Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T23:04:21.080Z Has data issue: false hasContentIssue false

23 - Visible to Short-Wave Infrared Spectral Analyses of Mars from Orbit Using CRISM and OMEGA

from Part IV - Applications to Planetary Surfaces

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

Visible to short-wave infrared (VSWIR, 0.4–5.0 µm) reflectance spectroscopy is a powerful tool to identify and map mineral groups on the martian surface. The Mars Express/OMEGA and Mars Reconnaissance Orbiter/CRISM instruments have characterized more than 30 mineral groups, revolutionizing previous understanding of martian crustal composition and the role of water in altering it. Analyses of these spectral images revealed the primary structure of the crust to be dominated by basalt, over a deep layer of segregated pyroxene- and olivine-rich plutons, with sparse feldspar-rich, differentiated intrusions. Martian volatile-bearing environments have evolved through four phases: the pre-Noachian to early Noachian period when alteration by liquid water occurred near the surface and deep in the subsurface, in chemically neutral to alkaline environments that formed hydrous silicates and carbonates; the middle to late Noachian period when liquid water was widely present at the surface forming valley networks, lacustrine deposits, and clay-rich pedogenic horizons; the early Hesperian to early Amazonian period during which water became increasingly acidic and saline, forming deposits rich in sulfate salts, chlorides, and hydrated silica; and the Amazonian period when surface water has existed predominantly as ice, with only localized reaction with regolith and briny flow on the surface.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 453 - 483
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackiss, S., Horgan, B., Seelos, F., Farrand, W., & Wray, J. (2018) Mineralogical evidence for subglacial volcanoes in the Sisyphi Montes region of Mars. Icarus, 311, 357370.CrossRefGoogle Scholar
Adams, J. (1974) Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. Journal of Geophysical Research, 79, 48294836.CrossRefGoogle Scholar
Al-Samir, M., Nabhan, S., Fritz, J., et al. (2017) The paleolacustrine evolution of Juventae Chasma and Maja Valles with implications for the formation of interior layered deposits on Mars. Icarus, 292, 125143.Google Scholar
Andrews-Hanna, J.C., Phillips, R.J., & Zuber, M.T. (2007) Meridiani Planum and the global hydrology of Mars. Nature, 446, 163166.Google Scholar
Arvidson, R.E., Poulet, F., Bibring, J.-P., et al. (2005) Spectral reflectance and morphologic correlations in eastern Terra Meridiani, Mars. Science, 307, 15911594.Google Scholar
Arvidson, R.E., Poulet, F., Morris, R.V., et al. (2006) Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration Rover data sets. Journal of Geophysical Research, 111, E12S08, DOI:10.1029/2006JE002728.Google Scholar
Arvidson, R.E., Ruff, S.W., Morris, R.V., et al. (2008) Spirit Mars rover mission to the Columbia Hills, Gusev crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. Journal of Geophysical Research, 113, E12S33, DOI:10.1029/2008JE003183.CrossRefGoogle Scholar
Arvidson, R.E., Bell, J.F. III, Bellutta, P., et al. (2010) Spirit Mars rover mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater. Journal of Geophysical Research, 115, E00F03, DOI:10.1029/2010JE003633.Google Scholar
Arvidson, R.E., Squyres, S.W., Bell, J.F. III, et al. (2014) Ancient aqueous environments at Endeavour crater, Mars. Science, 343, 1248097, DOI:10.1126/science.1248097.Google Scholar
Arvidson, R.E., Bell, J.F. III, Catalano, J.G., et al. (2015) Mars Reconnaissance Orbiter and Opportunity observations of the Burns formation: Crater hopping at Meridiani Planum. Journal of Geophysical Research, 120, 429451.Google Scholar
Bandfield, J.L., Hamilton, V.E., & Christensen, P.R. (2000) A global view of martian surface compositions from MGS-TES. Science, 287, 16261630.CrossRefGoogle Scholar
Baratoux, D., Toplis, M. J., Monnereau, M., & Sautter, V. (2013) The petrological expression of early Mars volcanism. Journal of Geophysical Research, 118, 5964.Google Scholar
Bell, J.F. III, McCord, T.B., & Owensby, P.D. (1990) Observational evidence of crystalline iron oxides on Mars. Journal of Geophysical Research, 95, 1444714461.Google Scholar
Bell, J.F. III, Morris, R.V., & Adams, J.B. (1993) Thermally altered palagonitic tephra: A spectral and process analog to the soil and dust of Mars. Journal of Geophysical Research, 98, 33733385.Google Scholar
Bibring, J.-P., Langevin, Y., Soufflot, A., et al. (1989) Results from the ISM experiment. Nature, 341, 591593.Google Scholar
Bibring, J.-P., Soufflot, A., Berthé, M., et al. (2004a) OMEGA: Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité. In: Mars Express: The scientific payload (Wilson, A., ed.). ESA SP-1240. ESA Publications Division, Noordwijk, Netherlands, 3749.Google Scholar
Bibring, J.-P., Langevin, Y., Poulet, F., et al. (2004b) Perennial water ice identified in the south polar cap of Mars. Nature, 428, 627630.Google Scholar
Bibring, J.-.P, Langevin, Y., Gendrin, A., et al. & OMEGA team (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science, 307, 15761581.Google Scholar
Bibring, J.-P, Langevin, Y., Mustard, J.F., et al. (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science, 312, 400404, DOI:10.1126/science.1122659.Google Scholar
Bibring, J.-P., Arvidson, R.E., Gendrin, A., et al. (2007) Coupled ferric oxides and sulfates on the martian surface. Science, 317, 12061209.Google Scholar
Bish, D.L., Blake, D.F., Vaniman, D.T., et al. & Science Team, MSL (2013) X-ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale crater. Science, 341, 1238932.CrossRefGoogle ScholarPubMed
Bishop, J.L. & Rampe, E.B. (2016) Evidence for a changing martian climate from the mineralogy at Mawrth Vallis. Earth and Planetary Science Letters, 448, 4248.Google Scholar
Bishop, J.L., Noe Dobrea, E.Z., McKeown, N.K., et al. (2008) Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science, 321, 830833.CrossRefGoogle ScholarPubMed
Bishop, J.L., Parente, M., Weitz, C.M., et al. (2009) Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. Journal of Geophysical Research, 114, E00D09, DOI:10.1029/2009JE003352.Google Scholar
Bishop, J.L., Tirsch, D., Tornabene, L.L., et al. (2013a) Mineralogy and morphology of geologic units at Libya Montes, Mars: Ancient aqueous outcrops, mafic flows, fluvial features and impacts. Journal of Geophysical Research, 118, 487513.Google Scholar
Bishop, J.L., Loizeau, D., McKeown, N.K., et al. (2013b) What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planetary and Space Science, 86, 130149.Google Scholar
Bishop, J.L., Gross, C., Rampe, E.B., et al. (2016) Mineralogy of layered outcrops at Mawrth Vallis and implications for early aqueous geochemistry on Mars. 47th Lunar Planet. Sci. Conf., Abstract #1332.Google Scholar
Bishop, J.L., Michalski, J.R., & Carter, J. (2017) Remote detection of clay minerals. In: Infrared and Raman spectroscopies of clay minerals (Gates, W.P., Kloprogge, J.T., Madejová, J., & Bergaya, F., eds.). Elsevier, the Netherlands, 482514.Google Scholar
Brown, A.J., Byrne, S., Tornabene, L.L., & Roush, T. (2008) Louth crater: Evolution of a layered water ice mound. Icarus, 196, 433445.Google Scholar
Brown, A.J., Calvin, W.M., McGuire, P.C., & Murchie, S.L. (2010a) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) south polar mapping: First Mars year of observations. Journal of Geophysical Research, 115, E00D13, DOI:10.1029/2009JE003333.CrossRefGoogle Scholar
Brown, A.J., Hook, S.J., Baldridge, A.M., et al. (2010b) Hydrothermal formation of clay-carbonate alteration assemblages in the Nili Fossae region of Mars. Earth and Planetary Science Letters, 297, 174182.Google Scholar
Brown, A.J., Calvin, W.M., & Murchie, S.L. (2012) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) north polar springtime recession mapping: First 3 Mars years of observations. Journal of Geophysical Research, 117, E00J20, DOI:10.1029/2012JE004113.Google Scholar
Brown, A.J., Piqueux, S., & Titus, T.N. (2014) Interannual observations and quantification of summertime H2O ice deposition on the martian CO2 ice south polar cap. Earth and Planetary Science Letters, 406, 102109.CrossRefGoogle Scholar
Brown, A.J., Calvin, W.M., Becerra, P., & Byrne, S. (2016) Martian north polar cap summer water cycle. Icarus, 277, 401415.Google Scholar
Buczkowski, D.L., Murchie, S., Clark, R., et al. (2010) Investigation of an Argyre basin ring structure using Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars. Journal ofGeophysical Research, 115, E12011, DOI:10.1029/2009JE003508.Google Scholar
Bultel, B., Quantin-Nataf, C., Andréani, M., Clénet, H., & Lozac’h, L. (2015) Deep alteration between Hellas and Isidis basins. Icarus, 260, 141160.Google Scholar
Calvin, W.M., Roach, L.H., Seelos, F.P., et al. (2009) Compact Reconnaissance Imaging Spectrometer for Mars observations of northern martian latitudes in summer. Journal of Geophysical Research, 114, E00D11, DOI:10.1029/2009JE003348.Google Scholar
Cannon, K.M. & Mustard, J.F. (2015) Preserved glass-rich impactites on Mars. Geology, 43, 635638.Google Scholar
Carr, M.H. & Head, J.W. (2010) Geologic history of Mars. Earth and Planetary Science Letters, 294, 185203.Google Scholar
Carter, J. & Poulet, F. (2013) Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains. Nature Geoscience, 6, 10081012.Google Scholar
Carter, J., Poulet, F., Bibring, J.-P., & Murchie, S. (2010) Discovery of hydrated silicates in crustal outcrops in the northern plains of Mars. Science, 328, 1682–1686.Google Scholar
Carter, J., Poulet, F., Bibring, J.-P., Mangold, N., & Murchie, S. (2013) Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. Journal of Geophysical Research, 118, 831858.CrossRefGoogle Scholar
Carter, J., Loizeau, D., Mangold, N., Poulet, F., & Bibring, J.-P. (2015) Widespread surface weathering on early Mars: A case for a warmer and wetter climate. Icarus, 248, 373382.Google Scholar
Cheek, L.C. & Pieters, C.M. (2012) Variations in anorthosite purity at Tsiolkovsky crater on the Moon. 43rd Lunar Planet. Sci. Conf., Abstract #2624.Google Scholar
Chojnacki, M., Burr, D.M., & Moersch, J.E. (2014a) Valles Marineris dune fields as compared with other martian populations: Diversity of dune compositions, morphologies, and thermophysical properties. Icarus, 230, 96142.Google Scholar
Chojnacki, M., Burr, D.M., Moersch, J.E., & Wray, J.J. (2014b) Valles Marineris dune sediment provenance and pathways. Icarus, 232, 187219.Google Scholar
Christensen, P.R., Bandfield, J.L., Hamilton, V.E., et al. (2001) Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. Journal of Geophysical Research, 106, 23,82323,871.Google Scholar
Christensen, P.R., Jakosky, B.M., Kieffer, H.H., et al. (2004) The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Science Reviews, 110, 85130.Google Scholar
Clancy, R.T., Lee, S.W., Gladstone, G.R., McMillan, W.W., & Roush, T. (1995) A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos. Journal of Geophysical Research, 100, 52515263.Google Scholar
Clancy, R.T., Sandor, B.J., Wolff, M.J., et al. (2012) Extensive MRO CRISM observations of 1.27 μm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations. Journal of Geophysical Research, 117, E00J10, DOI:10.1029/2011JE004018.Google Scholar
Clancy, R.T., Sandor, B.J., García-Muñoz, A., et al. (2013) First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere. Icarus, 226, 272281.Google Scholar
Clancy, R.T., Smith, M.D., Lefèvre, F., et al. (2017) Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles. Icarus, 293, 132156.Google Scholar
Clark, R.N. & Roush, T.L. (1984) Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 63296340.Google Scholar
Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., & Vergo, N. (1990) High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95, 12,65312,680.Google Scholar
Clark, R.N., Swayze, G.A., Murchie, S.L., Seelos, F.P., Seelos, K., & Viviano-Beck, C.E. (2015) Mineral and other materials mapping of CRISM data with Tetracorder 5. 46th Lunar Planet. Sci. Conf., Abstract #2410.Google Scholar
Cloutis, E. & Gaffey, M. (1991) Pyroxene spectroscopy revisited: Spectral-compositional correlations and relationship to geothermometry. Journal of Geophysical Research, 96, 22,80922,826.Google Scholar
Cloutis, E.A., Hawthorne, F.C., Mertzman, S.A., et al. (2006) Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus, 184, 121157.Google Scholar
Cull, S., Arvidson, R.E., Morris, R.V., Wolff, M., Mellon, M.T., & Lemmon, M.T. (2010) The seasonal ice cycle at the Mars Phoenix landing site: II. Post-landing CRISM and ground observations. Journal of Geophysical Research, 115, E00E19, DOI:10.1029/2009JE003410.Google Scholar
Dehouck, E., Mangold, N., Le Mouélic, S., Ansan, V., & Poulet, F. (2010) Ismenius Cavus, Mars: A deep paleolake with phyllosilicate deposits. Planetary and Space Science, 58, 941946.Google Scholar
Dickson, J.L., Head, J.W., Levy, J.S., & Marchant, D.R. (2013) Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth’s most saline lake and implications for Mars. Scientific Reports, 3, 1166, DOI:10.1038/srep01166.Google Scholar
Ding, N., Bray, V.J., McEwen, A.S., et al. (2015) The central uplift of Ritchey crater, Mars. Icarus, 252, 255270.Google Scholar
Edwards, C.S. & Ehlmann, B.L. (2015) Carbon sequestration on Mars. Geology, 43, 863866.Google Scholar
Ehlmann, B.L. & Dundar, M. (2015) Are Noachian/Hesperian acidic waters key to generating Mars’ regional-scale aluminum phyllosilicates? The importance of jarosite co-occurrences with Al-phyllosilicate units. 46th Lunar Planet. Sci. Conf., Abstract #1635.Google Scholar
Ehlmann, B.L. & Edwards, C.S. (2014) Mineralogy of the martian surface. Annual Review of Earth Planetary of Science, 42, 291315.Google Scholar
Ehlmann, B.L., Mustard, J., Murchie, S., et al. (2008a) Orbital identification of carbonate-bearing rocks on Mars. Science, 322, 18281832.Google Scholar
Ehlmann, B.L., Mustard, J.F., Fassett, C.I., et al. (2008b) Clay-bearing minerals and organic preservation potential in sediments from a martian delta environment, Jezero crater, Nili Fossae, Mars. Nature Geoscience, 1, 355358.Google Scholar
Ehlmann, B.L., Mustard, J.F., Swayze, G.A., et al. (2009) Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. Journal of Geophysical Research, 114, E00D08, DOI:10.1029/2009JE003339.Google Scholar
Ehlmann, B.L., Mustard, J.F., & Murchie, S.L. (2010) Geologic setting of serpentine deposits on Mars. Geophysical Research Letters, 37, 610, DOI:10.1029/2010GL042596.CrossRefGoogle Scholar
Ehlmann, B.L., Mustard, J.F., Murchie, S.L., et al. (2011a) Aqueous environments during Mars’ first billion years: Evidence from the clay mineral record. Nature, 479, 5360.CrossRefGoogle Scholar
Ehlmann, B.L., Mustard, J.F., Clark, R.N., Swayze, G.A., & Murchie, S.L. (2011b) Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages. Clays & Clay Minerals, 59, 359377.Google Scholar
Ehlmann, B.L., Swayze, G.A., Milliken, R.E., et al. (2016) Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters. American Mineralogist, 101, 15271542.CrossRefGoogle Scholar
Erard, S. (2001) A spectrophotometric model of Mars in the near-infrared. Geophysical Research Letters, 28, 12911294.Google Scholar
Erard, S. & Calvin, W. (1997) New composite spectra of Mars, 0.4–5.7 µm. Icarus, 130, 449460.CrossRefGoogle Scholar
Farrand, W.H., Glotch, T.D., Rice, J.W., Hurowitz, J.A., & Swayze, G.A. (2009) Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region. Icarus, 204, 478488.Google Scholar
Fastook, J.L. & Head, J.W. (2015) Glaciation in the Late Noachian Icy Highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planetary and Space Science, 106, 8298.Google Scholar
Fischer, E. & Pieters, C. (1993) The continuum slope of Mars: Bidirectional reflectance investigations and applications to Olympus Mons. Icarus, 102, 185202.Google Scholar
Fischer, E., Martínez, G.M., & Rennó, N.O. (2016) Formation and persistence of brine on Mars: Experimental simulations throughout the diurnal cycle at the Phoenix landing site. Astrobiology, 16, 937948.CrossRefGoogle ScholarPubMed
Flahaut, J., Mustard, J.F., Quantin, C., Clenet, H., Allemand, P., & Thomas, P. (2011) Dikes of distinct composition intruded into Noachian-aged crust exposed in the walls of Valles Marineris. Geophysical Research Letters, 38, L15202, DOI:10.1029/2011GL048109.Google Scholar
Flahaut, J., Quantin, C., Clenet, H., Allemand, P., Mustard, J., & Thomas, P. (2012) Noachian crust and key geologic transitions in the lower walls of Valles Marineris: Insights into early igneous processes on Mars. Icarus, 221, 420435.Google Scholar
Flahaut, J., Carter, J., Poulet, F., et al. (2015) Embedded clays and sulfates in Meridiani Planum, Mars. Icarus, 248, 269288.Google Scholar
Fox, V.K., Arvidson, R.E., Guinness, E.A., et al. (2016) Smectite deposits in Marathon Valley, Endeavour crater, Mars, identified using CRISM hyperspectral reflectance data. Geophysical Research Letters, 43, 48854892.Google Scholar
Fraeman, A.A., Arvidson, R.E., Catalano, J.G., et al. (2013) A hematite-bearing layer in Gale crater, Mars: Mapping and implications for past aqueous conditions. Geology, 41, 11031106.Google Scholar
Frey, H.V., Frey, E.L., Hartmann, W.K., & Tanaka, K.L. (2003) Evidence for buried “pre-Noachian” crust pre-dating the oldest observed surface units on Mars. 34th Lunar Planet. Sci. Conf., Abstract #1848.Google Scholar
Gendrin, A., Mangold, N., Bibring, J.-P., et al. (2005a) Sulfates in martian layered terrains: The OMEGA/Mars Express view. Science, 307, 15871591.Google Scholar
Gendrin, A., Bibring, J.-P., Mustard, J.F., et al. & OMEGA Team (2005b) Identification of predominant ferric signatures in association to the martian sulfate deposits. 36th Lunar Planet. Sci. Conf., Abstract #1378.Google Scholar
Ghatan, G.J. & Head, J.W. III (2002) Candidate subglacial volcanoes in the south polar region of Mars: Morphology, morphometry, and eruption conditions. Journal of Geophysical Research, 107, 5048, DOI:10.1029/2001JE001519.Google Scholar
Glotch, T.D., Bandfield, J.L., Tornabene, L.L., Jensen, H.B., & Seelos, F.P. (2010) Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophysical Research Letters, 37, L16202, DOI:10.1029/2010GL044557.Google Scholar
Glotch, T.D., Bandfield, J.L., Wolff, M.J., Arnold, J.A., & Che, C. (2016) Constraints on the composition and particle size of chloride salt-bearing deposits on Mars. Journal of Geophysical Research, 121, 454471.Google Scholar
Goudge, T.A., Head, J.W., Mustard, J.F., & Fassett, C.I. (2012) An analysis of open-basin lake deposits on Mars: Evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus, 219, 211229.Google Scholar
Grant, J.A., Irwin, R.P. III, Grotzinger, J.P., et al. (2008) HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden crater, Mars. Geology, 36, 195198.CrossRefGoogle Scholar
Griffes, J.L., Arvidson, R.E., Poulet, F., & Gendrin, A. (2007) Geologic and spectral mapping of etched terrain deposits in northern Meridiani Planum. Journal of Geophysical Research, 112, E08S09, DOI:10.1029/2006JE002811.Google Scholar
Grindrod, P.M., West, M., Warner, N.H., & Gupta, S. (2012) Formation of an Hesperian-aged sedimentary basin containing phyllosilicates in Coprates Catena, Mars. Icarus, 218, 178195.CrossRefGoogle Scholar
Grotzinger, J.P., Crisp, J., Vasavada, A.R., et al. (2012) Mars Science Laboratory mission and science investigation. Space Science Reviews, 170, 5–6.CrossRefGoogle Scholar
Guzewich, S.D., Smith, M.D., & Wolff, M.J. (2014) The vertical distribution of martian aerosol particle size. Journal of Geophysical Research, 119, 26942708.Google Scholar
Hamilton, V.E. & Christensen, P.R. (2005) Evidence for extensive, olivine-rich bedrock on Mars. Geology, 33, 433436.Google Scholar
Hanley, J. & Horgan, B. (2016) A novel method to remotely sense martian chlorine salts. 47th Lunar Planet. Sci. Conf., Abstract #2983.Google Scholar
Hecht, M.H., Kounaves, S.P., Quinn, R.C., et al. (2009) Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science, 325, 6467.Google Scholar
Horgan, B.H. & Bell, J.F. III (2012) Widespread weathered glass on the surface of Mars. Geology, 40, 391394.Google Scholar
Horgan, B.H., Bell, J.F. III, Noe Dobrea, E.Z., et al. (2009) Distribution of hydrated minerals in the north polar region of Mars. Journal Geophysical Research, 114, E01005, DOI:10.1029/2008JE003187.Google Scholar
Houck, J., Pollack, J., Sagan, C., Schaak, D., & Decker, J. (1973) High altitude spectroscopic evidence for bound water on Mars. Icarus, 18, 470480.Google Scholar
Hunt, G.R. & Salisbury, J.W. (1971a) Visible and near infrared spectra of minerals and rocks. II. Carbonates. Modern Geology, 2, 2330.Google Scholar
Hunt, G. & Salisbury, J. (1971b) Visible and infrared spectra of minerals and rocks. IV: Sulphides and sulphates. Modern Geology, 3, 1–14.Google Scholar
Hynek, B.M., Osterloo, M.K., & Kierein-Young, K.S. (2015) Late-stage formation of martian chloride salts through ponding and evaporation. Geology, 43, 787790.Google Scholar
Jain, N. & Chauhan, P. (2015) Study of phyllosilicates and carbonates from the Capri Chasma region of Valles Marineris on Mars based on Mars Reconnaissance Orbiter-Compact Reconnaissance Imaging Spectrometer for Mars (MRO-CRISM) observations. Icarus, 250, 717.Google Scholar
Jensen, H.B. & Glotch, T.D. (2011) Investigation of the near-infrared spectral character of putative martian chloride deposits. Journal of Geophysical Research, 116, E00J03, DOI:10.1029/2011JE003887.Google Scholar
Kite, E.S., Halevy, I., Kahre, M.A., Wolff, M.J., & Manga, M. (2013) Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale crater mound. Icarus, 223, 181210.Google Scholar
Komatsu, G., Geissler, P.E., Strom, R.G., & Singer, R.B. (1993) Stratigraphy and erosional landforms of layered deposits in Valles Marineris, Mars. Journal of Geophysical Research, 98, 11,105–11,121.Google Scholar
Kreisch, C.D., O’Sullivan, J.A., Arvidson, R.E., et al. (2016) Regularization of Mars Reconnaissance Orbiter CRISM along-track oversampled hyperspectral imaging observations of Mars, Icarus, 282, 136–151.Google Scholar
Langevin, Y., Poulet, F., Bibring, J.-P., Schmitt, B., Douté, S., & Gondet, B. (2005) Summer evolution of the north polar cap of Mars as observed by OMEGA/Mars Express. Science, 307, 15811584.Google Scholar
Langevin, Y., Bibring, J.-P., Montmessin, F., et al. (2007) Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near-infrared imaging spectrometer on board Mars Express. Journal of Geophysical Research, 112, E08S12, DOI:10.1029/2006JE002841.Google Scholar
Leask, E., Ehlmann, B., Dundar, M., Murchie, S., & Seelos, F. (2018) Challenges in the search for perchlorate and other hydrated minerals with 2.1-μm absorptions on Mars. Geophysical Research Letters, 45, 12,18012,189.Google Scholar
Le Deit, L., Flahaut, J., Quantin, C., et al. (2012) Extensive surface pedogenic alteration of the martian Noachian crust suggested by plateau phyllosilicates around Valles Marineris. Journal of Geophysical Research, 117, E00J05, DOI:10.1029/2011JE003983.Google Scholar
Lichtenberg, K., Arvidson, R., Morris, R., et al. (2010) Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars. Journal of Geophysical Research, 115, E00D17, DOI:10.1029/2009JE003353.Google Scholar
Liu, Y., Arvidson, R.E., Wolff, M.J., et al. (2012) Lambert albedo retrieval and analyses over Aram Chaos from OMEGA hyperspectral imaging data. Journal of Geophysical Research, 117, E00J11, DOI:10.1029/2012JE004056.Google Scholar
Liu, Y., Glotch, T.D., Scudder, N.A., et al. (2016) End-member identification and spectral mixture analysis of CRISM hyperspectral data: A case study on southwest Melas Chasma, Mars. Journal of Geophysical Research, 121, 20042036.Google Scholar
Loizeau, D., Mangold, N., Poulet, F., et al. (2007) Phyllosilicates in the Mawrth Vallis region of Mars. Journal of Geophysical Research, 112, DOI:10.1029/2006JE002877.Google Scholar
Loizeau, D., Carter, J., Bouley, S., et al. (2012) Characterization of hydrated silicate-bearing outcrops in Tyrrhena Terra, Mars: Implications to the alteration history of Mars. Icarus, 219, 476497.Google Scholar
Malin, M.C. & Edgett, K.S. (2000) Sedimentary rocks of early Mars. Science, 290, 19271937.Google Scholar
Malin, M.C., Bell, J.F. III, Cantor, B.A., et al. (2007) Context camera investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 112, E05S04, DOI:10.1029/2006JE002808.Google Scholar
Mangold, N., Poulet, F., Mustard, J.F., et al. (2007) Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust. Journal of Geophysical Research, 112, E08S04, DOI:10.1029/2006JE002835.Google Scholar
Mangold, N., Gendrin, A., Gondet, B., et al. (2008) Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars. Icarus, 194, 519543.Google Scholar
Martín-Torres, F.J., Zorzano, M.-P., Valentín-Serrano, P., et al. (2015) Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8, 357361.Google Scholar
Marzo, G.A., Davila, A.F., Tornabene, L.L., et al. (2010) Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus, 208, 667683.Google Scholar
Massé, M., Bourgeois, O., Le Mouélic, S., Verpoorter, C., Spiga, A., & Le Deit, L. (2012) Wide distribution and glacial origin of polar gypsum on Mars. Earth and Planetary Science Letters, 317, 4455.Google Scholar
Massé, M., Beck, P., Schmitt, B., et al. (2014) Spectroscopy and detectability of liquid brines on Mars. Planetary and Space Science, 92, 136149.Google Scholar
McBeck, J., Seelos, K.D., Ackiss, S.E., & Buczkowski, D. (2014) Using CRISM and THEMIS to characterize high thermal inertia terrains in the northern Hellas region of Mars. American Geophysical Union, Fall Meeting 2014, Abstract #P41B-3900.Google Scholar
McEwen, A.S., Eliason, E.M., Bergstrom, J.W., et al. (2007) Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 112, E05S02, DOI:10.1029/2005JE002605.Google Scholar
McEwen, A.S., Ojha, L., Dundas, C.M., et al. (2011) Seasonal flows on warm martian slopes. Science, 333, 740–743.Google Scholar
McEwen, A., Dundas, C.M., Mattson, S.S., et al. (2014) Recurring slope lineae in equatorial regions of Mars. Nature Geoscience, 7, 5358.Google Scholar
McGuire, P.C., Wolff, M.J., Smith, M.D., et al. & CRISM Team (2008) MRO/CRISM retrieval of surface Lambert albedos for multispectral mapping of Mars with DISORT-based rad. transfer modeling: Phase 1 – Using historical climatology for temperatures, aerosol opacities, & atmosheric Pressures. IEEE Transactions on Geoscience and Remote Sensing, 46, 40204040.Google Scholar
McGuire, P.C., Bishop, J.L., Brown, A.J., et al. (2009) An improvement to the volcano-scan algorithm for atmospheric correction of CRISM and OMEGA spectral data. Planetary and Space Science, 57, 809815.Google Scholar
McGuire, P.C., Arvidson, R.E., Bishop, J.L., et al. (2013) Mapping minerals on Mars with CRISM: Atmospheric and photometric correction for MRDR map tiles, version 2, and comparison to OMEGA. 44th Lunar Planet. Sci. Conf., Abstract #1581.Google Scholar
McKeown, N., Bishop, J., Noe Dobrea, E., et al. (2009) Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. Journal of Geophysical Research, 114, E00D10, DOI:10.1029/2008JE003301.Google Scholar
McSween, H.Y., Labotka, T.C., & Viviano-Beck, C.E. (2015) Metamorphism in the martian crust. Meteoritics and Planetary Science, 50, 590603.Google Scholar
MEPAG NEX-SAG Report (2015) Report from the Next Orbiter Science Analysis Group (NEX-SAG), chaired by B. Campbell and R. Zurek, posted December, 2015 by the Mars Exploration Program Analysis Group (MEPAG) at http://mepag.nasa.gov/reports.cfmGoogle Scholar
Michalski, J.R. & Niles, P.B. (2010) Deep crustal carbonate rocks exposed by meteor impact on Mars. Nature Geoscience, 3, 751755.Google Scholar
Michalski, J.R. & Noe Dobrea, Eldar Z. (2007) Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars. Geology, 35, 951954.Google Scholar
Michalski, J.R., Cuadros, J., Niles, P.B., Parnell, J., Rogers, A.D., & Wright, S.P. (2013a) Groundwater activity on Mars and implications for a deep biosphere. Nature Geoscience, 6, 133138.Google Scholar
Michalski, J.R., Niles, P.B., Cuadros, J., & Baldridge, A.M. (2013b) Multiple working hypotheses for the formation of compositional stratigraphy on Mars: Insights from the Mawrth Vallis region. Icarus, 226, 816840.Google Scholar
Milliken, R., Swayze, G., Arvidson, R., et al. (2008) Opaline silica in young deposits on Mars. Geology, 36, 847850.Google Scholar
Milliken, R.E. & Bish, D.L. (2010) Sources and sinks of clay minerals on Mars. Philosophical Magazine, 90, 22932308.Google Scholar
Milliken, R.E., Grotzinger, J.P., & Thomson, B.J. (2010) Paleoclimate of Mars as captured by the stratigraphic record in Gale crater. Geophysical Research Letters, 37, L04201, DOI:10.1029/2009GL041870.CrossRefGoogle Scholar
Moroz, V. (1964) The infrared spectrum of Mars (1.1–4.1 µm). Soviet Astronomy, 8, 273281.Google Scholar
Morris, R.V., Agresti, D.G., Lauer, H.V. Jr., Newcomb, J.A., Shelfer, T.D., & Murali, A.V. (1989) Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite. Journal of Geophysical Research, 94, 27602778.Google Scholar
Morris, R.V., Golden, D.C., Bell, J.F. III, Lauer, H.V. Jr., & Adams, J.B. (1993) Pigmenting agents in martian soils: Inferences from spectral, Mössbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. Geochimica Cosmochimica Acta, 57, 45974609.Google Scholar
Morris, R.V., Klingelhöfer, G., Schröder, C., et al. (2006) Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. Journal of Geophysical Research, 111, E02S13, DOI:10.1029/2005JE002584.Google Scholar
Murchie, S., Mustard, J., Bishop, J., Head, J., Pieters, C., & Erard, S. (1993) Spatial variations in the spectral properties of bright regions on Mars. Icarus, 105, 454468.Google Scholar
Murchie, S., Kirkland, L., Erard, S., Mustard, J., & Robinson, M. (2000) Near-infrared spectral variations of martian surface materials from ISM imaging spectrometer data. Icarus, 147, 444471.Google Scholar
Murchie, S., Arvidson, R., Bedini, P., et al. (2007) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). Journal of Geophysical Research, 112, E05S03, DOI:10.1029/2006JE002682.Google Scholar
Murchie, S.L, Seelos, F.P., Hash, C.D., et al. & CRISM Team (2009a) The CRISM investigation and data set from the Mars Reconnaissance Orbiter’s Primary Science Phase. Journal of Geophysical Research, 114, E00D07, DOI:10.1029/2009JE003344.Google Scholar
Murchie, S.L., Mustard, J.F., Ehlmann, B.L., et al. (2009b) A synthesis of martian aqueous mineralogy after one Mars year of observations from the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 114, E00D06, DOI:10.1029/2009JE003342.Google Scholar
Murchie, S., Roach, L., Seelos, F., et al. (2009c) Compositional evidence for the origin of layered deposits in Candor Chasma, Mars. Journal of Geophysical Research, 114, E00D05, DOI:10.1029/2009JE003343.Google Scholar
Mustard, J.F., Murchie, S., Erard, S., & Sunshine, J. (1997) In situ compositions of martian volcanics: Implications for the mantle. Journal of Geophysical Research, 102, 25,605–25,615.Google Scholar
Mustard, J.F., Poulet, F., Gendrin, A., et al. (2005) Olivine and pyroxene diversity in the crust of Mars. Science, 307, 15941597.Google Scholar
Mustard, J.F., Poulet, F., Head, J.W., et al. (2007) Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian. Journal of Geophysical Research, 112, E08S03, DOI:10.1029/2006JE002834.Google Scholar
Mustard, J., Murchie, S., Pelkey, S.M., et al. (2008) Hydrated silicate minerals on Mars observed by the CRISM instrument on MRO. Nature, 454, 305309.Google Scholar
Mustard, J., Ehlmann, B., Murchie, S., et al. (2009) Composition, morphology, and stratigraphy of Noachian/Phyllosian Crust around the Isidis basin. Journal of Geophysical Research, 114, E00D12, DOI:10.1029/2009JE003349.Google Scholar
Nedell, S., Squyres, S., & Andersen, D. (1987) Origin and evolution of the layered deposits in the Valles Marineris, Mars. Icarus, 70, 409441.Google Scholar
Niles, P.B. & Michalski, J. (2009) Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nature Geoscience, 2, 215220.Google Scholar
Noe Dobrea, E., Bishop, J., McKeown, N., et al. (2010) Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis / west Arabia Terra area: Constraints on geological origin. Journal of Geophysical Research, 115, E00D19, DOI:10.1029/2009JE003351.Google Scholar
Noel, A., Bishop, J.L., Al-Samir, M., et al. (2015) Mineralogy, morphology and stratigraphy of the light-toned interior layered deposits at Juventae Chasma. Icarus, 251, 315331.Google Scholar
Ody, A., Poulet, F., Langevin, Y., et al. (2012) Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx. Journal of Geophysical Research, 117, E00J14, DOI:10.1029/2012JE004117.Google Scholar
Ody, A., Poulet, F., Bibring, J.-P., et al. (2013) Global investigation of olivine on Mars: Insights into crust and mantle compositions. Journal of Geophysical Research, 118, 234262.Google Scholar
Ojha, L., Wray, J.J., Murchie, S.L., McEwen, A.S., Wolff, M.J., & Karunatillake, S. (2013) Spectral constraints on the formation mechanism of recurring slope lineae. Geophysical Research Letters, 40, 56215626.Google Scholar
Ojha, L., McEwen, A., Dundas, C., et al. (2014) HiRISE observations of Recurring Slope Lineae (RSL) during southern summer on Mars. Icarus, 231, 365376.Google Scholar
Ojha, L., Wilhelm, M.B., Murchie, S.L., et al. (2015) Spectral evidence for hydrated salts in seasonal brine flows on Mars. Nature Geoscience, 8, 829832.Google Scholar
Osinski, G.R., Tornabene, L.L., Banerjee, N.R., et al. (2013) Impact-generated hydrothermal systems on Earth and Mars. Icarus, 224, 347363.Google Scholar
Osterloo, M.M., Hamilton, V.E., Bandfield, J.L., et al. (2008) Chloride-bearing materials in the southern highlands of Mars. Science, 319, 16511654.Google Scholar
Osterloo, M.M., Anderson, F.S., Hamilton, V.E., & Hynek, B.M. (2010) Geologic context of proposed chloride-bearing materials on Mars. Journal of Geophysical Research, 115, E10012, DOI:10.1029/2010JE003613.Google Scholar
Pan, L., Ehlmann, B.L., Carter, J., & Ernst, C.M. (2017) The stratigraphy and history of Mars’ northern lowlands through mineralogy of impact craters: A comprehensive survey. Journal of Geophysical Research, 122, 18241854.Google Scholar
Pelkey, S.M., Mustard, J.F., Murchie, S., et al. (2007) CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance. Journal of Geophysical Research, 112, E08S14, DOI:10.1029/2006JE002831.Google Scholar
Pimental, G., Forney, P., & Herr, K. (1974) Evidence about hydrate and solid water in the martian surface from the 1969 Mariner infrared spectrometer. Journal of Geophysical Research, 79, 16231634.Google Scholar
Poulet, F., Bibring, J.-P., Mustard, J.F., et al. (2005) Phyllosilicates on Mars and implications for early martian climate. Nature, 438, 623627Google Scholar
Poulet, F., Gomez, C., Bibring, J.-P., et al. (2007) Martian surface mineralogy from Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps. Journal of Geophysical Research, 112, E08S02, DOI:10.1029/2006JE002840.Google Scholar
Poulet, F., Mangold, N., Loizeau, D., et al. (2008) Abundance of minerals in the phyllosilicate-rich units on Mars. Astronomy and Astrophysics, 487, L41L44.Google Scholar
Poulet, F., Mangold, N., Platevoet, B., et al. (2009a) Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. 2. Petrological implications. Icarus, 201, 84101.Google Scholar
Poulet, F., Bibring, J.-P., Langevin, Y., et al. (2009b) Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data 1. Methodology, uncertainties and examples of application. Icarus, 201, 6983.Google Scholar
Poulet, F., Carter, J., Bishop, J.L., Loizeau, D., & Murchie, S.L. (2014) Mineral abundances at the final four Curiosity study sites and implications for their formation. Icarus, 231, 6576.Google Scholar
Powell, K.E., Arvidson, R.E., Zanetti, M., Guinness, E.A., & Murchie, S.L. (2017) The structural, stratigraphic, and paleoenvironmental record exposed on the rim and walls of Iazu crater, Mars. Journal of Geophysical Research, 122, 11381156.Google Scholar
Quantin, C., Flahaut, J., Clenet, H., Allemand, P., & Thomas, P. (2012) Composition and structures of the subsurface in the vicinity of Valles Marineris as revealed by central uplifts of impact craters. Icarus, 221, 436452.Google Scholar
Riu, L., Poulet, F., Carter, J., et al. (2019) The M3 project: 1– A global hyperspectral image-cube of the martian surface. Icarus, 319, 281292.Google Scholar
Roach, L., Mustard, J., Murchie, S., et al. (2009) Testing evidence of recent hydration state change in sulfates on Mars. Journal of Geophysical Research, 114, E00D02, DOI:10.1029/2008JE003245.Google Scholar
Roach, L.H., Mustard, J.F., Swayze, G., et al. (2010) Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris. Icarus, 206, 253268.Google Scholar
Rossman, G. (1976) Spectroscopic and magnetic studies of ferric iron hydroxysulfates: The series Fe(OH)SO4·nH2O and jarosite. American Mineralogist, 61, 398401.Google Scholar
Ruesch, O, Poulet, F., Vincendon, M., et al. (2012) Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx. Journal of Geophysical Research, 117, E00J13.Google Scholar
Ruff, S.W., Farmer, J.D., Calvin, W.M., et al. (2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research, 116, E00F23, DOI:10.1029/2010JE003767.Google Scholar
Salvatore, M.R., Mustard, J.F., Wyatt, M.B., & Murchie, S.L. (2010) Definitive evidence of Hesperian basalt in Acidalia and Chryse planitiae. Journal of Geophysical Research, 115, E07005, DOI:10.1029/2009JE003519.Google Scholar
Scanlon, K.E., Head, J.W., Madeleine, J.-B., Wordsworth, R.D., & Forget, F. (2013) Orographic precipitation in valley network headwaters: Constraints on the ancient martian atmosphere. Geophysical Research Letters, 40, 41824187.Google Scholar
Seelos, F.P., Viviano-Beck, C.E., Morgan, M.F., Romeo, G., Aiello, J.J., & Murchie, S.L. (2016a) CRISM hyperspectral targeted observation PDS product sets – TERs and MTRDRs. 47th Lunar Planet. Sci. Conf., Abstract #1783.Google Scholar
Seelos, K.D., Seelos, F.P., Buczkowski, D.L., & Viviano-Beck, C.E. (2016b) Mapping laterally extensive phyllosilicates in west Margaritifer Terra, Mars. 47th Lunar Planet. Sci. Conf., Abstract #7043.Google Scholar
Sherman, D., Burns, R., & Burns, V. (1982) Spectral characteristics of the iron oxides with application to the martian bright region mineralogy. Journal of Geophysical Research, 87, 10,16910,180.Google Scholar
Singer, R.B. (1982) Spectral evidence for the mineralogy of high-albedo soils and dust on Mars. Journal of Geophysical Research, 87, 10,159–10,168.Google Scholar
Singer, R.B. & McSween, H.Y. Jr. (1993) The igneous crust of Mars: Compositional evidence from remote sensing and the SNC meteorites. In: Resources of near-Earth space (Lewis, J.S., Matthews, M.S., & Guerrieri, M.L., eds.). ARI, Heidelberg, 709736.Google Scholar
Singer, R.B., McCord, T.B., Clark, R.N., Adams, J.B., & Huguenin, R.L. (1979) Mars surface composition from reflectance spectroscopy: A summary. Journal of Geophysical Research, 84, 84158426.Google Scholar
Skok, J.R., Mustard, J.F., Ehlmann, B.L., Milliken, R.E., & Murchie, S.L. (2010) Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars. Nature Geoscience, 3, 838841.Google Scholar
Skok, J.R., Mustard, J.F., Tornabene, L.L., Pan, C., Rogers, D., & Murchie, S.L. (2012) A spectroscopic analysis of martian crater central peaks: Formation of the ancient crust. Journal of Geophysical Research, 117, E00J18, DOI:10.1029/2012JE004148.Google Scholar
Smith, M.D., Wolff, M.J., Clancy, R.T., & Murchie, S.L. (2009) Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide. Journal of Geophysical Research, 114, E00D03, DOI:10.1029/2008JE003288.Google Scholar
Smith, M.D., Wolff, M.J., Clancy, R.T., Kleinböhl, A., & Murchie, S.L. (2013) Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. Journal of Geophysical Research, 118, 321334.Google Scholar
Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., et al. (2004a) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science, 306, 17091714.Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J.F., III, et al. (2004b) The Opportunity rover’s Athena science investigation at Meridiani Planum, Mars. Science, 306, 16981703.Google Scholar
Squyres, S.W., Arvidson, R.E., Ruff, S., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.Google Scholar
Sun, V.Z. & Milliken, R.E. (2015) Ancient and recent clay formation on Mars as revealed from a global survey of hydrous minerals in crater central peaks. Journal of Geophysical Research, 120, 22932332.Google Scholar
Sun, V.Z. & Milliken, R.E. (2018) Distinct geologic settings of opal-A and more crystalline hydrated silica on Mars. Geophysical Research Letters, 45, 10,22110,228.Google Scholar
Sunshine, J., Pieters, C., & Pratt, S. (1990) Deconvolution of mineral absorption bands: An improved approach. Journal of Geophysical Research, 95, 69556966.Google Scholar
Tanaka, K.L., Robbins, S.J., Fortezzo, C.M., Skinner, J.A., & Hare, T.M. (2014) The digital global geologic map of Mars: Chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history. Planetary and Space Science, 95, 1124.Google Scholar
Thollot, P., Mangold, N., Ansan, V., et al. (2012) Most Mars minerals in a nutshell: Various alteration phases formed in a single environment in Noctis Labyrinthus. Journal of Geophysical Research, 117, E00J06, DOI:10.1029/2011JE004028.Google Scholar
Thomson, B.J., Bridges, N.T., Milliken, R., et al. (2011) Constraints on the origin and evolution of the layered mound in Gale crater, Mars using Mars Reconnaissance Orbiter data. Icarus, 214, 413432.Google Scholar
Tornabene, L.L., Osinski, G.R., McEwen, A.S., et al. (2013) An impact origin for hydrated silicates on Mars: A synthesis. Journal of Geophysical Research, 118, 9941012.Google Scholar
Tosca, N.J. & Knoll, A.H. (2009) Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth and Planetary Science Letters, 286, 379386.Google Scholar
van Berk, W. & Fu, Y. (2011) Reproducing hydrogeochemical conditions triggering the formation of carbonate and phyllosilicate alteration mineral assemblages on Mars (Nili Fossae region). Journal of Geophysical Research, 116, E10006, DOI:10.1029/2011JE003886.Google Scholar
Vincendon, M., Langevin, Y., Poulet, F., Bibring, J.-P., & Gondet, B. (2007) Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near-IR using a Monte Carlo approach: Application to the OMEGA observations of high-latitude regions of Mars. Journal of Geophysical Research, 112, E08S13, DOI:10.1029/2006JE002845.Google Scholar
Vincendon, M., Pilorget, C., Gondet, B., Murchie, S., & Bibring, J.-P. (2011) New near-IR observations of mesospheric CO2 and H2O clouds on Mars. Journal of Geophysical Research, 116, E00J02, DOI:10.1029/2011JE003827.Google Scholar
Viviano, C., Murchie, S., Daubar, I., Morgan, M., Seelos, F., & Plescia, J. (2019) Composition of Amazonian volcanic materials in Tharsis and Elysium, Mars, from MRO/CRISM reflectance spectra. Icarus, 328, 274–286.Google Scholar
Viviano-Beck, C.E., Seelos, F.P., Murchie, S.L., et al. (2014) Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. Journal of Geophysical Research, 119, 14031431.Google Scholar
Viviano-Beck, C.E., Murchie, S.L., Beck, A.W., & Dohm, J.M. (2017) Compositional and structural constraints on the geologic history of eastern Tharsis Rise, Mars. Icarus, 284, 4358.Google Scholar
Wang, A., Jolliff, B.L., Liu, Y., & Connor, K. (2016) Setting constraints on the nature and origin of the two major hydrous sulfates on Mars: Monohydrated and polyhydrated sulfates. Journal of Geophysical Research, 121, 678694.Google Scholar
Weitz, C.M. & Bishop, J.L. (2016) Stratigraphy and formation of clays, sulfates, and hydrated silica within a depression in Coprates Catena, Mars. Journal of Geophysical Research, 121, 805835.Google Scholar
Weitz, C.M., Milliken, R.E., Grant, J.A., McEwen, A.S., Williams, R.M.E., & Bishop, J.L. (2008a) Light-toned strata and inverted channels adjacent to Juventae and Ganges chasmata, Mars. Geophysical Research Letters, 35, L19202, DOI:10.1029/2008GL035317.Google Scholar
Weitz, C.M. Lane, M.D., Staid, M., & Noe Dobrea, E. (2008b) Gray hematite distribution and formation in Ophir and Candor chasmata. Journal of Geophysical Research, 113, E02016, DOI:10.1029/2007JE002930.Google Scholar
Weitz, C.M., Milliken, R.E., Grant, J.A., et al. (2010) Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris. Icarus, 205, 73102.Google Scholar
Weitz, C.M., Noe Dobrea, E.Z., Lane, M.D., & Knudson, A.T. (2012) Geologic relationships between gray hematite, sulfates, and clays in Capri Chasma. Journal of Geophysical Research, 117, E00J09, DOI:10.1029/2012JE004092.Google Scholar
Weitz, C.M., Bishop, J.L., & Grant, J.A. (2013) Gypsum, opal, and fluvial channels within a trough of Noctis Labyrinthus, Mars: Implications for aqueous activity during the Late Hesperian to Amazonian. Planetary and Space Science, 87, 130145.Google Scholar
Weitz, C.M., Bishop, J.L., Baker, L.L., & Berman, D.C. (2014) Fresh exposures of hydrous Fe-bearing amorphous silicates on Mars. Geophysical Research Letters, 41, 87448751.Google Scholar
Weitz, C.M., Noe Dobrea, E., & Wray, J.J. (2015) Mixtures of clays and sulfates within deposits in western Melas Chasma, Mars. Icarus, 251, 291314.Google Scholar
Werner, S.C. (2008) The early martian evolution: Constraints from basin formation ages. Icarus, 195, 4560.Google Scholar
Werner, S.C. (2009) The global martian volcanic evolutionary history. Icarus, 201, 4468.Google Scholar
Werner, S.C. & Tanaka, K.L. (2011) Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus, 215, 603607.Google Scholar
Wilson, J.H. & Mustard, J.F. (2013) Exposures of olivine-rich rocks in the vicinity of Ares Vallis: Implications for Noachian and Hesperian volcanism. Journal of Geophysical Research, 118, 916929.Google Scholar
Wilson, S.A., Howard, A.D., Moore, J.M., & Grant, J.A. (2016) A cold-wet middle-latitude environment on Mars during the Hesperian-Amazonian transition: Evidence from northern Arabia valleys and paleolakes. Journal of Geophysical Research, 121, 16671694.Google Scholar
Wiseman, S.M., Arvidson, R.E., Andrews-Hanna, J.C., et al. (2008) Phyllosilicate and sulfate-hematite deposits within Miyamoto crater in southern Sinus Meridiani, Mars. Geophysical Research Letters, 35, L19204, DOI:10.1029/2008GL035363.Google Scholar
Wiseman, S., Arvidson, R., Morris, R., et al. (2010) Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate-bearing deposits in northern Sinus Meridiani, Mars. Journal of Geophysical Research, 115, E00D18, DOI:10.1029/2009JE003354.Google Scholar
Wiseman, S.M., Arvidson, R.E., Wolff, M.J., et al. (2016) Characterization of artifacts introduced by the empirical volcano-scan atmospheric correction commonly applied to CRISM and OMEGA near-infrared spectra. Icarus, 269, 111121.Google Scholar
Wolff, M.J., Smith, M.D., Clancy, R.T., et al. (2009) Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. Journal of Geophysical Research, 114, E00D04, DOI:10.1029/2009JE003350.Google Scholar
Wordsworth, R.D., Kerber, L., Pierrehumbert, R.T., Forget, F., & Head, J.W. (2015) Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. Journal of Geophysical Research, 120, 12011219.Google Scholar
Wray, J.J., Ehlmann, B.L., Squyres, S.W., Mustard, J.F., & Kirk, R.L. (2008) Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophysical Research Letters, 35, L12202, DOI:10.1029/2008GL034385.Google Scholar
Wray, J.J., Murchie, S.L., Squyres, S.W., Seelos, F.P., & Tornabene, L.L. (2009a) Diverse aqueous environments on ancient Mars revealed in the southern highlands. Geology, 37, 10431046.Google Scholar
Wray, J.J., Noe Dobrea, E.Z., Arvidson, R.E., et al. (2009b) Phyllosilicates and sulfates at Endeavour crater, Meridiani Planum, Mars. Geophysical Research Letters, 36, L21201, DOI:10.1029/2009GL040734.Google Scholar
Wray, J.J., Squyres, S.W., Roach, L.H., Bishop, J.L., Mustard, J.F., & Noe Dobrea, E.Z. (2010) Identification of the Ca-sulfate bassanite in Mawrth Vallis, Mars. Icarus, 209, 416421.Google Scholar
Wray, J.J., Milliken, R.E., Dundas, C.M. (2011) Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. Journal of Geophysical Research, 116, E01001, DOI:10.1029/2010JE003694.Google Scholar
Wray, J.J., Hansen, S.T., Dufek, J., et al. (2013) Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nature Geoscience, 6, 10131017.Google Scholar
Wray, J.J., Murchie, S.L., Bishop, J.L., et al. (2016) Orbital evidence for more widespread carbonate-bearing rocks on Mars. Journal of Geophysical Research, 121, 652677.Google Scholar
Wyatt, M.B. & McSween, H.Y. (2002) Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature, 417, 263266.Google Scholar
Wyatt, M.B., McSween, H.Y. Jr., Tanaka, K.L., & Head, J.W. III (2004) Global geologic context for rock types and surface alteration on Mars. Geology, 32, 645648.Google Scholar
Zolotov, M.Y. (2015) What solutions caused Noachian Weathering on Mars? American Geophysical Union, Fall Meeting 2015, Abstract #P33A-2118.Google Scholar
Zolotov, M. Yu. & Mironenko, M.V. (2016) Chemical models for martian weathering profiles: Insights into formation of layered phyllosilicate and sulfate deposits. Icarus, 275, 203220.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×