Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T21:23:47.757Z Has data issue: false hasContentIssue false

24 - Thermal Infrared Spectral Analyses of Mars from Orbit Using the Thermal Emission Spectrometer and Thermal Emission Imaging System

from Part IV - Applications to Planetary Surfaces

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

Thermal infrared data collected by the Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS) instruments have significantly impacted the understanding of martian surface mineralogy. Spatial/temporal variations in igneous lithologies; the discovery of quartz, carbonates, and chlorides; and the widespread identification of amorphous, silica-enriched materials reveal a planet that has experienced a diversity of primary and secondary geo-logic processes including igneous crustal evolution, regional sedimentation, aqueous alteration, and glacial/periglacial activity.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 484 - 498
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agee, C.B., Wilson, N.V., McCubbin, F.M., et al. (2013) Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034. Science, 339, 780785.Google Scholar
Amador, E.S. & Bandfield, J.L. (2016) Elevated bulk-silica exposures and evidence for multiple aqueous alteration episodes in Nili Fossae, Mars. Icarus, 276, 3951.CrossRefGoogle Scholar
Arvidson, R.E. (1974) Wind-blown streaks, splotches, and associated craters on Mars: Statistical analysis of Mariner 9 photographs. Icarus, 21, 1227.CrossRefGoogle Scholar
Audouard, J., Poulet, F., Vincendon, M., et al. (2014) Water in the martian regolith from OMEGA/Mars Express. Journal of Geophysical Research, 119, 19691989.Google Scholar
Baldridge, A.M., Lane, M.D., & Edwards, C.S. (2013) Searching at the right time of day: Evidence for aqueous minerals in Columbus crater with TES and THEMIS data. Journal of Geophysical Research, 118, 179189.Google Scholar
Bandfield, J.L. (2002) Global mineral distributions on Mars. Journal of Geophysical Research, 107, DOI:10.1029/2001JE001510.Google Scholar
Bandfield, J.L. (2006) Extended surface exposures of granitoid compositions in Syrtis Major, Mars. Geophysical Research Letters, 33, DOI:L0620310.1029/2005GL025559.CrossRefGoogle Scholar
Bandfield, J.L. (2008) High‐silica deposits of an aqueous origin in western Hellas Basin, Mars. Geophysical Research Letters, 35, DOI:L1220510.1029/2008GL033807.CrossRefGoogle Scholar
Bandfield, J.L. & Amador, E.S. (2016) Extensive aqueous deposits at the base of the dichotomy boundary in Nilosyrtis Mensae, Mars. Icarus, 275, 2944.Google Scholar
Bandfield, J.L., Christensen, P.R., & Smith, M.D. (2000a) Spectral data set factor analysis and end‐member recovery: Application to analysis of martian atmospheric particulates. Journal of Geophysical Research, 105, 95739587.CrossRefGoogle Scholar
Bandfield, J.L., Hamilton, V.E., & Christensen, P.R. (2000b) A global view of martian surface compositions from MGS-TES. Science, 287, 16261630.Google Scholar
Bandfield, J.L., Edgett, K.S., & Christensen, P.R. (2002) Spectroscopic study of the Moses Lake dune field, Washington: Determination of compositional distributions and source lithologies. Journal of Geophysical Research, 107, 5092, DOI:5010.1029/2000JE001469.CrossRefGoogle Scholar
Bandfield, J.L., Glotch, T.D., & Christensen, P.R. (2003) Spectroscopic identification of carbonate minerals in the martian dust. Science, 301, 10841087.Google Scholar
Bandfield, J.L., Hamilton, V.E., Christensen, P.R., & McSween, H.Y. (2004) Identification of quartzofeldspathic materials on Mars. Journal of Geophysical Research, 109, DOI:E1000910.1029/2004JE002290.CrossRefGoogle Scholar
Bandfield, J.L., Rogers, A.D., & Edwards, C.S. (2011) The role of aqueous alteration in the formation of martian soils. Icarus, 211, 157171.Google Scholar
Bandfield, J.L., Amador, E.S., & Thomas, N.H. (2013) Extensive hydrated silica materials in western Hellas Basin, Mars. Icarus, 226, 14891498.Google Scholar
Bish, D.L., Blake, D., Vaniman, D., et al. (2013) X-ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale crater. Science, 341, DOI:123893210.1126/science.1238932.Google Scholar
Bishop, J.L., Pieters, C.M., & Edwards, J.O. (1994) Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays and Clay Minerals, 42, 702716.Google Scholar
Blake, D.F., Morris, R.V., Kocurek, G., et al. (2013) Curiosity at Gale crater, Mars: Characterization and analysis of the Rocknest sand shadow. Science, 341, 1239505.Google Scholar
Boynton, W.V., Taylor, G.J., Evans, L.G., et al. (2007) Concentration of H, Si, Cl, K, Fe, and Th in the low‐and mid‐latitude regions of Mars. Journal of Geophysical Research, 112, DOI:10.1029/2007JE002887.CrossRefGoogle Scholar
Boynton, W.V., Ming, D.W., Kounaves, S.P., et al. (2009) Evidence for calcium carbonate at the Mars Phoenix landing site. Science, 325, 6164.CrossRefGoogle ScholarPubMed
Carter, J. & Poulet, F. (2013) Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains. Nature Geoscience, 6, 10081012.Google Scholar
Christensen, P.R. (1983) Eolian intracrater deposits on Mars: Physical properties and global distribution. Icarus, 56, 496518.Google Scholar
Christensen, P.R., Bandfield, L., Hamilton, V.E., et al. (1992) Thermal Emission Spectrometer experiment: Mars Observer mission. Journal of Geophysical Research, 97, 77197734.Google Scholar
Christensen, P.R., Bandfield, J.L., Smith, M.D., Hamilton, V.E., & Clark, R.N. (2000) Identification of a basaltic component on the martian surface from Thermal Emission Spectrometer data. Journal of Geophysical Research, 105, 96099621.Google Scholar
Christensen, P.R., Morris, R.V., Lane, M.D., Bandfield, J.L., & Malin, M.C. (2001a) Global mapping of martian hematite mineral deposits: Remnants of water‐driven processes on early Mars. Journal of Geophysical Research, 106, 2387323885.Google Scholar
Christensen, P.R., Bandfield, J.L., Hamilton, V.E., et al. (2001b) Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. Journal of Geophysical Research, 106, 2382323871.CrossRefGoogle Scholar
Christensen, P.R., Bandfield, J.L., Bell, J.F. III (2003) Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science, 300, 20562061.CrossRefGoogle ScholarPubMed
Christensen, P.R., Jakosky, B.M., Kieffer, H.H., et al. (2004) The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 110, 85130.CrossRefGoogle Scholar
Christensen, P.R., McSween, H.Y. Jr., Bandfield, J.L., et al. (2005) Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature, 436, 504509.Google Scholar
Edwards, C.S. & Christensen, P.R. (2011) Evidence for a widespread olivine-rich layer on Mars: Identification of a global impact ejecta deposit? 42nd Lunar Planet. Sci. Conf., Abstract #2560.Google Scholar
Edwards, C.S. & Ehlmann, B.L. (2015) Carbon sequestration on Mars. Geology, 43, 863866.Google Scholar
Edwards, C.S. & Piqueux, S. (2016) The water content of recurring slope lineae on Mars. Geophysical Research Letters, 43, 89128919.Google Scholar
Edwards, C.S., Christensen, P., & Hamilton, V. (2008) Evidence for extensive olivine‐rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars. Journal of Geophysical Research, 113, E11003, DOI:10.1029/2008je003091.Google Scholar
Edwards, C.S., Bandfield, J.L., Christensen, P.R., & Fergason, R.L. (2009) Global distribution of bedrock exposures on Mars using THEMIS high‐resolution thermal inertia. Journal of Geophysical Research, 114, E11001, DOI:10.1029/2009JE003363.Google Scholar
Edwards, C.S., Bandfield, J.L., Christensen, P.R., & Rogers, A.D. (2014) The formation of infilled craters on Mars: Evidence for widespread impact induced decompression of the early martian mantle? Icarus, 228, 149166.Google Scholar
Ehlmann, B.L. & Edwards, C.S. (2014) Mineralogy of the martian surface. Annual Review of Earth and Planetary Sciences, 42, 291315.Google Scholar
Ehlmann, B.L., Mustard, J.F., Murchie, S.L., et al. (2008) Orbital identification of carbonate-bearing rocks on Mars. Science, 322, 18281832.CrossRefGoogle ScholarPubMed
Ehlmann, B.L., Mustard, J.F., Swayze, G.A., et al. (2009) Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. Journal of Geophysical Research, 114, DOI:E00D0810.1029/2009JE003339.CrossRefGoogle Scholar
Gillespie, A.R. (1992) Enhancement of multispectral thermal infrared images: Decorrelation contrast stretching. Remote Sensing of Environment, 42, 147155.CrossRefGoogle Scholar
Gillespie, A.R., Kahle, A.B., & Walker, R.E. (1986) Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches. Remote Sensing of Environment, 20, 209235.Google Scholar
Glotch, T.D. & Bandfield, J.L. (2006) Determination and interpretation of surface and atmospheric Miniature Thermal Emission Spectrometer spectral end‐members at the Meridiani Planum landing site. Journal of Geophysical Research, 111, E12S06, DOI:10.1029/2005JE002671.Google Scholar
Glotch, T.D. & Rogers, A.D. (2013) Evidence for magma‐carbonate interaction beneath Syrtis Major, Mars. Journal of Geophysical Research, 118, 126137.Google Scholar
Glotch, T.D., Bandfield, J.L., Tornabene, L.L., Jensen, H.B., & Seelos, F.P. (2010) Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophysical Research Letters, 37, DOI:10.1029/2010GL044557.Google Scholar
Glotch, T.D., Bandfield, J.L., Wolff, M.J., Arnold, J.A., & Che, C. (2016) Constraints on the composition and particle size of chloride salt‐bearing deposits on Mars. Journal of Geophysical Research, 121, 454471.Google Scholar
Gooding, J.L. (1992) Soil mineralogy and chemistry on Mars: Possible clues from salts and clays in SNC meteorites. Icarus, 99, 2841.Google Scholar
Hamilton, V.E. & Christensen, P.R. (2005) Evidence for extensive olivine-rich bedrock in Nili Fossae, Mars. Geology, 33, 433436.Google Scholar
Hamilton, V.E. & Rogers, A.D. (2011) A new view of martian surface geochemistry. 42nd Lunar Planet. Sci. Conf., Abstract #1273.Google Scholar
Hamilton, V.E. & Ruff, S.W. (2012) Distribution and characteristics of Adirondack-class basalt as observed by Mini-TES in Gusev crater, Mars and its possible volcanic source. Icarus, 218, 917949.Google Scholar
Hamilton, V.E., Christensen, P.R., McSween, H.Y. Jr., & Bandfield, J.L. (2003) Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars. Meteoritics and Planetary Science, 38, 871885.CrossRefGoogle Scholar
Hanna, R.D., Hamilton, V.E., & Putzig, N.E. (2016) The complex relationship between olivine abundance and thermal inertia on Mars. Journal of Geophysical Research, 121, 12931320.Google Scholar
Hapke, B. (1981) Bidirectional reflectance spectroscopy: 1. Theory. Journal of Geophysical Research, 86, 30393054.CrossRefGoogle Scholar
Hoefen, T.M., Clark, R.N., Bandfield, J.L., Smith, M.D., Pearl, J.C., & Christensen, P.R. (2003) Discovery of olivine in the Nili Fossae region of Mars. Science, 302, 627630.Google Scholar
Humayun, M., Nemchin, A., Zanda, B., et al. (2013) Origin and age of the earliest martian crust from meteorite NWA 7533. Nature, 503, 513516.Google Scholar
Kahn, R. (1985) The evolution of CO2 on Mars. Icarus, 62, 175190.Google Scholar
Koeppen, W.C. & Hamilton, V.E. (2008) Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. Journal of Geophysical Research, 113, E05001, DOI:10.1029/2007JE002984.Google Scholar
Kraft, M.D., Michalski, J.R., & Sharp, T.G. (2003) Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for martian surface mineralogy. Geophysical Research Letters, 30, DOI:228810.1029/2003GL018848.CrossRefGoogle Scholar
Lane, M.D. & Christensen, P.R. (2013) Determining olivine composition of basaltic dunes in Gale crater, Mars, from orbit: Awaiting ground truth from Curiosity. Geophysical Research Letters, 40, 35173521.Google Scholar
Lane, M.D., Dyar, M.D., & Bishop, J.L. (2004) Spectroscopic evidence for hydrous iron sulfate in the martian soil. Geophysical Research Letters, 31, L1970210.1029/2004GL021231.Google Scholar
Lane, M.D., Bishop, J.L., Darby Dyar, M., King, P.L., Parente, M., & Hyde, B.C. (2008) Mineralogy of the Paso Robles soils on Mars. American Mineralogist, 93, 728739.CrossRefGoogle Scholar
Lang, N.P., Tornabene, L.L., McSween, H.Y. Jr., & Christensen, P.R. (2009) Tharsis-sourced relatively dust-free lavas and their possible relationship to martian meteorites. Journal of Volcanology and Geothermal Research, 185, 103115.CrossRefGoogle Scholar
Leshin, L.A., Mahaffy, P.R., Webster, C.R., et al. (2013) Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover. Science, 341, 1238937.Google Scholar
McDowell, M.L. & Hamilton, V.E. (2007) Geologic characteristics of relatively high thermal inertia intracrater deposits in southwestern Margaritifer Terra, Mars. Journal of Geophysical Research, 112, E12001, DOI:10.1029/2007JE002925.Google Scholar
McEwen, A.S., Dundas, C.M., Mattson, S.S., et al. (2014) Recurring slope lineae in equatorial regions of Mars. Nature Geoscience, 7, 5358.CrossRefGoogle Scholar
McFadden, L.A. & Cline, T.P. (2005) Spectral reflectance of martian meteorites: Spectral signatures as a template for locating source region on Mars. Meteoritics and Planetary Science, 40, 151172.Google Scholar
McSween, H.Y. Jr. (2002) The rocks of Mars, from far and near. Meteoritics and Planetary Science, 37, 725.CrossRefGoogle Scholar
McSween, H.Y., Grove, T.L., & Wyatt, M.B. (2003) Constraints on the composition and petrogenesis of the martian crust. Journal of Geophysical Research, 108, DOI:10.1029/2003JE002175.Google Scholar
McSween, H.Y., Arvidson, R.E., Bell, J., et al. (2004) Basaltic rocks analyzed by the Spirit rover in Gusev crater. Science, 305, 842845.Google Scholar
McSween, H.Y., Ruff, S., Morris, R., et al. (2006) Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. Journal of Geophysical Research, 111, DOI:E09S9110.1029/2006JE002698.Google Scholar
McSween, H.Y., Taylor, G.J., & Wyatt, M.B. (2009) Elemental composition of the martian crust. Science, 324, 736739.Google Scholar
Meslin, P.-Y., Gasnault, O., Forni, O., et al. (2013) Soil diversity and hydration as observed by ChemCam at Gale crater, Mars. Science, 341, 1238670.Google Scholar
Michalski, J.R. & Fergason, R.L. (2009) Composition and thermal inertia of the Mawrth Vallis region of Mars from TES and THEMIS data. Icarus, 199, 2548.Google Scholar
Michalski, J.R., Kraft, M.D., Sharp, T.G., Williams, L.B., & Christensen, P.R. (2005) Mineralogical constraints on the high-silica martian surface component observed by TES. Icarus, 174, 161177.Google Scholar
Milam, K.A., McSween, H.Y., Moersch, J., & Christensen, P.R. (2010) Distribution and variation of plagioclase compositions on Mars. Journal of Geophysical Research, 115, E09004, DOI:10.1029/2008JE003495.Google Scholar
Milliken, R.E., Swayze, G.A., Arvidson, R.E., et al. (2008) Opaline silica in young deposits on Mars. Geology, 36, 847850.Google Scholar
Mitchell, J.L. & Christensen, P.R. (2016) Recurring slope lineae and chlorides on the surface of Mars. Journal of Geophysical Research, 121, 14111428.Google Scholar
Morris, R.V., Ruff, S.W., Gellert, R., et al. (2010) Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science, 329, 1189667.Google Scholar
Murchie, S.L., Mustard, J.F., Ehlmann, B.L., et al. (2009) A synthesis of martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 114, DOI:10.1029/2009JE003342.Google Scholar
Niles, P.B., Catling, D.C., Berger, G., et al. (2013) Geochemistry of carbonates on Mars: Implications for climate history and nature of aqueous environments. Space Science Reviews, 174, 301328.Google Scholar
Osterloo, M., Hamilton, V., Bandfield, J., et al. (2008) Chloride-bearing materials in the southern highlands of Mars. Science, 319, 16511654.Google Scholar
Osterloo, M.M., Anderson, F.S., Hamilton, V.E., & Hynek, B.M. (2010) Geologic context of proposed chloride‐bearing materials on Mars. Journal of Geophysical Research, 115, E10012: DOI:10.1029/2010JE003613.Google Scholar
Palomba, E., Zinzi, A., Cloutis, E.A., D’Amore, M., Grassi, D., & Maturilli, A. (2009) Evidence for Mg-rich carbonates on Mars from a 3.9 μm absorption feature. Icarus, 203, 5865.Google Scholar
Ramsey, M.S. & Christensen, P.R. (1998) Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research, 103, 577596.Google Scholar
Rice, M.S., Cloutis, E.A., Bell, J.F. III, et al. (2013) Reflectance spectra diversity of silica-rich materials: Sensitivity to environment and implications for detections on Mars. Icarus, 223, 499533.Google Scholar
Rogers, A.D. & Christensen, P.R. (2007) Surface mineralogy of martian low‐albedo regions from MGS‐TES data: Implications for upper crustal evolution and surface alteration. Journal of Geophysical Research, 112, E01003, DOI:10.1029/2006JE002727.CrossRefGoogle Scholar
Rogers, A.D. & Aharonson, O. (2008) Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration rover data and comparison to orbital measurements. Journal of Geophysical Research, 113, E06S14, DOI:10.1029/2007JE002995.Google Scholar
Rogers, A.D. & Bandfield, J.L. (2009) Mineralogical characterization of Mars Science Laboratory candidate landing sites from THEMIS and TES data. Icarus, 203, 437453.Google Scholar
Rogers, A.D. & Fergason, R.L. (2011) Regional‐scale stratigraphy of surface units in Tyrrhena and Iapygia Terrae, Mars: Insights into highland crustal evolution and alteration history. Journal of Geophysical Research, 116, E08005, DOI:10.1029/2010JE003772.Google Scholar
Rogers, A.D. & Hamilton, V.E. (2015) Compositional provinces of Mars from statistical analyses of TES, GRS, OMEGA and CRISM data. Journal of Geophysical Research, 120, 6291.Google Scholar
Rogers, A.D. & Nazarian, A.H. (2013) Evidence for Noachian flood volcanism in Noachis Terra, Mars, and the possible role of Hellas impact basin tectonics. Journal of Geophysical Research, 118, 10941113.Google Scholar
Rogers, A.D. & Nekvasil, H. (2015) Feldspathic rocks on Mars: Compositional constraints from infrared spectroscopy and possible formation mechanisms. Geophysical Research Letters, 42, 26192626.Google Scholar
Rogers, A.D., Christensen, P.R., & Bandfield, J.L. (2005) Compositional heterogeneity of the ancient martian crust: Analysis of Ares Vallis bedrock with THEMIS and TES data. Journal of Geophysical Research, 110, E05010, DOI:10.1029/2005JE002399.CrossRefGoogle Scholar
Rogers, A.D., Aharonson, O., & Bandfield, J.L. (2009) Geologic context of bedrock exposures in Mare Serpentis, Mars: Implications for crust and regolith evolution in the cratered highlands. Icarus, 200, 446462.Google Scholar
Ruff, S.W. (2004) Spectral evidence for zeolite in the dust on Mars. Icarus, 168, 131143.Google Scholar
Ruff, S.W. & Christensen, P.R. (2002) Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. Journal of Geophysical Research, 107, 5127, DOI:5110.1029/2001JE001580.CrossRefGoogle Scholar
Ruff, S.W. & Christensen, P.R. (2007) Basaltic andesite, altered basalt, and a TES‐based search for smectite clay minerals on Mars. Geophysical Research Letters, 34, L10204, DOI:10.1029/2007GL029602.Google Scholar
Ruff, S.W. & Hamilton, V.E. (2017) Wishstone to Watchtower: Amorphous alteration of plagioclase-rich rocks in Gusev crater, Mars. American Mineralogist, 102, 235251.Google Scholar
Ruff, S.W., Christensen, P.R., Clark, R.N., et al. (2001) Mars’ “White Rock” feature lacks evidence of an aqueous origin: Results from Mars Global Surveyor. Journal of Geophysical Research, 106, 23,921–23,927.Google Scholar
Ruff, S.W., Christensen, P.R., Blaney, D., et al. (2006) The rocks of Gusev crater as viewed by the Mini‐TES instrument. Journal of Geophysical Research, 111, DOI:E12S1810.1029/2006JE002747.Google Scholar
Ruff, S.W., Farmer, J.D., Calvin, W.M., et al. (2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research, 116, DOI:E00F2310.1029/2010JE003767.Google Scholar
Salisbury, J.W. (1991) Infrared (2.1–25 μm) spectra of minerals. The Johns Hopkins University Press, Baltimore, MD.Google Scholar
Salisbury, J.W., D’Aria, D.M., & Jarosewich, E. (1991) Midinfrared (2.5–13.5 μm) reflectance spectra of powdered stony meteorites. Icarus, 92, 280297.Google Scholar
Smith, M.D., Bandfield, J.L., & Christensen, P.R. (2000) Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) spectra. Journal of Geophysical Research, 105, 95899607.Google Scholar
Smith, M.R. & Bandfield, J.L. (2012) Geology of quartz and hydrated silica‐bearing deposits near Antoniadi crater, Mars. Journal of Geophysical Research, 117, DOI:E0600710.1029/2011JE004038.Google Scholar
Smith, M.R., Bandfield, J.L., Cloutis, E.A., & Rice, M.S. (2013) Hydrated silica on Mars: Combined analysis with near-infrared and thermal-infrared spectroscopy. Icarus, 223, 633648.Google Scholar
Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., et al. (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science, 306, 17091714.CrossRefGoogle ScholarPubMed
Squyres, S.W., Arvidson, R.E., Ruff, S., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.Google Scholar
Tosca, N.J. & Knoll, A.H. (2009) Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth and Planetary Science Letters, 286, 379386.Google Scholar
Tosca, N.J. & McLennan, S.M. (2006) Chemical divides and evaporite assemblages on Mars. Earth and Planetary Science Letters, 241, 2131.Google Scholar
Vincent, R.K. & Hunt, G.R. (1968) Infrared reflectance from mat surfaces. Applied Optics, 7, 5359.Google Scholar
Wray, J.J., Hansen, S.T., Dufek, J., et al. (2013) Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nature Geoscience, 6, 10131017.Google Scholar
Wray, J.J., Murchie, S.L., Bishop, J.L., et al. (2016) Orbital evidence for more widespread carbonate‐bearing rocks on Mars. Journal of Geophysical Research, 121, 652677.Google Scholar
Yen, A.S., Murray, B.C., & Rossman, G.R. (1998) Water content of the martian soil: Laboratory simulations of reflectance spectra. Journal of Geophysical Research, 103, 11,125–11,133.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×