism. Proceedings of the National Academy of Sciences of the United States of America, 107(49), 2122321228. doi: 10.1073/pnas.1010412107.CrossRefGoogle ScholarPubMed
Kilner, J., Hamilton, A., & Blakemore, S. (2007). Interference effect of observed human movement on action is due to velocity profile of biological motion. Social Neuroscience, 2(34), 158166. doi: 10.1080/17470910701428190.CrossRefGoogle ScholarPubMed
Kilner, J., Neal, A., Weiskopf, N., Friston, K., & Frith, C. (2009). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29(32), 1015310159. doi: 10.1523/JNEUROSCI.2668-09.2009.CrossRefGoogle ScholarPubMed
Kilner, J., Paulignan, Y., & Blakemore, S. (2003). An interference effect of observed biological movement on action. Current Biology, 13(6), 522525.CrossRefGoogle ScholarPubMed
Klin, A., & Jones, W. (2008). Altered face scanning and impaired recognition of biological motion in a 15-month-old infant with autism. Developmental Science, 11(1), 4046. doi: 10.1111/j.1467-7687.2007.00608.x.CrossRefGoogle Scholar
Klin, A., Lin, D., Gorrindo, P., Ramsay, G., & Jones, W. (2009). Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature, 459(7244), 257261. doi: 10.1038/nature07868.CrossRefGoogle ScholarPubMed
Koldewyn, K., Whitney, D., & Rivera, S. M. (2010). The psychophysics of visual motion and global form processing in autism. Brain, 133(Pt 2), 599610. doi: 10.1093/brain/awp272.CrossRefGoogle ScholarPubMed
Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychologica, 54(13), 115130.CrossRefGoogle ScholarPubMed
Lakin, J., & Chartrand, T. (2003). Using nonconscious behavioral mimicry to create affiliation and rapport. Psychological Science, 14(4), 334339.CrossRefGoogle ScholarPubMed
Leighton, J., Bird, G., Charman, T., & Heyes, C. (2008). Weak imitative performance is not due to a functional ‘mirroring’ deficit in adults with autism spectrum disorders. Neuropsychologia, 46(4), 10411049. doi: 10.1016/j.neuropsychologia.2007.11.013.CrossRefGoogle Scholar
Leighton, J., & Heyes, C. (2010). Hand to mouth: Automatic imitation across effector systems. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 11741183. doi: 10.1037/a0019953.Google Scholar
Leighton, J., Bird, G., Orsini, C., & Heyes, C. (2010). Social attitudes modulate automatic imitation. Journal of Experimental Social Psychology, 46(6), 905910. doi: 10.1016/j.jesp.2010.07.001.CrossRefGoogle Scholar
Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., et al. (1989). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19(2), 185212.CrossRefGoogle ScholarPubMed
Maurer, R. G., & Damasio, A. R. (1982). Childhood autism from the point of view of behavioral neurology. Journal of Autism and Developmental Disorders, 12(2), 195205.CrossRefGoogle ScholarPubMed
McIntosh, D., Reichmann-Decker, A., Winkielman, P., & Wilbarger, J. (2006). When the social mirror breaks: Deficits in automatic, but not voluntary, mimicry of emotional facial expressions in autism. Developmental Science, 9(3), 295302. doi: 10.1111/j.1467-7687.2006.00492.x.CrossRefGoogle Scholar
Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 43(2), 255263.CrossRefGoogle ScholarPubMed
Mostofsky, S. H., Dubey, P., Jerath, V. K., Jansiewicz, E. M., Goldberg, M. C., & Denckla, M. B. (2006). Developmental dyspraxia is not limited to imitation in children with autism spectrum disorders. Journal of the International Neuropsychological Society, 12(3), 314326.CrossRefGoogle Scholar
Mostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C., Caffo, B., & Pekar, J. J. (2009). Decreased connectivity and cerebellar activity in autism during motor task performance. Brain, 132(Pt 9), 24132425. doi: 10.1093/brain/awp088.CrossRefGoogle ScholarPubMed
Murphy, P., Brady, N., Fitzgerald, M., & Troje, N. (2009). No evidence for impaired perception of biological motion in adults with autistic spectrum disorders. Neuropsychologia, 47(14), 32253235. doi: 10.1016/j.neuropsychologia.2009.07.026.CrossRefGoogle ScholarPubMed
Newsome, W. T., & Paré, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8(6), 22012211.CrossRefGoogle ScholarPubMed
Oberman, L., Hubbard, E., McCleery, J., Altschuler, E., Ramachandran, V., & Pineda, J. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24(2), 190198. doi: 10.1016/j.cogbrainres.2005.01.014.CrossRefGoogle ScholarPubMed
Oztop, E., Franklin, D., Chaminade, T., & Cheng, G. (2005). Human–humanoid interaction: Is a humanoid robot perceived as a human? International Journal of Humanoid Robotics, 2(4), 537559.CrossRefGoogle Scholar
Palmen, S. J. M. C., Engeland, H. van, Hof, P. R., & Schmitz, C. (2004). Neuropathological findings in autism. Brain, 127(12), 25722583. doi: 10.1093/brain/awh287.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176180.CrossRefGoogle ScholarPubMed
Pellicano, E., Gibson, L., Maybery, M., Durkin, K., & Badcock, D. R. (2005). Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia, 43(7), 10441053. doi: 10.1016/j.neuropsychologia.2004.10.003.CrossRefGoogle ScholarPubMed
Pelphrey, K., Mitchell, T., McKeown, M., Goldstein, J., Allison, T., & McCarthy, G. (2003). Brain activity evoked by the perception of human walking: Controlling for meaningful coherent motion. Journal of Neuroscience, 23(17), 68196825.CrossRefGoogle ScholarPubMed
Press, C. (2011). Action observation and robotic agents: Learning and anthropomorphism. Neuroscience and Biobehavioral Reviews, 35(6), 14101418. doi: 10.1016/j.neubiorev.2011.03.004.CrossRefGoogle ScholarPubMed
Press, C., Bird, G., Flach, R., & Heyes, C. (2005). Robotic movement elicits automatic imitation. Brain Research. Cognitive Brain Research, 25(3), 632640. doi: 10.1016/j.cogbrainres.2005.08.020.CrossRefGoogle ScholarPubMed
Press, C., Cook, J., Blakemore, S., & Kilner, J. (2011). Dynamic modulation of human motor activity when observing actions. Journal of Neuroscience, 31(8), 27922800. doi: 10.1523/JNEUROSCI.1595-10.2011.CrossRefGoogle ScholarPubMed
Press, C., Richardson, D., & Bird, G. (2010). Intact imitation of emotional facial actions in autism spectrum conditions. Neuropsychologia, 48(11), 32913297. doi: 10.1016/j.neuropsychologia.2010.07.012.CrossRefGoogle ScholarPubMed
Ramachandran, V., & Oberman, L. (2006). Broken mirrors: A theory of autism. Scientific American, 295(5), 6269.CrossRefGoogle ScholarPubMed
Rogers, S., Hepburn, S., Stackhouse, T., & Wehner, E. (2003). Imitation performance in toddlers with autism and those with other developmental disorders. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 44(5), 763781.CrossRefGoogle ScholarPubMed
Rogers, S., & Pennington, B. (1991). A theoretical approach to the deficits in infantile autism. Development and Psychopathology, 3(02), 137162. doi: 10.1017/S0954579400000043.CrossRefGoogle Scholar
Rogers, T. D., McKimm, E., Dickson, P. E., Goldowitz, D., Blaha, C. D., & Mittleman, G. (2013). Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Frontiers in Systems Neuroscience, 7, 15. doi: 10.3389/fnsys.2013.00015.CrossRefGoogle ScholarPubMed
Russell, J. (1997). Autism as an executive disorder. New York: Oxford University Press.Google Scholar
Rutter, M. (1974). The development of infantile autism. Psychological Medicine, 4, 147163.CrossRefGoogle ScholarPubMed
Saygin, A., Cook, J., & Blakemore, S. (2010). Unaffected perceptual thresholds for biological and non-biological form-from-motion perception in autism spectrum conditions. PloS One, 5(10), e13491. doi: 10.1371/journal.pone.0013491.CrossRefGoogle ScholarPubMed
Southgate, V., & Hamilton, A. F. de C. (2008). Unbroken mirrors: Challenging a theory of autism. Trends in Cognitive Sciences, 12(6), 225229. doi: 10.1016/j.tics.2008.03.005.CrossRefGoogle ScholarPubMed
Spencer, J., O’Brien, J., Riggs, K., Braddick, O., Atkinson, J., & Wattam-Bell, J. (2000). Motion processing in autism: Evidence for a dorsal stream deficiency. NeuroReport, 11(12), 27652767.CrossRefGoogle ScholarPubMed
Spengler, S., Bird, G., & Brass, M. (2010). Hyperimitation of actions is related to reduced understanding of others’ minds in autism spectrum conditions. Biological Psychiatry, 68(12), 11481155. doi: 10.1016/j.biopsych.2010.09.017.CrossRefGoogle ScholarPubMed
Stanley, J., Gowen, E., & Miall, C. (2007). Effects of agency on movement interference during observation of a moving dot stimulus. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 915926. doi: 10.1037/0096-1523.33.4.915.Google Scholar
Staples, K. L., & Reid, G. (2010). Fundamental movement skills and autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(2), 209217. doi: 10.1007/s10803-009-0854-9.CrossRefGoogle ScholarPubMed
Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907915. doi: 10.1038/nn1309.CrossRefGoogle ScholarPubMed
Tomasello, M. (1996). Do apes ape? In Heyes, C. M. & Galef, B. G. (Eds.), Social learning in animals: The roots of culture. New York: Academic Press, 319346.CrossRefGoogle Scholar
Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., & Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 57(1), 6781. doi: 10.1002/ana.20315.CrossRefGoogle ScholarPubMed
Webb, S. J., Sparks, B.-F., Friedman, S. D., Shaw, D. W. W., Giedd, J., et al. (2009). Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Research, 172(1), 6167. doi: 10.1016/j.pscychresns.2008.06.001.CrossRefGoogle ScholarPubMed
Williams, J., Whiten, A., & Singh, T. (2004). A systematic review of action imitation in autistic spectrum disorder. Journal of Autism and Developmental Disorders, 34(3), 285299.CrossRefGoogle ScholarPubMed
Williams, J., Whiten, A., Suddendorf, T., & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews, 25(4), 287295.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×