Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T23:04:34.400Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  02 February 2023

Ulrich Schreiber
Affiliation:
Technische Universität München
Jon-Paul Wells
Affiliation:
University of Canterbury, Christchurch, New Zealand
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Rotation Sensing with Large Ring Lasers
Applications in Geophysics and Geodesy
, pp. 303 - 314
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. P., and the LIGO VIRGO Scientific Collaboration. 2016. Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116(6), 061102.Google Scholar
Abdullah, A. J. 1966. The “musical” sound emitted by a tornado. Monthly Weather Review, 94(4), 213220.Google Scholar
Adler, R. 1973. A study of locking phenomena in oscillators. Proceedings of the IEEE, 61(10), 13801385.Google Scholar
Agnew, D. C. 1997. NLOADF: A program for computing ocean-tide loading. Journal of Geophysical Research: Solid Earth, 102(B3), 51095110.Google Scholar
Ahearn, W. E., and Horstmann, R. E. 1979. Nondestructive analysis for HeNe lasers. IBM Journal of Research and Development, 23(2), 128131.Google Scholar
Allen, L., and Jones, D. G. C. 1965. The Helium–Neon laser. Advances in Physics, 14(56), 479519.Google Scholar
Anderson, R. 1994. “Sagnac” effect: A century of Earth-rotated interferometers. American Journal of Physics, 62(11), 975.Google Scholar
Anyi, C. L., Thirkettle, R. J., MacDonald, G. J., Schreiber, K. U., and Wells, J.-P. R. 2019. Gyroscopic operation on the 3s2 → 2p10 543.3 nm transition of neon in a 2.56 m2 ring cavity. Optics Letters, 44(12), 3074.CrossRefGoogle Scholar
Anyi, C. L., Thirkettle, R. J., Zou, D., et al. 2019. The Macek and Davis experiment revisited: A large ring laser interferometer operating on the 2s2 →2p4 transition of neon. Applied Optics, 58(2), 302307.Google Scholar
Arissian, L., and Diels, J. C. 2009. Investigation of carrier to envelope phase and repetition rate: Fingerprints of mode-locked laser cavities. Journal of Physics B: Atomic, Molecular and Optical Physics, 42(18), 183001.Google Scholar
Aronowitz, F. 1971. The Laser Gyro in Laser Applications. Academic Press.Google Scholar
Aronowitz, F. 1999. Fundamentals of the ring laser gyro. Report: AGARDograph, 12, 146.Google Scholar
Ash, M., and De Bitetto, P. 1995. Hemispherical resonator gyroscope assessment for space applications. Charles Stark Draper Laboratory report for Naval Research Laboratory (NRL).Google Scholar
Baxter, T. D., Saito, T. T., Shaw, G. L., Evans, R. T., and Motes, R. A. 1983. Mode matching for a passive resonant ring laser gyroscope. Applied Optics, 22(16), 24872491.Google Scholar
Bedard, A. J. 2005. Low-frequency atmospheric acoustic energy associated with vortices produced by thunderstorms. Monthly Weather Review, 133(1), 241263.Google Scholar
Beghi, A., Belfi, J., Beverini, N., et al. 2012. Compensation of the laser parameter fluctuations in large ring-laser gyros: A Kalman filter approach. Applied Optics, 51(31), 7518.Google Scholar
Belfi, J., Beverini, N., Bosi, F., et al. 2010. Rotational sensitivity of the G-Pisa gyrolaser. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 57(3), 618622.Google Scholar
Belfi, J., Beverini, N., Bosi, F., et al. 2012. A 1.82 m2 ring laser gyroscope for nano-rotational motion sensing. Applied Physics B: Lasers and Optics, 106(2), 271281.Google Scholar
Belfi, J., Beverini, N., Carelli, G., et al. 2012. Horizontal rotation signals detected by “G-Pisa” ring laser for the Mw = 9.0, March 2011, Japan earthquake. Journal of Seismology, 16(4), 767776.Google Scholar
Belfi, J., Beverini, N., Bosi, F., et al. 2012. Performance of “G-Pisa” ring laser gyro at the Virgo site. Journal of Seismology, 16(4), 110.CrossRefGoogle Scholar
Belfi, J., Beverini, N., Carelli, G., et al. 2018. Analysis of 90 day operation of the GINGERINO gyroscope. Applied Optics, 57(20), 58445851.Google Scholar
Bergh, R. A., Lefevre, H. C., and Shaw, H. J. 1981. All-single-mode fiber-optic gyroscope. Optics Letters, 6(4), 198.Google Scholar
Bergh, R. A., Lefevre, H. C., and Shaw, H. J. 1981. All-single-mode fiber-optic gyroscope with long-term stability. Optics Letters, 6(10), 502504.Google Scholar
Bernauer, F., Wassermann, J., Guattari, F., et al. 2018. BlueSeis3A: Full characterization of a 3C broadband rotational seismometer. Seismological Research Letters, 89(2A), 620629.Google Scholar
Beverini, N., Di Virgilio, A., Belfi, J., et al. 2016. High-accuracy ring laser gyroscopes: Earth rotation rate and relativistic effects. Journal of Physics: Conference Series, 723(07), 012061012067.Google Scholar
Bilger, H., Wells, P., and Stedman, G. 1994. Origins of fundamental limits for reflection losses at multilayer dielectric mirrors. Applied Optics, 33(11), 7390.Google Scholar
Bilger, H., Stedman, G., Li, Z., Schreiber, K. U., and Schneider, M. 1995. Ring lasers for geodesy. IEEE Transactions on Instrumentation and Measurement, 44(2), 468470.Google Scholar
Bilger, H. R., and Stedman, G. E. 1987. Stability of planar ring lasers with mirror misalignment. Applied Optics, 26(17), 37103716.Google Scholar
Bilger, H. R., Shaw, G. L., and Simmons, B. J. 1984. Calibration of a large passive laser ring. Physics of Optical Ring Gyros, 110113.Google Scholar
Bilger, H. R., Stedman, G. E., and Wells, P. V. 1990. Geometrical dependence of polarisation in near-planar ring lasers. Optics Communications, 80(2), 133137.Google Scholar
Birch, K. P. 1991. Precise determination of refractometric parameters for atmospheric gases. JOSA A, 8(4), 647651.CrossRefGoogle Scholar
Bishof, M., Zhang, X., Martin, M. J., and Ye, J. 2013. Optical spectrum analyzer with quantum-limited noise floor. Physical Review Letters, 111(9), 093604.Google Scholar
Black, E. D. 2000. An introduction to Pound-Drever-Hall laser frequency stabilization. American Association of Physics Teachers, 69(1), 7987.Google Scholar
Bosi, F., Cella, G., Di Virgilio, A., et al. 2011. Measuring gravitomagnetic effects by a multi-ring-laser gyroscope. Physical Review D, 84(12), 122002.Google Scholar
Bryan, G. H. 1890. On the beats in the vibrations of a revolving cylinder or bell. Proceeding of the Cambridge Philosophical Society, 7, 101114.Google Scholar
Brzeziński, A. 1986. Contribution to the theory of polar motion for an elastic earth with liquid core. Manuscripta Geodaetica, 11, 226241.Google Scholar
Burrell, G. J., Hetherington, A., and Moss, T. S. 1968. Faraday rotation resulting from negative absorption. Journal of Physics B: Atomic and Molecular Physics (1968-1987), 1(4), 692.CrossRefGoogle Scholar
Capozziello, S., Altucci, C., Bajardi, F., et al. 2021. Constraining theories of gravity by GINGER experiment. The European Physical Journal Plus, 136(4), 121.Google Scholar
Chow, W., Hambenne, J., Hutchings, T., et al. 1980. Multioscillator laser gyros. IEEE Journal of Quantum Electronics, 16(9), 918936.Google Scholar
Chow, W., Gea-Banacloche, J., Pedrotti, L., et al. 1985. The ring laser gyro. Reviews of Modern Physics, 57(1), 61104.CrossRefGoogle Scholar
Chugani, A., Samant, A. R., and Cerna, M. 1998. Labview signal processing. Prentice Hall.Google Scholar
Clivati, C., Calonico, D., Costanzo, G. A., et al. 2013. Large-area fiber-optic gyroscope on a multiplexed fiber network. Optics Letters, 38(7), 10921094.Google Scholar
Cochard, A., Igel, H., Schuberth, B., et al. 2006. Rotational motions in seismology: Theory, observation, simulation. Springer. Pages 391411.Google Scholar
Cole, G. D., Zhang, W., Martin, M. J., Ye, J., and Aspelmeyer, M. 2013. Tenfold reduction of Brownian noise in high-reflectivity optical coatings. Nature Photonics, 7(8), 644650.Google Scholar
Cole, G. D., Zhang, W., Bjork, B. J., et al. 2016. High-performance near-and midinfrared crystalline coatings. Optica, 3(6), 647656.Google Scholar
Collaboration, The LIGO Scientific. 2015. Advanced LIGO. Classical and Quantum Gravity, 32(7), 074001.Google Scholar
Cook, A. K., Foster, D. H., and Nöckel, J. U. 2007. Goos-Hänchen induced vector eigenmodes in a dome cavity. Optics Letters, 32(12), 17641766.Google Scholar
Cordover, R H, Jaseja, T S, and Javan, A. 1965. Isotope Shift Measurement For 6328 Å He—Ne Laser Transition. Applied Physics Letters, 7 (12), 322324.Google Scholar
Currie, B. E., Stedman, G. E., and Dunn, R. W. 2002. Laser stability and beam steering in a nonregular polygonal cavity. Applied Optics, 41(9), 1689.Google Scholar
D., Dickson L., and A., Good T. 2004. Holographic barcode scanners: Applications, performance and design in handbook of optical and laser scanning. CRC Press.Google Scholar
Davis, J. L., and Ezekiel, S. 1981. Closed-loop, low-noise fiber-optic rotation sensor. Optics Letters, 6(10), 505507.Google Scholar
Dehnen, H. 1967. Zur Prüfung allgemein-relativistischer Rotationseffekte mittels eines Ringlasers. Zeitschrift für Naturforschung A, 22(5), 816821.Google Scholar
Di Virgilio, A. D. V., Belfi, J., Ni, W.-T., et al. 2017. GINGER: A feasibility study. European Physical Journal Plus, 132(4), 157.Google Scholar
Di Virgilio, A. D. V., Beverini, N., Carelli, G., et al. 2019. Analysis of ring laser gyroscopes including laser dynamics. The European Physical Journal D, 79(7), 573. https://doi.org/10.1140/epjc/s10052-019-7089-5.Google Scholar
Di Virgilio, A. D. V., Beverini, N., Carelli, G., et al. 2020. Identification and correction of Sagnac frequency variations: An implementation for the GINGERINO data analysis. The European Physical Journal D, 80(2), 163.Google Scholar
Di Virgilio, Angela, Schreiber, K. U., Gebauer, A., et al. 2010. A laser gyroscope system to detect the gravito–magnetic effect on Earth. International Journal Of Modern Physics D, 19(1), 23312343.Google Scholar
Dobrowolski, J. A. (ed). 1982. Handbook of Optics, 2nd ed. McGraw-Hill.Google Scholar
Donner, S., Lin, C. J., Hadziioannou, C., Gebauer, A., et al. 2017. Comparing direct observation of strain, rotation, and displacement with array estimates at Piñon Flat Observatory, California. Seismological Research Letters, 88(4), 11071116.Google Scholar
Dorschner, T., Haus, H., Holz, M., Smith, I., and Statz, H. 1980. Laser gyro at quantum limit. IEEE Journal of Quantum Electronics, 16(12), 13761379.Google Scholar
Dotsenko, A. V., Kornienko, L. S., Kravtsov, N. V., et al. 1986. Use of a feedback loop for the stabilization of a beat regime in a solid-state ring laser. Journal of Physics B, 16(1), 5863.Google Scholar
Dresden, M., and Yang, C. N. 1979. Phase shift in a rotating neutron or optical interferometer. Physical Review D, 20(8), 18461848.Google Scholar
Duennebier, F. K., and Sutton, G. H. 1995. Fidelity of ocean bottom seismic observations. Marine Geophysical Researches, 17(6), 535555.Google Scholar
Dunn, R. W. 1989. Multimode ring laser lock-in. Applied Optics, 28(13), 25842587.Google Scholar
Dunn, R. W. 1998. Design of a triangular active ring laser 13 m on a side. Applied Optics, 37(27), 64056409.Google Scholar
Dunn, R. W., and Hosman, A. R. 2014. Detection of volcanic infrasound with a ring laser interferometer. Journal of Applied Physics, 116(1), 173109.CrossRefGoogle Scholar
Dunn, R. W., Slaton, W. V., and Kendall, L. M. 2012. Detection of low frequency hurricane emissions using a ring laser interferometer. Journal of Applied Physics, 112(7), 073110.Google Scholar
Dunn, R. W., Meredith, J. A., Lamb, A. B., and Kessler, E. G. 2016. Detection of atmospheric infrasound with a ring laser interferometer. Journal of Applied Physics, 120(12), 123109.Google Scholar
Marion, J. E., and Weber, M. J. 1991. Phosphate laser glasses. European Journal of Solid State Inorganic Chemistry, 28, 271287.Google Scholar
Everitt, C. W. F. 1988. The Stanford Gryoscope Experiment (A): History and Overview. W. H. Freeman & Company.Google Scholar
Everitt, C. W. F., DeBra, D. B., Parkinson, B. W., et al. 2011. Gravity Probe B: Final results of a space experiment to test general relativity. Physical Review Letters, 106(22), 221101.CrossRefGoogle ScholarPubMed
Ezekiel, S., and Balsamo, S. R. 1977. Passive ring resonator laser gyroscope. Applied Physics Letters, 30(9), 478480.Google Scholar
Franco-Anaya, R., Carr, A. J., and Schreiber, K. U. 2008. Qualification of fibre-optic gyroscopes for civil engineering applications. 2008 NZSEE Conference, 04, 8.Google Scholar
Gebauer, A., Schreiber, K. U., Klügel, T., Schön, N., and Ulbrich, U. 2012. High-frequency noise caused by wind in large ring laser gyroscope data. Journal of Seismology, 16(4), 777786.Google Scholar
Gebauer, A., Tercjak, M., Schreiber, K. U., et al. 2020. Reconstruction of the instantaneous earth rotation vector with sub-arcsecond resolution using a large scale ring laser array. Physical Review Letters, 125(3), 033605.Google Scholar
Gerstenberger, D. C., Drobshoff, A., and Sheng, S. C. 1988. Isotope shift of the 543.3 nm laser transition of neon. IEEE Journal of Quantum Electronics, 24(3), 501502.Google Scholar
Giordano, V., Grop, S., Dubois, B., et al. 2012. New-generation of cryogenic sapphire microwave oscillators for space, metrology, and scientific applications. Review of Scientific Instruments, 83(8), 085113.CrossRefGoogle ScholarPubMed
GmbH, Northrop Grumman Litef. 2007. Datasheet of μFORS-1. Northrop-Grumman-Litef GmbH.Google Scholar
Graham, R. D. 2010. New Concepts for Operating Ring Laser Gyroscopes. Dissertation, University of Canterbury, Christchurch, NZ, 08, 1294.Google Scholar
Graham, R. D., Hurst, R. B., Thirkettle, R. J., Rowe, C. H., and Butler, P. H. 2008. Experiment to detect frame dragging in a lead superconductor. Physica C: Superconductivity, 468(5), 383387.Google Scholar
Graizer, V. 2009. The response to complex ground motions of seismometers with galperin sensor configuration. Bulletin of the Seismological Society of America, 99(2B), 13661377.Google Scholar
Gray, B. S., Latimer, I. D., and Spoor, S. P. 1996. Gain measurements at 543 nm in helium neon laser discharges. Journal of Physics D: Applied Physics, 29(1), 5056.Google Scholar
Gross, R. 2006. Earth rotation variations – long period. Treatise on Geophysics, 3(11), 150.Google Scholar
Gustavson, T. L., Bouyer, P., and Kasevich, M. 1997. Precision rotation measurements with an atom interferometer gyroscope. Physical Review Letters, 78(11), 2046.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1995. Numerical recipes in Fortran 77. Cambridge University Press.Google Scholar
Hadziioannou, C., Gaebler, P., Schreiber, K. U., Wassermann, J., and Igel, H. 2012. Examining ambient noise using colocated measurements of rotational and translational motion. Journal of Seismology, 16(4), 787796.Google Scholar
Harrison, J. C. 2012. Cavity and topographic effects in tilt and strain measurement. Journal of Geophysical Research, 81(2), 319328.Google Scholar
Harry, G., Bodiya, T. P., and DeSalvo, R. (eds). 1982. Optical Coatings and Thermal Noise in Precision Measurement. Cambridge University Press.Google Scholar
Hecht, J. 1992. Helium neon lasers flourish in face of diode-laser competition. Laser Focus World, 00, 15.Google Scholar
Heer, C. V. 1982. Laser gyro history. Physics Today, 35(5), 134.Google Scholar
Heer, C. V. 1984. History of The Laser Gyro. In: Jacobs, S. F., Killpatrick, J. E., Sanders, V. E., Murray, S. III, Marlan, S. O., and Simpson, J. H. (eds.). Vol. 0487. Physics of Optical Ring Gyros (pp. 212).Google Scholar
Hochuli, U. E., Haldemann, P., and Li, H. A. 1974. Factors influencing the relative frequency stability of He–Ne laser structures. Review of Scientific Instruments, 45(11), 1378.Google Scholar
Holdaway, J., Hurst, R. B., Graham, R. D., Rabeendran, N., and Schreiber, K. U. 2012. Self-locked operation of large He–Ne ring laser gyroscopes. Metrologia, 49(3), 209212.Google Scholar
Höling, B., Leuchs, G., Ruder, H., and Schneider, M. 1992. An argon ion ring laser as a gyroscope. Applied Physics B, 55(1), 4650.Google Scholar
Hurst, R. B., Dunn, R. W., Schreiber, K. U., Thirkettle, R. J., and MacDonald, G. K. 2004. Mode behavior in ultralarge ring lasers. Applied Optics, 43(11), 23372346.Google Scholar
Hurst, R. B., Wells, J.-P. R., and Stedman, G. 2007. An elementary proof of the geometrical dependence of the Sagnac effect. Journal of Optics A: Pure and Applied Optics, 9(10), 838841.Google Scholar
Hurst, R. B., Stedman, G., Schreiber, K. U., et al. 2009. Experiments with an 834 m2 ring laser interferometer. Journal of Applied Physics, 105(1), 3115.Google Scholar
Hurst, R. B., Rabeendran, N., Schreiber, K. U., and Wells, J.-P. R. 2014. Correction of backscatter-induced systematic errors in ring laser gyroscopes. Applied Optics, 53(31), 76107618.Google Scholar
Hurst, R. B., Mayerbacher, M., Gebauer, A., Schreiber, K. U., and Wells, J.-P. R. 2017. High-accuracy absolute rotation rate measurements with a large ring laser gyro: Establishing the scale factor. Applied Optics, 56(4), 11241130.Google Scholar
Igel, H., Schreiber, K. U., Flaws, A., et al. 2005. Rotational motions induced by the M 8.1 Tokachi-oki earthquake, September 25, 2003. Geophysical Research Letters, 32, L08309.Google Scholar
Igel, H., Cochard, A., Wassermann, J., Flaws, A., et al. 2007. Broad-band observations of earthquake-induced rotational ground motions. Geophysical Journal, 168(1), 182196.Google Scholar
Igel, H., Nader, M. F., Kurrle, D., et al. 2011. Observations of Earth’s toroidal free oscillations with a rotation sensor: The 2011 magnitude 9.0 Tohoku-Oki earthquake. Geophysical Research Letters, 38(2), L21303.Google Scholar
Igel, H., Bernauer, M., Wassermann, J., and U., Schreiber K. 2015. Rotational seismology: Theory, instrumentation, observations, applications. Encyclopedia of Complexity and System Science. Springer, New York.Google Scholar
Igel, H., Schreiber, K. U., Gebauer, A., et al. 2021. ROMY: A multicomponent ring laser for geodesy and geophysics. Geophysical Journal International, 225(01), 684698.Google Scholar
Photonics, iXblue, Saint Germain, France. 2021. blueSeis-3A datasheet. iXBlue.Google Scholar
Jacobs, S. F., and Zanoni, R. 1998. Laser ring gyro of arbitrary shape and rotation axis. American Association of Physics Teachers, 50(7), 659660.Google Scholar
Jamal, R., and Pichlik, H. 1999. Labview: Programmiersprache der vierten Generation. Prentice Hall.Google Scholar
Javan, A. 2005. Encyclopedia of modern optics: The Helium-Neon laser. Elsevier Academic Press.Google Scholar
Javan, A., Bennett, W. R. Jr., and Herriott, D. R. 1961. Population inversion and continuous optical maser oscillation in a gas discharge containing a He–Ne mixture. Physical Review Letters, 6(3), 106110.Google Scholar
Johnson, J. B. 2003. Generation and propagation of infrasonic airwaves from volcanic explosions. Journal of Volcanology and Geothermal Research, 121(1), 114.Google Scholar
Jones, D. G. C., Sayers, M. D., and Allen, L. 1968. Mode self-locking in gas lasers. Journal of Physics A: General Physics, 2, 95101.Google Scholar
Kaula, W. M. 1964. Tidal dissipation by solid friction and the resulting orbital evolution. Reviews of Geophysics, 2(4), 661685.Google Scholar
Kay, S. M. 1993. Fundamentals of Statistical Signal Processing: Volume 1, Estimation Theory. Prentice Hall.Google Scholar
Kay, S. M., and Marple, S. L. 1981. Spectrum analysis – A modern perspective. Proceedings of the IEEE, 69(11), 13801419.Google Scholar
Kessler, T., Legero, T., and Sterr, U. 2012. Thermal noise in optical cavities revisited. Journal of the Optical Society of America B, 29(1), 178184.Google Scholar
King, B. T. 2000. Application of superresolution techniques to ring laser gyroscopes: Exploring the quantum limit. Applied Optics, 39(33), 61516157.Google Scholar
Klochan, E. L., Kornienko, L. S., Kravtsov, N. V., Lariontsev, E. G., and Shelaev, A. N. 1974. Laser operation without spikes in a ruby ring. Radio Engineering and Electronic Physics, 19, 5864.Google Scholar
Klochan, E. L., Kornienko, L. S., Kravtsov, N. V., Lariontsev, E. G., and Shelaev, A. N. 1974. Oscillation regimes in a rotating solid state ring laser. Soviet Physics, 38, 669673.Google Scholar
Klügel, T., and Wziontek, H. 2009. Correcting gravimeters and tiltmeters for atmospheric mass attraction using operational weather models. Journal of Geodynamics, 48(3–5), 204210.Google Scholar
Klügel, T., Schlüter, W., Schreiber, K. U., and Schneider, M. 2005. Grossringlaser zur kontinuierlichen Beobachtung der Erdrotation. Zeitschrift für das Vermessungswesen, 02, 10.Google Scholar
Knopf, O. 1920. Die Versuche von F. Harreß über die Geschwindigkeit des Lichtes in bewegten Körpern. Naturwissenschaften, 8(42), 815821.Google Scholar
Korth, W. Z., Heptonstall, A., Hall, E. D., et al. 2016. Passive, free-space heterodyne laser gyroscope. Classical and Quantum Gravity, 33(3), 035004.Google Scholar
Kravtsov, N. V., Lariontsev, E. G., and Shelaev, A. N. 1993. Oscillation regimes of ring solid-state lasers and possibilities for their stabilization. Laser Physics, 3, 2262.Google Scholar
Kurrle, D., Igel, H., Ferreira, A. M. G., Wassermann, J., and Schreiber, K. U. 2010. Can we estimate local Love wave dispersion properties from collocated amplitude measurements of translations and rotations? Geophysical Research Letters, 37(4), 3281.Google Scholar
Lai, M., Diels, J.-C., and Dennis, M. L. 1992. Nonreciprocal measurements in femtosecond ring lasers. Optics Letters, 17(21), 1535.Google Scholar
Lalezari, R. 1987. Putting the non-red HeNe to Work. Photonics Spectra, 117.Google Scholar
Lamb, W. E. 1964. Theory of an optical maser. Physical Review, 134(6A), 14291450.Google Scholar
Lambeck, K. 1980. The Earth’s Variable Rotation. Cambridge University Press.Google Scholar
Lawrence, A. 1998. Modern Inertial Technology: Navigation, Guidance, and Control. Springer.Google Scholar
Lefevre, H. C. 2014. The Fiber-optic Gyroscope, second edition. Artech House Applied Photonics Series. Artech House Publishers.Google Scholar
Lefevre, H. C., Bergh, R. A., and Shaw, H. J. 1982. All-fiber gyroscope with inertialnavigation short-term sensitivity. Optics Letters, 7(9), 454456.Google Scholar
Léger, P. 1996. Quapason – a new low-cost vibrating gyroscope. Proceedings of the Symposium Gyro Technology, Stuttgart Germany.Google Scholar
Lenef, A., Hammond, T. D., Smith, E. T., et al. 1997. Rotation sensing with an atom interferometer. Physical Review Letters, 78(5), 760.Google Scholar
Lense, J., and Thirring, H. 1918. Über den Einfluß der Eigenrotation des Zentralkörpers auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift, 01, 156.Google Scholar
Levin, Y. 2008. Fluctuation–dissipation theorem for thermo-refractive noise. Physics Letters A, 372(12), 19411944.Google Scholar
Li, H.-N., Sun, L.-Y., and Wang, S.-Y. 2002. Frequency dispersion characteristics of phase velocities in surface wave for rotational components of seismic motion. Journal of Sound and Vibration, 258(5), 815827.Google Scholar
Lindner, F., Wassermann, J., Schmidt-Aursch, M. C., Schreiber, K. U., and Igel, H. 2017. Seafloor ground rotation observations: Potential for improving signal to noise ratio on horizontal OBS components. Seismological Research Letters, 88(1), 3238.Google Scholar
Liu, K., Zhang, F. L., Li, Z. Y., Feng, X. H., Li, K., Lu, Z. H., Schreiber, K. U., Luo, J., and Zhang, J. 2019. Large-scale passive laser gyroscope for earth rotation sensing. Optics Letters, 44(11), 2732.Google Scholar
Liu, K., Zhang, F., Li, Z., et al. 2020. Noise analysis of a passive resonant laser gyroscope. Sensors (Basel), 20(18), 5369.Google Scholar
Lodge, O. J. 1893. Aberration problems – a discussion concerning the motion of the ether near the Earth, and concerning the connection between the ether and gross matter; with some new experiments. Philosophical Transactions A 1897, 189, 149166.Google Scholar
Lodge, O. J. 1897. Experiments on the Absence of mechanical connexion between ether and matter. Proceedings of the Royal Society of London, 61, 3132.Google Scholar
Loukianov, D., Rodloff, R., Sorg, H., and Stieler, B. (eds). 1999. Optical gyros and their application. North Atlantic Treaty Organization.Google Scholar
Macek, W. M., and Davis, D. T. M. Jr. 1963. Rotation rate sensing with travelingwave ring lasers. Applied Physics Letters, 2(3), 6768.Google Scholar
MacKenzie, D. 1996. Knowing Machines: Essays on Technical Change. MIT Press.Google Scholar
Maiman, T. H. 1960. Stimulated optical radiation in Ruby. Nature, 187(4736), 493494.Google Scholar
McLeod, D. P., Stedman, G. E., Webb, T. H., and Schreiber, K. U. 1998. Comparison of standard and ring laser rotational seismograms. Bulletin of the Seismological Society of America, 88(6), 14951503.Google Scholar
Meyer, R. E., Ezekiel, S., Stowe, D. W., and Tekippe, V. J. 1983. Passive fiber-optic ring resonator for rotation sensing. Optics Letters, 8(12), 644646.Google Scholar
Michelson, A. A. 1904. Relative motion of Earth and Aether. Philosophical Magazine, 8(48), 716719.Google Scholar
Michelson, A. A., and Gale, H. G. 1925. The effect of the Earth’s rotation on the velocity of light, Part II. The Astrophysical Journal, 61(140-145), 2.Google Scholar
Milonni, P. W., and Eberly, J. H. 1988. Lasers. Wiley & Sons.Google Scholar
Müller, J., and Biskupek, L. 2007. Variations of the gravitational constant from lunar laser ranging data. Classical and Quantum Gravity, 24(17), 45334538.Google Scholar
Müller, J., Murphy, T. Jr, Schreiber, K. U., et al. 2019. Lunar laser ranging – A tool for general relativity, lunar geophysics and earth science. Journal of Geodesy, 01, 119.Google Scholar
Murugesan, S., and Goel, P. S. 1989. Autonomous fault-tolerant attitude reference system using DTGs in symmetrically skewed configuration. IEEE Transactions on Aerospace and Electronic Systems, 25(2), 302307.Google Scholar
Nader, M. F., Igel, H., Ferreira, A. M. G., et al. 2012. Toroidal free oscillations of the Earth observed by a ring laser system: A comparative study. Journal of Seismology, 16(4), 745755.Google Scholar
Notcutt, M., Ma, L.-S., Ludlow, A. D., Foreman, S. M., Ye, J., and Hall, J. L. 2006. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertzlinewidth lasers. Physical Review A, 73(3), 0330334.Google Scholar
Numata, K., Kemery, A., and Camp, J. 2004. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Physical Review Letters, 93(25), 250602.Google Scholar
Packard, R. E., and Vitale, S. 1992. Principles of superfluid-helium gyroscopes. Physical Review B, 46(6), 3540.Google Scholar
Pancha, A., Webb, T. H., Stedman, G., McLeod, D., and Schreiber, K. U. 2000. Ring laser detection of rotations from teleseismic waves. Geophysical Research Letters, 27(2), 35533556.Google Scholar
Park, J., Song, T.-R. A., Tromp, J., et al. 2005. Earth’s free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake. Science (New York, N.Y.), 308(5725), 113944.Google Scholar
Pham, N. D., Igel, H., Wassermann, J., Cochard, A., and Schreiber, K. U. 2009. The effects of tilt on interferometric rotation sensors. Bulletin of the Seismological Society of America, 99(2B), 13521365.Google Scholar
Pircher, G., and Hepner, G. 1967. Perfectionnement aux dispositifs du type gyrometre interferometrique a laser. French Patent: 1.563.720.Google Scholar
Plag, H.-P., and Pearlman, M. (eds.). 2009. Global Geodetic Observing Systemmeeting the Requirements of a Global Society on a Changing Planet in 2020. Springer.Google Scholar
Post, E. J. 1967. Sagnac effect. Reviews of Modern Physics, 39(2), 475493.Google Scholar
Pritsch, B., Schreiber, K. U., Velikoseltsev, A., and Wells, J.-P. R. 2007. Scale-factor corrections in large ring lasers. Applied Physics Letters, 91(6), 061115.Google Scholar
Qiao, W., Xiaojun, Z., Zongsen, L., et al. 2014. A simple method of optical ring cavity design and its applications. Optics Express, 22(12), 1478214791.Google Scholar
Rabeendran, N. 2005. New approaches to gyroscopic lasers. Dissertation, University of Canterbury, New Zealand, 07.Google Scholar
Rodloff, R. 1990. Concept for a high precision experimental laser gyroscope system ‘ELSy’ (laser gyro goniometry). Physica C, 12(2), 6774.Google Scholar
Rosenthal, A. H. 1962. Regenerative circulatory multiple-beam interferometry for the study of light-propagation effects. Journal of the Optical Society of America, 52(10), 11431148.Google Scholar
Rotation, International Earth, and Service, Reference System. 2022. International Earth Rotation and Reference System Service. https://www.iers.org/IERS/EN/Home/home_node.html. Accessed: February 14, 2022.Google Scholar
Rotge, J. R., Simmons, B. J., Kroncke, G. T., and Stech, D. J. 1986. Final report on optical rotation sensor. https://apps.dtic.mil/sti/pdfs/ADA169357.pdf. Accessed: February 14, 2022.Google Scholar
Rotge, J. R., Simmons, B. J., Kroncke, G. T., and Stech, D. J. 1986. Optical rotation sensors – final report. Final Report on Project 2301-F1-68. Air Force System Command, United States Air Force.Google Scholar
Rowe, C. H., Schreiber, K. U., Cooper, S. J., et al. 1999. Design and operation of a very large ring laser gyroscope. Applied Optics LP, 38(12), 2516.Google Scholar
Rozelle, D. M. 2009. The hemispherical resonator gyro: From wineglass to the planets. Proc. 19th AAS AIAA Space Flight Mechanics.Google Scholar
Sagnac, G. 1913. L’ether lumineux demontre par l’effet du vent relatif d’ether dans un interferometre en rotation uniforme. Comptes rendus de l’Académie des Sciences, 157, 708710.Google Scholar
Sagnac, G. 1913. Sur la preuve de la réalité de l’éther lumineux par l’experiénce de l’interférographe tournant. Comptes rendus de l’Académie des Sciences, 157, 14101413.Google Scholar
Sanders, G. A., Prentiss, M. G., and Ezekiel, S. 1981. Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity. Optics Letters, 6(11), 569571.CrossRefGoogle ScholarPubMed
Santagata, R. 2015 (11). Sub-nanometer length metrology for ultra-stable ring laser gyroscopes. Ph.D. thesis, University of Siena, Italy.Google Scholar
Santagata, R., Beghi, A., Belfi, J., Beverini, N., Cuccato, D., Di Virgilio, A., Ortolan, A., Porzio, A., and Solimeno, S. 2015. Optimization of the geometrical stability in square ring laser gyroscopes. Classical and Quantum Gravity, 32(5), 055013.Google Scholar
Sato, Y., and Packard, R. E. 2012. Superfluid helium quantum interference devices: Physics and applications. Reports on Progress in Physics, 75(1), 016401.Google Scholar
Schiff, L. I. 1960. Possible new experimental test of general relativity theory. Physical Review Letters, 4(5), 215217.Google Scholar
Schmelzbach, C., Donner, S., Igel, H., et al. 2018. Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology. GEOPHYSICS, 83(3), WC53WC69.Google Scholar
Schreiber, K. U. 1999 (02). Ringlaser für die Geodäsie. Technical University Munich.Google Scholar
Schreiber, K. U., and Wells, J.-P. R. 2013. Invited review article: Large ring lasers for rotation sensing. Review of Scientific Instruments, 84(4), 041101041126.Google Scholar
Schreiber, K. U., Rowe, C. H., Wright, D. N., Cooper, S. J., and Stedman, G. 1998. Precision stabilization of the optical frequency in a large ring laser gyroscope. Applied Optics LP, 37(36), 83718381.Google Scholar
Schreiber, K. U., Klügel, T., and Stedman, G. 2003. Earth tide and tilt detection by a ring laser gyroscope. Journal of Geophysical Research: Solid Earth, 108(B), 2132.Google Scholar
Schreiber, K. U., Velikoseltsev, A., Rothacher, M., Klügel, T., and Stedman, G. 2004. Direct measurement of diurnal polar motion by ring laser gyroscopes. Journal of Geophysical Research: Solid Earth, 109(B), 6405.Google Scholar
Schreiber, K. U., Velikoseltsev, A., Stedman, G. E., and Hurst, R. B. 2004. Large ring laser gyros as high resolution sensors for applications in geoscience. Proceedings of the 11th International Conference on Integrated Navigation Systems, St. Petersburg, 326.Google Scholar
Schreiber, K. U., Stedman, G. E., Igel, H., and Flaws, A. 2006. Ring laser gyroscopes as rotation sensors for seismic wave studies. Springer Berlin Heidelberg (pp. 377390).Google Scholar
Schreiber, K. U., Igel, H., Velikoseltsev, A., et al. 2006. The GEOsensor project: Rotations – a new observable for seismology. Springer Monograph: “Observation of the Earth System from Space”.Google Scholar
Schreiber, K. U., Hautmann, J., Velikoseltsev, A., et al. 2009. Ring laser measurements of ground rotations for seismology. Bulletin of the Seismological Society of America, 99(2B), 11901198.Google Scholar
Schreiber, K. U., Velikoseltsev, A., Carr, A. J., and Franco-Anaya, R. 2009. The application of fiber optic gyroscopes for the measurement of rotations in structural engineering. Bulletin of the Seismological Society of America, 99(2B), 12071214.Google Scholar
Schreiber, K. U., Klügel, T., Velikoseltsev, A., et al. 2009. The large ring laser G for continuous earth rotation monitoring. Pure and Applied Geophysics, 166(8–9), 14851498.Google Scholar
Schreiber, K. U., Klügel, T., Wells, J.-P. R., Hurst, R. B, and Gebauer, A. 2011. How to detect the chandler and the annual wobble of the Earth with a large ring laser gyroscope. Physical Review Letters, 107(10), 173904.Google Scholar
Schreiber, K. U., Klügel, T, Wells, J.-P. R., Holdaway, J., Gebauer, A., and Velikoseltsev, A. 2012. Enhanced ring lasers: a new measurement tool for Earth sciences. Quantum Electronics, 42(11), 10451050.Google Scholar
Schreiber, K. U., Gebauer, A., and Wells, J.-P. R. 2012. Long-term frequency stabilization of a 16 m2 ring laser gyroscope. Optics Letters, 37(11), 19251927.Google Scholar
Schreiber, K. U., Gebauer, A., and Wells, J.-P. R. 2013. Closed-loop locking of an optical frequency comb to a large ring laser. Optics Letters, 38(18), 35743577.Google Scholar
Schreiber, K. U., Thirkettle, R. J., Hurst, R. B., et al. 2015. Sensing Earth’s rotation with a Helium–Neon ring laser operating at 1.15 μm. Optics Letters, 40(8), 1705.Google Scholar
Schulz-DuBois, E. 1966. Alternative interpretation of rotation rate sensing by ring laser. Quantum Electronics, IEEE Journal of, 2(8), 299305.Google Scholar
Schwartz, S., Gutty, F., Feugnet, G., Loil, E., and Pocholle, J.-P. 2009. Solid-state ring laser gyro behaving like its helium-neon counterpart at low rotation rates. Optics Letters, 34(24), 3884.Google Scholar
Schwarzschild, B. M. 1981. Sensitive fiber optic gyroscopes. Physics Today, 34(10), 2022.Google Scholar
Seitz, F., and Schmidt, M. 2005. Atmospheric and oceanic contributions to Chandler wobble excitation determined by wavelet filtering. Journal of Geophysical Research, 110(B11), 2511.Google Scholar
Shankland, R. S. 1974. Michelson and his interferometer. Physics Today, 27(4), 3743.Google Scholar
Shaw, G. L., and Simmons, B. J. 1984. A 58 m2 passive resonant ring laser gyroscope. Fiber Optic and Laser Sensors II, 117121.Google Scholar
Shaw, G. L., Rotge, J., and Simmons, B. J. 1986. Progress on 58 m2 passive resonant ring laser gyroscope. Proceedings of the SPIE, 566(01), 8489.Google Scholar
Siegman, A. E. 1986. Lasers. University Science Books.Google Scholar
Sollberger, D., Igel, H., Schmelzbach, C., et al. 2020. Seismological processing of six degree-of-freedom ground-motion data. Sensors, 20(23), 6904.Google Scholar
Spreeuw, R. J. C., Centeno Neelen, R., van Druten, N. J., Eliel, E. R., and Woerdman, J. P. 1990. Mode coupling in a He–Ne ring laser with backscattering. Physical Review A, 42(7), 43154324.Google Scholar
Stedman, G., Bilger, H., Li, Z., et al. 1993. Canterbury ring laser and tests for nonreciprocal phenomena. Australian Journal of Physics, 46(00), 87101.Google Scholar
Stedman, G. E. 1997. Ring-laser tests of fundamental physics and geophysics. Reports on Progress in Physics, 60(6), 615.Google Scholar
Stedman, G. E., Li, Z., and Bilger, H. R. 1995. Sideband analysis and seismic detection in a large ring laser. Applied Optics LP, 34(2), 5375.Google Scholar
Stedman, G. E., Schreiber, K. U., and Bilger, H. R. 2003. On the detectability of the Lense-Thirring field from rotating laboratory masses using ring laser gyroscope interferometers. Classical and Quantum Gravity, 20(13), 25272540.Google Scholar
Stokes, L. F., Chodorow, M., and Shaw, H. J. 1982. All-single-mode fiber resonator. Optics Letters, 7(6), 288.Google Scholar
Stone, J. A., and Stejskal, A. 2004. Using helium as a standard of refractive index: Correcting errors in a gas refractometer. Metrologia, 41(3), 189197.Google Scholar
Suryanto, W., Igel, H., Wassermann, J., et al. 2006. First comparison of array-derived rotational ground motions with direct ring laser measurements. Bulletin of the Seismological Society of America, 96(6), 20592071.Google Scholar
Szöke, A., and Javan, A. 1963. Isotope shift and saturation behavior of the 1.15-μ transition of Ne. Physical Review Letters, 10(12), 521524.Google Scholar
Tackmann, G., Berg, P., Schubert, C., et al. 2012. Self-alignment of a compact largearea atomic Sagnac interferometer. New Journal of Physics, 14(1), 015002.Google Scholar
Tajmar, M., and de Matos, C. J. 2005. Extended analysis of gravitomagnetic fields in rotating superconductors and superfluids. Physica C: Superconductivity, 420(1), 5660.Google Scholar
Tajmar, M., and de Matos, Clovis J. 2003. Gravitomagnetic field of a rotating superconductor and of a rotating superfluid. Physica C: Superconductivity, 385(4), 551554.Google Scholar
Tajmar, M., Plesescu, F., Seifert, B., Schnitzer, R., and Vasiljevich, I. 2008. Search for frame-dragging-like signals close to spinning superconductors. arXiv.org, 00.Google Scholar
Tang, C. L., Statz, H., and de Mars, G. 1963. Spectral output and spiking behavior of solid-state lasers. Journal of Applied Physics, 34(8), 22892295.Google Scholar
Tanimoto, T., Hadziioannou, C., Igel, H., et al. 2016. Seasonal variations in the Rayleigh-to-Love wave ratio in the secondary microseism from colocated ring laser and seismograph. Journal of Geophysical Research: Solid Earth, 121(4), 24472459.Google Scholar
Tartaglia, A., Di Virgilio, A., Belfi, J., Beverini, N., and Ruggiero, M. L. 2017. Testing general relativity by means of ring lasers. Ring lasers and relativity. The European Physical Journal Plus, 132(2), 73.Google Scholar
Tian, W. 2014. On tidal tilt corrections to large ring laser gyroscope observations. Geophysical Journal International, 196(1), 189193.Google Scholar
Vali, V., and Shorthill, R. W. 1976. Fiber ring interferometer. Applied Optics, 15(5), 1099100.Google Scholar
Vali, V., and Shorthill, R. W. 1977. Ring interferometer 950 m long. Applied Optics, 16(2), 290291.Google Scholar
Vallet, M., Ghosh, R., Le Floch, A., et al. 2001. Observation of magnetochiral birefringence. Physical Review Letters, 87(18), 183003.Google Scholar
Velikoseltsev, A. 2005. The development of a sensor model for Large Ring Lasers and their application in seismic studies. Ph.D. thesis, Technical University Munich.Google Scholar
Verdeyen, J. T. 2000. Laser electronics. Prentice Hall Series in Solid State Physical Electronics. Prentice Hall.Google Scholar
von Laue, M. 1907. Die mitführung des lichtes durch bewegte Körper nach dem relativitätsprinzip. Annalen der Physik, 328(1), 989990.Google Scholar
Walsh, P., and Kemeny, G. 1963. Laser operation without spikes in a ruby ring. Journal of Applied Physics, 34(4), 956957.Google Scholar
Wassermann, J., Bernauer, F., Shiro, B., et al. 2020. Six-axis ground motion measurements of Caldera collapse at Kilauea Volcano, Hawai’i–more data, more puzzles? Geophysical Research Letters, 47(5), e2019GL085999.Google Scholar
Webb, S. C. 1988. Long-period acoustic and seismic measurements and ocean floor currents. IEEE Journal of Oceanic Engineering, 13(4), 263270.Google Scholar
Wei, D. T., and W., Louderback A. 1979. Method for fabricating multi-layer optical films. Patents.Google Scholar
White, A. D., Gordon, EI, and Rigden, JD. 1963. Output power of the 6328-Å gas maser. Applied Physics Letters, 2(5), 91.Google Scholar
Widmer, R., and Zürn, W. 1992. Bichromatic excitation of long-period Rayleigh and air waves by the Mount Pinatubo and El Chichon volcanic eruptions. Geophysical Research Letters, 19(8), 765768.Google Scholar
Widmer-Schnidrig, R., and Zürn, W. 2009. Perspectives for ring laser gyroscopes in low-frequency seismology. Bulletin of the Seismological Society of America, 99(2B), 11991206.Google Scholar
Wilkinson, J. R. 1987. Ring lasers. Progress in Quantum Electronics, 11(1), 1103.Google Scholar
Zarinetchi, F., and Ezekiel, S. 1986. Observation of lock-in behavior in a passive resonator gyroscope. Optics Letters, 11(6), 401403.Google Scholar
Zou, D., Anyi, C. L., Thirkettle, R. J., Schreiber, K. U., and Wells, J.-P. R. 2019. Sensing Earth rotation with a helium-neon laser operating on three transitions in the visible region. Applied Optics, 58(10), 7884.Google Scholar
Zürn, W., and Widmer-Schnidrig, R. 2002. Globale Eigenschwingungen der Erde. Physik Journal, 1(10), 17.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Ulrich Schreiber, Technische Universität München, Jon-Paul Wells, University of Canterbury, Christchurch, New Zealand
  • Book: Rotation Sensing with Large Ring Lasers
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781108524933.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Ulrich Schreiber, Technische Universität München, Jon-Paul Wells, University of Canterbury, Christchurch, New Zealand
  • Book: Rotation Sensing with Large Ring Lasers
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781108524933.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Ulrich Schreiber, Technische Universität München, Jon-Paul Wells, University of Canterbury, Christchurch, New Zealand
  • Book: Rotation Sensing with Large Ring Lasers
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781108524933.009
Available formats
×