Published online by Cambridge University Press: 05 January 2015
Abstract
Using the possibility of computationally determining points on a finite cover of a unirational variety over a finite field, we determine all possibilities for direct Gorenstein linkages between general sets of points in ℙ3 over an algebraically closed field of characteristic 0. As a consequence, we show that a general set of d points is glicci (that is, in the Gorenstein linkage class of a complete intersection) if d ≤ 33 or d = 37, 38. Computer algebra plays an essential role in the proof. The case of 20 points had been an outstanding problem in the area for a dozen years [8].
For Rob Lazarsfeld on the occasion of his 60th birthday
1 Introduction
The theory of liaison (linkage) is a powerful tool in the theory of curves in ℙ3 with applications, for example, to the question of the unirationality of the moduli spaces of curves (e.g., [3, 26, 29]). One says that two curves C, D ⊂ ℙ3 (say, reduced and without common components) are directly linked if their union is a complete intersection, and evenly linked if there is a chain of curves C = C0, C1, …, C2m = D such that Ci is directly linked to Ci+1 for all i. The first step in the theory is the result of Gaeta that any two arithmetically Cohen-Macaulay curves are evenly linked, and in particular are in the linkage class of a complete intersection, usually written licci. Much later Rao [23] showed that even linkage classes are in bijection with graded modules of finite length up to shift, leading to an avalanche of results (reported, e.g., in [19, 20]). However, in codimension > 2 linkage yields an equivalence relation that seems to be very fine, and thus not so useful; for example, the scheme consisting of the four coordinate points in ℙ3 is not licci.
A fundamental paper of Peskine and Szpiro [22] laid the modern foundation for the theory of linkage.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.