Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-fc4h8 Total loading time: 0 Render date: 2025-12-28T09:19:59.957Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 December 2025

Andrey Ganopolski
Affiliation:
Potsdam Institute for Climate Impact Research
Get access

Information

Type
Chapter
Information
Quaternary Climate Dynamics
Integrating Paleoclimate Data, Modeling and Theory
, pp. 233 - 249
Publisher: Cambridge University Press
Print publication year: 2026

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abe-Ouchi, A., Saito, F., Kageyama, M., Braconnot, P., Harrison, S. P., Lambeck, K., Otto-Bliesner, B. L., Peltier, W. R., Tarasov, L., Peterschmitt, J. Y. and Takahashi, K. (2015) Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geoscientific Model Development, 8, 36213637.CrossRefGoogle Scholar
Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K. and Blatter, H. (2013) Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature, 500, 190194.CrossRefGoogle ScholarPubMed
Abe-Ouchi, A., Segawa, T. and Saito, F. (2007) Climatic conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle. Climate of the Past, 3, 423438.CrossRefGoogle Scholar
Abell, J. T., Winckler, G., Anderson, R. F. and Herbert, T. D. (2021) Poleward and weakened westerlies during Pliocene warmth. Nature, 589, 7075.CrossRefGoogle ScholarPubMed
Adhémar, J. A. (1842) Revolutions de la Mer: Deluges Periodiques, Carilian-Goeury et V. Dalmont, Paris.Google Scholar
Albani, S., Balkanski, Y., Mahowald, N., Winckler, G., Maggi, V. and Delmonte, B. (2018) Aerosol-climate interactions during the last glacial maximum. Current Climate Change Reports, 4, 99114.CrossRefGoogle Scholar
Albani, S., Mahowald, N. M., Murphy, L. N., Raiswell, R., Moore, J. K., Anderson, R. F., McGee, D., Bradtmiller, L. I., Delmonte, B., Hesse, P. P. and Mayewski, P. A. (2016) Paleodust variability since the last glacial maximum and implications for iron inputs to the ocean. Geophysical Research Letters, 43, 39443954.CrossRefGoogle Scholar
Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C. and Clark, P. U. (1997) Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology, 25, 483486.2.3.CO;2>CrossRefGoogle Scholar
Álvarez-Solas, J., Montoya, M., Ritz, C., Ramstein, G., Charbit, S., Dumas, C., Nisancioglu, K., Dokken, T. and Ganopolski, A. (2011) Heinrich event 1: An example of dynamical ice-sheet reaction to oceanic changes. Climate of the Past, 7, 12971306.CrossRefGoogle Scholar
Archer, D. and Brovkin, V. (2008) The millennial atmospheric lifetime of anthropogenic CO2. Climatic Change, 90, 283297.CrossRefGoogle Scholar
Archer, D. and Ganopolski, A. (2005) A movable trigger: Fossil fuel CO2 and the onset of the next glaciation. Geochemistry, Geophysics, Geosystems, 6, Q05003.CrossRefGoogle Scholar
Archer, D., Kheshgi, H. and Maier-Reimer, E. (1997) Multiple timescales for neutralization of fossil fuel CO2. Geophysical Research Letters, 24, 405408.CrossRefGoogle Scholar
Archer, D., Winguth, A., Lea, D. and Mahowald, N. (2000) What caused the glacial/interglacial atmospheric pCO2 cycles? Review of Geophysics, 38, 159189.CrossRefGoogle Scholar
Arrhenius, S. (1896). XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41, 237276.CrossRefGoogle Scholar
Bahadory, T., Tarasov, L. and Andres, H. (2021) Last glacial inception trajectories for the Northern Hemisphere from coupled ice and climate modelling. Climate of the Past, 17, 397418.CrossRefGoogle Scholar
Bahcall, J. N., Pinsonneault, M. H. and Basu, S. (2001) Solar models: Current epoch and time dependences, neutrinos, and helioseismological properties. The Astrophysical Journal, 555, 9901012.CrossRefGoogle Scholar
Barbante, C., Barnola, J. M., Becagli, S., Beer, J., Bigler, M., Boutron, C., Blunier, T., Castellano, E., Cattani, O., Chappellaz, J. and Dahl-Jensen, D. (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195198.Google Scholar
Bard, E., Rostek, F., Turon, J. L. and Gendreau, S. (2000) Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science, 289, 13211324.CrossRefGoogle ScholarPubMed
Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G. and Thornalley, D. (2015) Icebergs not the trigger for North Atlantic cold events. Nature, 520, 333336.CrossRefGoogle Scholar
Barker, S., Knorr, G., Conn, S., Lordsmith, S., Newman, D. and Thornalley, D. (2019) Early interglacial legacy of deglacial climate instability. Paleoceanography and Paleoclimatology, 34, 14551475.CrossRefGoogle Scholar
Bassis, J. N., Petersen, S. V. and Mac Cathles, L. (2017) Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature, 542, 332334.CrossRefGoogle ScholarPubMed
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S., Gibbard, P. L., Stokes, C. R., Murton, J. B. and Manica, A. (2019) The configuration of Northern Hemisphere ice sheets through the Quaternary. Nature Communications, 10, 3713.CrossRefGoogle ScholarPubMed
Bauska, T. K., Marcott, S. A. and Brook, E. J. (2021) Abrupt changes in the global carbon cycle during the last glacial period. Nature Geoscience, 14, 9196.CrossRefGoogle Scholar
Benzi, R., Parisi, G., Sutera, A. and Vulpiani, A. (1982) Stochastic resonance in climatic change. Tellus, 34, 1016.CrossRefGoogle Scholar
Berger, A. (1978) Long-term variations of daily insolation and quaternary climatic changes. Journal of the Atmospheric Sciences, 35, 23622367.2.0.CO;2>CrossRefGoogle Scholar
Berger, A. (1988) Milankovitch theory and climate. Review of Geophysics, 26, 624657.CrossRefGoogle Scholar
Berger, A., Li, X. S. and Loutre, M.-F. (1999) Modelling Northern Hemisphere ice volume over the last 3 Ma. Quaternary Science Reviews, 18, 111.CrossRefGoogle Scholar
Berends, C. J., Köhler, P., Lourens, L. J. and van de Wal, R. S. W. (2021) On the cause of the mid-Pleistocene transition. Reviews of Geophysics, 59, e2020RG000727.CrossRefGoogle Scholar
Berner, R. A. (2006) GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70, 56535664.CrossRefGoogle Scholar
Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T. F., Raynaud, D., Jouzel, J., Clausen, H. B., Hammer, C. U. and Johnsen, S. (1998) Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature, 394, 739743.CrossRefGoogle Scholar
Bouttes, N., Paillard, D. and Roche, D. M. (2010) Impact of brine-induced stratification on the glacial carbon cycle. Climate of the Past, 6, 575589.CrossRefGoogle Scholar
Bradley, R. S. (2015) Paleoclimatology: Reconstructing Climates of the Quaternary, 3rd ed. Academic Press, New York.Google Scholar
Brierley, C. M. and Fedorov, A. V. (2016) Comparing the impacts of Miocene–Pliocene changes in inter-ocean gateways on climate: Central American Seaway, Bering Strait, and Indonesia. Earth and Planetary Science Letters, 444, 116130.CrossRefGoogle Scholar
Broccoli, A. J. and Manabe, S., 1992. The effects of orography on midlatitude Northern Hemisphere dry climates. Journal of Climate, 5, 11811201.2.0.CO;2>CrossRefGoogle Scholar
Broecker, W. S. (1998) Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography, 13, 119121.CrossRefGoogle Scholar
Broecker, W. S., Bond, G., Klas, M., Bonani, M. and Wolfli, W. (1990) A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography, 5, 469477.CrossRefGoogle Scholar
Broecker, W. S., Bond, G., Klas, M., Clark, E. and McManus, J. (1992) Origin of the northern Atlantic’s Heinrich events. Climate Dynamics, 6, 265273.CrossRefGoogle Scholar
Broecker, W. S., Peteet, D. M. and Rind, D. (1985) Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315, 2126.CrossRefGoogle Scholar
Brovkin, V., Ganopolski, A., Archer, D. and Munhoven, G. (2012) Glacial CO2 cycle as a succession of key physical and biogeochemical processes. Climate of the Past, 8, 251264.CrossRefGoogle Scholar
Brovkin, V., Ganopolski, A., Archer, D. and Rahmstorf, S. (2007) Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography, 22, PA4202.CrossRefGoogle Scholar
Brückner, E., Köppen, W. and Wegener, A. (1925) Über die Klimate der geologischen Vorzeit. Zeitschrift für Gletscherkunde, 14, 149169.Google Scholar
Bryan, F. (1986) High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301304.CrossRefGoogle Scholar
Budyko, M. I. (1969) The effect of solar radiation variations on the climate of the earth. Tellus, 21, 611619.CrossRefGoogle Scholar
Buizert, C., Sigl, M., Severi, M., Markle, B. R., Wettstein, J. J., McConnell, J. R., Pedro, J. B., Sodemann, H., Goto-Azuma, K., Kawamura, K. and Fujita, S. (2018) Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature, 563, 681685.CrossRefGoogle ScholarPubMed
Burls, N. J., Fedorov, A. V., Sigman, D. M., Jaccard, S. L., Tiedemann, R. and Haug, G. H. (2017) Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Science Advances, 3, e1700156.CrossRefGoogle ScholarPubMed
Calder, N. (1974) Arithmetic of ice ages. Nature, 252, 216218.CrossRefGoogle Scholar
Calov, R. and Ganopolski, A. (2005) Multistability and hysteresis in the climate-cryosphere system under orbital forcing. Geophysical Research Letters, 32, L21717.CrossRefGoogle Scholar
Calov, R., Ganopolski, A., Petoukhov, V., Claussen, M. and Greve, R. (2002) Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model. Geophysical Research Letters, 29, 2216.CrossRefGoogle Scholar
Calov, R., Ganopolski, A., Petoukhov, V., Claussen, M., Brovkin, V. and Kubatzki, C. (2005) Transient simulation of the last glacial inception with an atmosphere-ocean-vegetation-ice sheet model. Part I: Glacial inception as a bifurcation in the climate system. Climate Dynamics, 24, 545561.CrossRefGoogle Scholar
Capron, E., Rasmussen, S. O., Popp, T. J., Erhardt, T., Fischer, H., Landais, A., Pedro, J. B., Vettoretti, G., Grinsted, A., Gkinis, V. and Vaughn, B. (2021) The anatomy of past abrupt warmings recorded in Greenland ice. Nature Communications, 12, 2106.CrossRefGoogle ScholarPubMed
Catling, D. C. and Zahnle, K. J. (2020) The Archean atmosphere. Science Advances, 6, eaax1420.CrossRefGoogle ScholarPubMed
Charbit, S., Ritz, C., Philippon, G., Peyaud, V. and Kageyama, M. (2007) Numerical reconstructions of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle. Climate of the Past, 3, 1537.CrossRefGoogle Scholar
Charnay, B., Wolf, E. T., Marty, B. and Forget, F. (2020) Is the faint young Sun problem for Earth solved? Space Science Reviews, 216, 129.CrossRefGoogle Scholar
Charney, J. G. (1975) Dynamics of deserts and drought in the Sahel. Quarterly Journal of the Royal Meteorological Society, 101, 193202.CrossRefGoogle Scholar
Charney, J. G., Arakawa, A., Baker, D. J., Bolin, B., Dickinson, R. E., Goody, R. M., Leith, C. E., Stommel, H. M. and Wunsch, C. I. (1979) Carbon Dioxide and Climate: A Scientific Assessment. National Academy of Sciences, Washington, DC.Google Scholar
Clark, P. U. and Pollard, D. (1998) Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography, 13, 19.CrossRefGoogle Scholar
Claussen, M. and Gayler, V. (1997) The greening of Sahara during the mid-Holocene: Results of an interactive atmosphere-biome model. Global Ecology and Biogeography, 6, 369377.CrossRefGoogle Scholar
Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M. F., Weber, S., Alcamo, J., Alexeev, V., Berger, A. and Calov, R. (2002) Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models. Climate Dynamics, 18, 579586.Google Scholar
CLIMAP Project Members (1976) The surface of the ice-age Earth. Science, 191, 11311137.CrossRefGoogle Scholar
Crowley, T. J. (1992) North Atlantic deep water cools the Southern Hemisphere. Paleoceanography, 7, 489497.CrossRefGoogle Scholar
Crowley, T. J. (2000) Causes of climate change over the past 1000 years. Science, 289, 270277.CrossRefGoogle ScholarPubMed
Crucifix, M. (2012) Oscillators and relaxation phenomena in Pleistocene climate theory. Philosophical Transactions of the Royal Society A, 370, 11401165.CrossRefGoogle ScholarPubMed
Crutzen, P. J. (2002) Geology of mankind. Nature, 415, 23.CrossRefGoogle ScholarPubMed
Dallmeyer, A., Claussen, M., Lorenz, S. J. and Shanahan, T. (2020) The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years. Climate of the Past, 16, 117140.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J. and Bond, G. (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218220.CrossRefGoogle Scholar
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, D. P. and Bechtold, P. (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553597.CrossRefGoogle Scholar
DeConto, R. M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K., Zhang, T., Pollard, D. and Beerling, D. J. (2012) Past extreme warming events linked to massive carbon release from thawing permafrost. Nature, 484, 8791.CrossRefGoogle ScholarPubMed
DeConto, R. M. and Pollard, D. (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421, 245249.CrossRefGoogle ScholarPubMed
De La Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P. and Foster, G. L. (2020) Atmospheric CO2 during the mid-Piacenzian warm period and the M2 glaciation. Scientific Reports, 10, 18.CrossRefGoogle ScholarPubMed
Delmas, R. J. (1993) A natural artefact in Greenland ice-core CO2 measurements. Tellus B, 45, 391396.CrossRefGoogle Scholar
Delmas, R. J., Ascencio, J. M. and Legrand, M. (1980) Polar ice evidence that atmospheric CO2 20,000 yr BP was 50% of present. Nature, 284, 155157.CrossRefGoogle Scholar
De Noblet, N. I., Colin Prentice, I., Joussaume, S., Texier, D., Botta, A. and Haxeltine, A. (1996) Possible role of atmosphere-biosphere interactions in triggering the last glaciation. Geophysical Research Letters, 23, 31913194.CrossRefGoogle Scholar
Deschamps, P., Durand, N., Bard, E., Hamelin, B., Camoin, G., Thomas, A. L., Henderson, G. M., Okuno, J. I. and Yokoyama, Y. (2012) Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago. Nature, 483, 559564.CrossRefGoogle ScholarPubMed
De Schepper, S., Groeneveld, J., Naafs, B. D. A., Van Renterghem, C., Hennissen, J., Head, M. J., Louwye, S. and Fabian, K. (2013) Northern hemisphere glaciation during the globally warm early late Pliocene. PloS One, 8, e81508.CrossRefGoogle ScholarPubMed
Dong, B. and Valdes, P. J. (1995) Sensitivity studies of Northern Hemisphere glaciation using an atmospheric general circulation model. Journal of Climate, 8, 24712496.2.0.CO;2>CrossRefGoogle Scholar
Dowsett, H., Dolan, A., Rowley, D., Moucha, R., Forte, A. M., Mitrovica, J. X., Pound, M., Salzmann, U., Robinson, M., Chandler, M., Foley, K. and Haywood, A. (2016) The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Climate of the Past, 12, 15191538.CrossRefGoogle Scholar
Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D. and Kallel, N. (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography, 3, 343360.CrossRefGoogle Scholar
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D. and Piotrowski, A. M. (2012) Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science, 337, 704709.CrossRefGoogle ScholarPubMed
Elliot, M., Labeyrie, L. and Duplessy, J. C. (2002) Changes in North Atlantic deep-water formation associated with the Dansgaard–Oeschger temperature oscillations (60–10 ka). Quaternary Science Reviews, 21, 11531165.CrossRefGoogle Scholar
Emiliani, C. (1966) Paleotemperature analysis of Caribbean cores P6304-8 and P6304-9 and a generalized temperature curve for the past 425,000 years. The Journal of Geology, 74, 109124.CrossRefGoogle Scholar
EPICA community members (2004) Eight glacial cycles from an Antarctic ice core. Nature, 429, 623628.CrossRefGoogle Scholar
EPICA community members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195198.CrossRefGoogle Scholar
Galbraith, E. and de Lavergne, C. (2019) Response of a comprehensive climate model to a broad range of external forcings: Relevance for deep ocean ventilation and the development of late Cenozoic ice ages. Climate Dynamics, 52, 653679.CrossRefGoogle Scholar
Galbraith, E. D. and Skinner, L. C. (2020) The biological pump during the last glacial maximum. Annual Review of Marine Science, 12, 559586.CrossRefGoogle ScholarPubMed
Ganopolski, A. (2024) Toward generalized Milankovitch theory (GMT). Climate of the Past, 20, 151185.CrossRefGoogle Scholar
Ganopolski, A. and Brovkin, V. (2017) Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity. Climate of the Past, 13, 16951716.CrossRefGoogle Scholar
Ganopolski, A. and Calov, R. (2011) The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Climate of the Past, 7, 14151425.CrossRefGoogle Scholar
Ganopolski, A. and Rahmstorf, S. (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409, 153158.CrossRefGoogle Scholar
Ganopolski, A. and Roche, D. M. (2009) On the nature of lead–lag relationships during glacial–interglacial climate transitions. Quaternary Science Reviews, 28, 33613378.CrossRefGoogle Scholar
Ganopolski, A., Winkelmann, R. and Schellnhuber, H. J. (2016) Critical insolation–CO2 relation for diagnosing past and future glacial inception. Nature, 529, 200203.CrossRefGoogle ScholarPubMed
Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. and Winkelmann, R. (2020) The hysteresis of the Antarctic ice sheet. Nature, 585, 538544.CrossRefGoogle ScholarPubMed
Gregory, J. M., George, S. E. and Smith, R. S. (2020) Large and irreversible future decline of the Greenland ice sheet. The Cryosphere, 14, 42994322.CrossRefGoogle Scholar
Gasson, E., Lunt, D. J., DeConto, R., Goldner, A., Heinemann, M., Huber, M., LeGrande, A. N., Pollard, D., Sagoo, N., Siddall, M., Winguth, A. and Valdes, P. J. (2014) Uncertainties in the modelled CO2 threshold for Antarctic glaciation. Climate of the Past, 10, 451466.CrossRefGoogle Scholar
Gates, W. L. (1976) The numerical simulation of ice-age climate with a global general circulation model. Journal of Atmospheric Sciences, 33, 18441873.2.0.CO;2>CrossRefGoogle Scholar
Gottschalk, J., Battaglia, G., Fischer, H., Frölicher, T. L., Jaccard, S. L., Jeltsch-Thömmes, A., Joos, F., Köhler, P., Meissner, K. J., Menviel, L. and Nehrbass-Ahles, C. (2019) Mechanisms of millennial-scale atmospheric CO2 change in numerical model simulations. Quaternary Science Reviews, 220, 3074.CrossRefGoogle Scholar
Gough, D. (1981) Solar interior structure and luminosity variations. Solar Physics, 74, 2134.CrossRefGoogle Scholar
Grant, K. M., Rohling, E. J., Ramsey, C. B., Cheng, H., Edwards, R. L., Florindo, F., Heslop, D., Marra, F., Roberts, A. P., Tamisiea, M. E. and Williams, F. (2014) Sea-level variability over five glacial cycles. Nature Communications, 5, 5076.CrossRefGoogle ScholarPubMed
Gregory, J. M., Browne, O. J. H., Payne, A. J., Ridley, J. K. and Rutt, I. C. (2012) Modelling large-scale ice-sheet–climate interactions following glacial inception. Climate of the Past, 8, 15651580.CrossRefGoogle Scholar
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., Lowe, J. A., Johns, T. C. and Williams, K. D. (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophysical Research Letters, 31, L03205.CrossRefGoogle Scholar
Gutjahr, M., Ridgwell, A., Sexton, P. F., Anagnostou, E., Pearson, P. N., Pälike, H., Norris, R. D., Thomas, E. and Foster, G. L. (2017) Very large release of mostly volcanic carbon during the Palaeocene–Eocene thermal maximum. Nature, 548, 573577.CrossRefGoogle ScholarPubMed
Hansen, J., Sato, M. K. I., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov, I., Bauer, M., Bauer, S. and Bell, N. (2005) Efficacy of climate forcings. Journal of Geophysical Research: Atmospheres, 110.CrossRefGoogle Scholar
Haug, G. H., Gunther, D., Peterson, L. C., Sigman, D. M., Hughen, K. A. and Aeschlimann, B. (2003) Climate and the collapse of Maya civilization. Science, 299, 17311735.CrossRefGoogle ScholarPubMed
Haug, G. H., Sigman, D. M., Tiedemann, R., Pedersen, T. F. and Sarnthein, M. (1999) Onset of permanent stratification in the subarctic Pacific Ocean. Nature, 40, 779782.CrossRefGoogle Scholar
Hays, J. D., Imbrie, J. and Shackleton, N. J. (1976) Variations in the Earth’s Orbit: Pacemaker of the ice ages: For 500,000 years, major climatic changes have followed variations in obliquity and precession. Science, 194, 11211132.CrossRefGoogle Scholar
Haywood, A. M., Tindall, J. C., Dowsett, H. J., Dolan, A. M., Foley, K. M., Hunter, S. J., Hill, D. J., Chan, W.-L., Abe-Ouchi, A., Stepanek, C., Lohmann, G., Chandan, D., Peltier, W. R., Tan, N., Contoux, C., Ramstein, G., Li, X., Zhang, Z., Guo, C., Nisancioglu, K. H., Zhang, Q., Li, Q., Kamae, Y., Chandler, M. A., Sohl, L. E., Otto-Bliesner, B. L., Feng, R., Brady, E. C., von der Heydt, A. S., Baatsen, M. L. J. and Lunt, D. J. (2020) The Pliocene model intercomparison project phase 2: Large-scale climate features and climate sensitivity. Climate of the Past, 16, 20952123.CrossRefGoogle Scholar
Heinemann, M., Timmermann, A., Timm, O. E., Saito, F., and Abe-Ouchi, A. (2014) Deglacial ice sheet meltdown: orbital pacemaking and CO2 effects. Climate of the Past, 10, 15671579.CrossRefGoogle Scholar
Heinrich, H. (1988) Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29, 142152.CrossRefGoogle Scholar
Hemming, S. R. (2004) Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics, 42, RG1005.CrossRefGoogle Scholar
Herbert, T. D., Peterson, L. C., Lawrence, K. T. and Liu, Z. (2010) Tropical Ocean temperatures over the past 3.5 million years. Science, 328, 15301534.CrossRefGoogle ScholarPubMed
Hinck, S., Gowan, E. J., Zhang, X. and Lohmann, G. (2022) PISMLakeCC: Implementing an adaptive proglacial lake boundary in an ice sheet model. The Cryosphere, 16, 941965.CrossRefGoogle Scholar
Hodell, D. A., Crowhurst, S. J., Lourens, L., Margari, V., Nicolson, J., Rolfe, J. E., Skinner, L. C., Thomas, N. C., Tzedakis, P. C., Mleneck-Vautravers, M. J. and Wolff, E. W. (2023) A 1.5-million-year record of orbital and millennial climate variability in the North Atlantic. Climate of the Past, 19, 607636.CrossRefGoogle Scholar
Hodell, D. A., Kanfoush, S. L., Venz, K. A., Charles, C. D. and Sierro, F. J. (2003) The mid-Brunhes transition in ODP sites 1089 and 1090 (subantarctic South Atlantic). Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, 137, 113129.Google Scholar
Hoffert, M. I. and Covey, C. (1992) Deriving global climate sensitivity from paleoclimate reconstructions. Nature, 360, 573576.CrossRefGoogle Scholar
Hoffman, P. F., Kaufman, A. J., Halverson, G. P. and Schrag, D. P. (1998) A Neoproterozoic snowball earth. Science, 281, 13421346.CrossRefGoogle ScholarPubMed
Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., Benn, D. I., Brocks, J. J., Cohen, P. A., Cox, G. M., Creveling, J. R., Donnadieu, Y., Erwin, D. H. and Fairchild, I. J. (2017) Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, 3, e1600983.CrossRefGoogle ScholarPubMed
Höning, D., Willeit, M., Calov, R., Klemann, V., Bagge, M. and Ganopolski, A. (2023) Multistability and transient response of the Greenland ice sheet to anthropogenic CO2 emissions. Geophysical Research Letters, 50, e2022GL101827.CrossRefGoogle Scholar
Hopcroft, P. O. and Valdes, P. J. (2021) Paleoclimate-conditioning reveals a North Africa land–atmosphere tipping point. Proceedings of the National Academy of Sciences, 118, e2108783118.CrossRefGoogle ScholarPubMed
Hopcroft, P. O., Valdes, P. J., Woodward, S. and Joshi, M. M. (2015) Last glacial maximum radiative forcing from mineral dust aerosols in an Earth system model. Journal of Geophysical Research: Atmosphere, 120, 186205.Google Scholar
Hu, A., Meehl, G. A., Han, W., Timmermann, A., Otto-Bliesner, B., Liu, Z., Washington, W. M., Large, W., Abe-Ouchi, A., Kimoto, M. and Lambeck, K. (2012) Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proceedings of the National Academy of Sciences, 109, 64176422.CrossRefGoogle ScholarPubMed
Hutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., de Boer, A. M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A. T., Kunzmann, L., Ladant, J.-B., Lear, C. H., Moraweck, K., Pearson, P. N., Piga, E., Pound, M. J., Salzmann, U., Scher, H. D., Sijp, W. P., Śliwińska, K. K., Wilson, P. A. and Zhang, Z. (2021) The Eocene–Oligocene transition: A review of marine and terrestrial proxy data, models and model–data comparisons. Climate of the Past, 17, 269315.CrossRefGoogle Scholar
Huybers, P. and Wunsch, C. (2005) Obliquity pacing of the late Pleistocene glacial terminations. Nature, 434, 491494.CrossRefGoogle ScholarPubMed
Hyde, W. T., Crowley, T. J., Baum, S. K. and Peltier, W. R. (2000) Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature, 405, 425429.CrossRefGoogle ScholarPubMed
Imbrie, J., Berger, A., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla, G., Kutzbach, J., Martinson, D. G., McIntyre, A., Mix, A. C., Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L., Raymo, M. E., Shackleton, N. J. and Toggweiler, J. R. (1993a) On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle. Paleoceanography, 8, 699735.CrossRefGoogle Scholar
Imbrie, J., Berger, A. and Shackleton, N. J. (1993b) Role of orbital forcing: A two-million-year perspective. In Global Changes in the Perspective of the Past [Eddy, J. A. and Oeschger, H. (eds.)]. John Wiley, New York, 263277.Google Scholar
Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L. and Shackleton, N. J. (1984) The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In Milankovitch and Climate [Berger, A. et al. (eds.)]. D. Reidel, Hingham, MA, 269305.Google Scholar
Imbrie, J. and Imbrie, J. (1980) Modeling the climatic response to orbital variations. Science, 207, 943953.CrossRefGoogle ScholarPubMed
Inglis, G. N., Bragg, F., Burls, N. J., Cramwinckel, M. J., Evans, D., Foster, G. L., Huber, M., Lunt, D. J., Siler, N., Steinig, S., Tierney, J. E., Wilkinson, R., Anagnostou, E., de Boer, A. M., Dunkley Jones, T., Edgar, K. M., Hollis, C. J., Hutchinson, D. K. and Pancost, R. D. (2020) Global mean surface temperature and climate sensitivity of the early Eocene climatic optimum (EECO), Paleocene–Eocene thermal maximum (PETM), and latest Paleocene. Climate of the Past, 16, 19531968.CrossRefGoogle Scholar
IPCC (1990) Climate Change 1990: The Physical Science Basis. Contribution of Working Group I to the First Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J. T., G. J. Jenkins and J. J. Ephraums (eds.)]. Cambridge University Press, Cambridge, UK, New York, NY, and Melbourne, Australia, 410 pp.Google Scholar
IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L. (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, 996 pp.Google Scholar
IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, 1535 pp.Google Scholar
IPCC (2021a) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R. and Zhou, B. (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY.Google Scholar
IPCC (2021b) Annex VII: Glossary [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C. Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R. and Zhou, B. (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, 22152256.Google Scholar
Jackson, L. C., Kahana, R., Graham, T., Ringer, M. A., Woollings, T., Mecking, J. V. and Wood, R. A. (2015) Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dynamics, 45, 32993316.CrossRefGoogle Scholar
Jeltsch-Thömmes, A., Battaglia, G., Cartapanis, O., Jaccard, S. L. and Joos, F. (2019) Low terrestrial carbon storage at the last glacial maximum: Constraints from multi-proxy data. Climate of the Past, 15, 849879.CrossRefGoogle Scholar
Jenkins, G. S. (1995) Early Earth’s climate: Cloud feedback from reduced land fraction and ozone concentrations. Geophysical Research Letters, 22, 15131516.CrossRefGoogle Scholar
Jochum, M., Jahn, A., Peacock, S., Bailey, D. A., Fasullo, J. T., Kay, J., Levis, S. and Otto-Bliesner, B. L. (2012) True to Milankovitch: Glacial inception in the new community climate system model. Journal of Climate, 25, 22262239.CrossRefGoogle Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J. and Fischer, H. (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793796.CrossRefGoogle ScholarPubMed
Kageyama, M., Albani, S., Braconnot, P., Harrison, S. P., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Marti, O., Peltier, W. R., Peterschmitt, J. Y., Roche, D. M., Tarasov, L., Zhang, X., Brady, E. C., Haywood, A. M., LeGrande, A. N., Lunt, D. J., Mahowald, N. M., Mikolajewicz, U., Nisancioglu, K. H., Otto-Bliesner, B. L., Renssen, H., Tomas, R. A., Zhang, Q., Abe-Ouchi, A., Bartlein, P. J., Cao, J., Li, Q., Lohmann, G., Ohgaito, R., Shi, X., Volodin, E., Yoshida, K., Zhang, X. and Zheng, W. (2017) The PMIP4 contribution to CMIP6–Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geoscientific Model Development, 10, 40354055.CrossRefGoogle Scholar
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E. and Zhu, J. (2021) The PMIP4 last glacial maximum experiments: Preliminary results and comparison with the PMIP3 simulations. Climate of the Past, 17, 10651089.CrossRefGoogle Scholar
Kapsch, M. L., Mikolajewicz, U., Ziemen, F. and Schannwell, C. (2022) Ocean response in transient simulations of the last deglaciation dominated by underlying ice-sheet reconstruction and method of meltwater distribution. Geophysical Research Letters, 49, e2021GL096767.CrossRefGoogle Scholar
Kaufhold, C., Willeit, M., Talento, S., Ganopolski, A. and Rockström, J. (2025) Interplay between climate and carbon cycle feedbacks could substantially enhance future warming. Environmental Research Letters, 20, 044027.CrossRefGoogle Scholar
Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J. P., Hutterli, M. A., Nakazawa, T., Aoki, S., Jouzel, J. and Raymo, M. E. (2007) Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature, 448, 912916.CrossRefGoogle ScholarPubMed
Keeling, R. F. and Stephens, B. B. (2001) Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography, 16, 112131.CrossRefGoogle Scholar
Khatiwala, S., Schmittner, A. and Muglia, J. (2019) Air-sea disequilibrium enhances ocean carbon storage during glacial periods. Science Advances, 5, eaaw4981.CrossRefGoogle ScholarPubMed
Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A. and Leuenberger, M. (2014) Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Climate of the Past, 10, 887902.CrossRefGoogle Scholar
Kleinen, T., Gromov, S., Steil, B. and Brovkin, V. (2023) Atmospheric methane since the last glacial maximum was driven by wetland sources. Climate of the Past, 19, 10811099.CrossRefGoogle Scholar
Klockmann, M., Mikolajewicz, U. and Marotzke, J. (2018) Two AMOC states in response to decreasing greenhouse gas concentrations in the coupled climate model MPI-ESM. Journal of Climate, 31, 79697984.CrossRefGoogle Scholar
Kohfeld, K. E. and Ridgwell, A. (2009) Glacial-interglacial variability in atmospheric CO2. In Surface Ocean–Lower Atmospheres Processes [Le Quéré, C. and Saltzman, E. S. (eds.)]. American Geophysical Union, Washington, DC, 251286.CrossRefGoogle Scholar
Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. and Fischer, H. (2017) Compilations and splined-smoothed calculations of continuous records of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing since the penultimate glacial maximum. Earth System Science Data, 9, 363387.CrossRefGoogle Scholar
Köppen, W. P. (1931) Grundriss der Klimakunde. W. de Gruyter.CrossRefGoogle Scholar
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. and Oppenheimer, M. (2009) Probabilistic assessment of sea level during the last interglacial stage. Nature, 462, 863867.CrossRefGoogle ScholarPubMed
Krinner, G., Boucher, O. and Balkanski, Y. (2006) Ice-free glacial northern Asia due to dust deposition on snow. Climate Dynamics, 27, 613625.CrossRefGoogle Scholar
Kuper, R. and Kropelin, S. (2006) Climate-controlled Holocene occupation in the Sahara: Motor of Africa’s evolution. Science, 313, 803807.CrossRefGoogle ScholarPubMed
Kutzbach, J. E. (1981) Monsoon climate of the early Holocene: Climate experiment with the Earth’s orbital parameters for 9000 years ago. Science, 214, 5961.CrossRefGoogle ScholarPubMed
Kutzbach, J. E. and Guetter, P. J. (1984) Sensitivity of late-glacial and Holocene climates to the combined effects of orbital parameter changes and lower boundary condition changes: “snapshot” simulations with a general circulation model for 18, 9, and 6 ka BP. Annals of Glaciology, 5, 8587.CrossRefGoogle Scholar
Kutzbach, J. E. and Guetter, P. J. (1986) The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 years. Journal of Atmospheric Sciences, 43, 17261759.2.0.CO;2>CrossRefGoogle Scholar
Lambert, F., Delmonte, B., Petit, J. R., Bigler, M., Kaufmann, P. R., Hutterli, M. A., Stocker, T. F., Ruth, U., Steffensen, J. P. and Maggi, V. (2008) Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature, 452, 616619.CrossRefGoogle ScholarPubMed
Lambert, F., Tagliabue, A., Shaffer, G., Lamy, F., Winckler, G., Farias, L., Gallardo, L. and De Pol-Holz, R. (2015) Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates. Geophysical Research Letters, 42, 60146023.CrossRefGoogle Scholar
Laskar, J., Fienga, A., Gastineau, M. and Manche, H. (2011) La2010: A new orbital solution for the long-term motion of the Earth. Astronomy and Astrophysics, 532, A89.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. and Levrard, B. (2004) A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics, 428, 261285.CrossRefGoogle Scholar
Lean, J. L. (2018) Estimating solar irradiance since 850 CE. Earth and Space Science, 5, 133149.CrossRefGoogle Scholar
LeGrande, A. N., Schmidt, G. A., Shindell, D. T., Field, C. V., Miller, R. L., Koch, D. M., Faluvegi, G. and Hoffmann, G. (2006) Consistent simulations of multiple proxy responses to an abrupt climate change event. Proceedings of the National Academy of Sciences, 103, 837842.CrossRefGoogle Scholar
Lin, Y., Hibbert, F. D., Whitehouse, P. L., Woodroffe, S. A., Purcell, A., Shennan, I. and Bradley, S. L. (2021) A reconciled solution of Meltwater Pulse 1A sources using sea-level fingerprinting. Nature Communications, 12, 2015.CrossRefGoogle ScholarPubMed
Lippold, J., Grützner, J., Winter, D., Lahaye, Y., Mangini, A. and Christl, M. (2009) Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic meridional overturning circulation? Geophysical Research Letters, 36, L12601.CrossRefGoogle Scholar
Lisiecki, L. E. and Raymo, M. E. (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003.Google Scholar
Lisiecki, L. E. and Raymo, M. E. (2007) Plio–Pleistocene climate evolution: Trends and transitions in glacial cycle dynamics. Quaternary Science Reviews, 26, 5669.CrossRefGoogle Scholar
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L., Timmermann, A., Smith, R. S., Lohmann, G., Zheng, W. and Elison Timm, O. (2014) The Holocene temperature conundrum. Proceedings of the National Academy of Sciences, 111, E3501–E3505.CrossRefGoogle ScholarPubMed
Lofverstrom, M., Thompson, D. M., Otto-Bliesner, B. L. and Brady, E. C. (2022) The importance of Canadian Arctic Archipelago gateways for glacial expansion in Scandinavia. Nature Geoscience, 15, 482488.CrossRefGoogle Scholar
Lord, N. S., Ridgwell, A., Thorne, M. C. and Lunt, D. J. (2016) An impulse response function for the “long tail” of excess atmospheric CO2 in an Earth system model. Global Biogeochemical Cycles, 30, 217.CrossRefGoogle Scholar
Lunt, D. J., Ridgwell, A., Sluijs, A., Zachos, J., Hunter, S. and Haywood, A. (2011) A model for orbital pacing of methane hydrate destabilization during the Palaeogene. Nature Geoscience, 4, 775778.CrossRefGoogle Scholar
Luthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J. M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K. and Stocker, T. F. (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 379382.CrossRefGoogle ScholarPubMed
MacAyeal, D. R. (1993) Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich events. Paleoceanography, 8, 775784.CrossRefGoogle Scholar
Maier-Reimer, E. and Mikolajewicz, U. (1989) Experiments with an OGCM on the cause of the Younger Dryas. In Oceanography 1988 [Ayala-Castanares, A., Wooster, W. and Yanez-Arancibia, A. (eds.)]. UNAM Press, Mexico, 87100.Google Scholar
Malmierca-Vallet, I., Sime, L. C., Valdes, P. J., Klockmann, M., Vettoretti, G. and Slattery, J. (2024) The impact of CO2 and climate state on whether Dansgaard–Oeschger type oscillations occur in climate models. Geophysical Research Letters, 51, e2024GL110068.CrossRefGoogle Scholar
Manabe, S. and Broccoli, A. J. (1985) The influence of continental ice sheets on the climate of an ice age. Journal of Geophysical Research: Atmospheres, 90, 21672190.CrossRefGoogle Scholar
Manabe, S. and Bryan, K. (1969) Climate calculations with a combined ocean-atmosphere model. Journal of the Atmospheric Sciences, 26, 786789.2.0.CO;2>CrossRefGoogle Scholar
Manabe, S. and Stouffer, R. J. (1980) Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. Journal of Geophysical Research: Oceans, 85, 55295554.CrossRefGoogle Scholar
Manabe, S. and Stouffer, R. J. (1988) Two stable equilibria of a coupled ocean-atmosphere model. Journal of Climate, 1, 841866.2.0.CO;2>CrossRefGoogle Scholar
Manabe, S. and Stouffer, R. J. (1995) Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature, 378, 165167.CrossRefGoogle Scholar
Manabe, S. and Wetherald, R. T. (1975) The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of Atmospheric Sciences, 32, 315.2.0.CO;2>CrossRefGoogle Scholar
Mann, M. E., Bradley, R. S. and Hughes, M. K. (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779787.CrossRefGoogle Scholar
Margari, V., Skinner, L. C., Tzedakis, P. C., Ganopolski, A., Vautravers, M. and Shackleton, N. J. (2010) The nature of millennial-scale climate variability during the past two glacial periods. Nature Geoscience, 3, 127131.CrossRefGoogle Scholar
MARGO Project Members (2009) Constraints on the magnitude and patterns of ocean cooling at the last glacial maximum. Nature Geoscience, 2, 127132.CrossRefGoogle Scholar
Marshall, S. and Clarke, G. K. C. (1999) Ice sheet inception: Subgrid hypsometric parameterizations of mass balance in an ice sheet model. Climate Dynamics, 15, 533550.CrossRefGoogle Scholar
Martin, J. H. (1990) Glacial-Interglacial CO2 change: The iron hypothesis. Paleoceanography, 5, 113.CrossRefGoogle Scholar
Martínez-Botí, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton, P. F., Lunt, D. J., Pancost, R. D., Badger, M. P. and Schmidt, D. N. (2015) Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature, 518, 4954.CrossRefGoogle ScholarPubMed
Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A. and Stocker, T. F. (2007) Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science, 317, 502507.CrossRefGoogle ScholarPubMed
Matero, I. S. O., Gregoire, L. J., Ivanovic, R. F., Tindall, J. C. and Haywood, A. M. (2017) The 8.2 ka cooling event caused by Laurentide ice saddle collapse. Earth and Planetary Science Letters, 473, 205214.CrossRefGoogle Scholar
McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. and Brown-Leger, S. (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834837.CrossRefGoogle ScholarPubMed
Meccia, V. L. and Mikolajewicz, U. (2018) Interactive ocean bathymetry and coastlines for simulating the last deglaciation with the max Planck institute earth system model (MPI-ESM-v1. 2). Geoscientific Model Development, 11, 46774692.CrossRefGoogle Scholar
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F., Stouffer, R. J., Taylor, K. E. and Schlund, M. (2020) Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 6, eaba1981.CrossRefGoogle ScholarPubMed
Meinshausen, M., Nicholls, Z. R., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N. and Canadell, J. G. (2020) The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13, 35713605.CrossRefGoogle Scholar
Menviel, L., Joos, F. and Ritz, S. P. (2012) Simulating atmospheric CO2, 13C and the marine carbon cycle during the last glacial–interglacial cycle: Possible role for a deepening of the mean remineralization depth and an increase in the oceanic nutrient inventory. Quaternary Science Reviews, 56, 4668.CrossRefGoogle Scholar
Menviel, L., Timmermann, A., Friedrich, T. and England, M. H. (2014) Hindcasting the continuum of Dansgaard–Oeschger variability: Mechanisms, patterns and timing. Climate of the Past, 10, 6377.CrossRefGoogle Scholar
Mignot, J., Ganopolski, A. and Levermann, A. (2007) Atlantic subsurface temperatures: Response to a shutdown of the overturning circulation and consequences for its recovery. Journal of Climate, 20, 48844898.CrossRefGoogle Scholar
Mikolajewicz, U., Crowley, T. J., Schiller, A. and Voss, R. (1997) Modelling teleconnections between the North Atlantic and North Pacific during the younger dryas. Nature, 387, 384387.CrossRefGoogle Scholar
Mikolajewicz, U., Maier-Reimer, E., Crowley, T. J. and Kim, K.-Y. (1993) Effect of Drake and Panamanian Gateways on the circulation of an ocean model. Paleoceanography, 8, 409426.CrossRefGoogle Scholar
Milankovitch, M. (1920) Theorie Mathematique des Phenomenes Thermiques Produits par la Radiation Solaire. Academie Yougoslave des Sciences et des Arts de Zagreb. Gauthier Villars, Paris.Google Scholar
Milankovitch, M. (1941) Kanon der Erdbestrahlung und Seine Andwendung auf das Eiszeitenproblem, vol. 33, 633 pp, R. Serbian Acad. Spec. Publ. 132, Belgrade.Google Scholar
Murphy, J. J. (1876) The glacial climate and the polar ice-cap. The Quarterly Journal of the Geological Society of London, 32, 400406.CrossRefGoogle Scholar
Naafs, B. D. A., Hefter, J., Gruetzner, J. and Stein, R. (2013) Warming of surface waters in the mid-latitude North Atlantic during Heinrich events. Paleoceanography, 28, 153163.CrossRefGoogle Scholar
NEEM community members (2013) Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 493, 489494.CrossRefGoogle Scholar
Nehrbass-Ahles, C., Shin, J., Schmitt, J., Bereiter, B., Joos, F., Schilt, A., Schmidely, L., Silva, L., Teste, G., Grilli, R. and Chappellaz, J. (2020) Abrupt CO2 release to the atmosphere under glacial and early interglacial climate conditions. Science, 369, 10001005.CrossRefGoogle Scholar
NGRIP Project members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431, 147151.CrossRefGoogle Scholar
North, G. R., Mengel, J. G. and Short, D. A. (1983) Simple energy balance model resolving the seasons and the continents: Application to the astronomical theory of the ice ages. Journal of Geophysical Research: Oceans, 88, 65766586.CrossRefGoogle Scholar
O’Brien, C. L., Huber, M., Thomas, E., Pagani, M., Super, J. R., Elder, L. E. and Hull, P. M. (2020) The enigma of Oligocene climate and global surface temperature evolution. Proceedings of the National Academy of Sciences, 117, 25302–25309.CrossRefGoogle ScholarPubMed
Osman, M. B., Tierney, J. E., Zhu, J., Tardif, R., Hakim, G. J., King, J. and Poulsen, C. J. (2021) Globally resolved surface temperatures since the Last Glacial Maximum. Nature, 599, 239244.CrossRefGoogle ScholarPubMed
Otto-Bliesner, B. L., Brady, E. C., Zhao, A., Brierley, C. M., Axford, Y., Capron, E., Govin, A., Hoffman, J. S., Isaacs, E., Kageyama, M. and Scussolini, P. (2021) Large-scale features of last interglacial climate: Results from evaluating the lig127k simulations for the coupled model intercomparison project (CMIP6)–paleoclimate modeling intercomparison project (PMIP4). Climate of the Past, 17, 6394.CrossRefGoogle Scholar
PAGES2k Consortium (2017) A global multiproxy database for temperature reconstructions of the common era. Scientific Data, 4, 170088.CrossRefGoogle Scholar
Paillard, D. (1998) The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature, 391, 378338.CrossRefGoogle Scholar
Paillard, D. (2001) Glacial cycles: Toward a new paradigm. Reviews of Geophysics, 39, 325346.CrossRefGoogle Scholar
Paillard, D. and Labeyriet, L. (1994) Role of the thermohaline circulation in the abrupt warming after Heinrich events. Nature, 372, 162164.CrossRefGoogle Scholar
Parry, I. M., Ritchie, P. D. and Cox, P. M. (2022) Evidence of localised Amazon rainforest dieback in CMIP6 models. Earth System Dynamics, 13, 16671675.CrossRefGoogle Scholar
Past Interglacials Working Group of PAGES (2016) Interglacials of the last 800,000 years. Reviews of Geophysics, 54, 162219.CrossRefGoogle Scholar
Paul, A., Mulitza, S., Stein, R. and Werner, M. (2021) A global climatology of the ocean surface during the last glacial maximum mapped on a regular grid (GLOMAP). Climate of the Past, 17, 805824.CrossRefGoogle Scholar
Payne, A. J. (1995) Limit cycles in the basal thermal regime of ice sheets. Journal of Geophysical Research: Solid Earth, 100, 42494263.CrossRefGoogle Scholar
Pedro, J. B., Jochum, M., Buizert, C., He, F., Barker, S. and Rasmussen, S. O. (2018) Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling. Quaternary Science Reviews, 192, 2746.CrossRefGoogle Scholar
Peltier, W. R. (2004) Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences, 32, 111149.CrossRefGoogle Scholar
Peltier, W. R., Argus, D. F. and Drummond, R. (2015) Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth, 120, 450487.CrossRefGoogle Scholar
Peltier, W. R. and Marshall, S. (1995) Coupled energy-balance/ice-sheet model simulations of the glacial cycle: A possible connection between terminations and terrigenous dust. Journal of Geophysical Research, 100, 14269.CrossRefGoogle Scholar
Peltier, W. R. and Vettoretti, G. (2014) Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A ‘kicked’ salt oscillator in the Atlantic. Geophysical Research Letters, 41, 73067313.CrossRefGoogle Scholar
Penck, A. and Brückner, E. (1909) Die Alpen im Eiszeitalter. CH Tauchnitz.Google Scholar
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E. and Stievenard, M. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429436.CrossRefGoogle Scholar
Pierrehumbert, R. T., Abbot, D. S., Voigt, A. and Koll, D. (2011) Climate of the Neoproterozoic. Annual Review of Earth and Planetary Sciences, 39, 417460.CrossRefGoogle Scholar
Piotrowski, A. M., Goldstein, S. L., Hemming, S. R. and Fairbanks, R. G. (2005) Temporal relationships of carbon cycling and ocean circulation at glacial boundaries. Science, 307, 19331938.CrossRefGoogle ScholarPubMed
Plach, A., Nisancioglu, K. H., Le Clec’H, S., Born, A., Langebroek, P. M., Guo, C., Imhof, M. and Stocker, T. F. (2018) Eemian Greenland SMB strongly sensitive to model choice. Climate of the Past, 14, 14631485.CrossRefGoogle Scholar
Pollard, D. (1978) An investigation of the astronomical theory of the ice ages using a simple climate-ice sheet model. Nature, 272, 233235.CrossRefGoogle Scholar
Pollard, D. (1983) A coupled climate-ice sheet model applied to the Quaternary ice ages. Journal of Geophysical Research: Oceans, 88, 77057718.CrossRefGoogle Scholar
Praetorius, S. K., Alder, J. R., Condron, A., Mix, A. C., Walczak, M. H., Caissie, B. E. and Erlandson, J. M. (2023) Ice and ocean constraints on early human migrations into North America along the Pacific coast. Proceedings of the National Academy of Sciences, 120, e2208738120.CrossRefGoogle ScholarPubMed
Quiquet, A., Dumas, C., Paillard, D., Ramstein, G., Ritz, C. and Roche, D. M. (2021) Deglacial ice sheet instabilities induced by proglacial lakes. Geophysical Research Letters, 48, e2020GL09214.CrossRefGoogle Scholar
Rahmstorf, S. (1995) Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 378, 145149.CrossRefGoogle Scholar
Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I., Knutti, R., Lohmann, G., Marsh, R., Mysak, L. A., Wang, Z. and Weaver, A. J. (2005) Thermohaline circulation hysteresis: A model intercomparison. Geophysical Research Letters, 32, L23605.CrossRefGoogle Scholar
Rasmussen, S. O., Dahl-Jensen, D., Fischer, H., Fuhrer, K., Hansen, S. B., Hansson, M., Hvidberg, C. S., Jonsell, U., Kipfstuhl, S., Ruth, U. and Schwander, J. (2023) Ice-core data used for the construction of the Greenland ice-core chronology 2005 and 2021 (GICC05 and GICC21). Earth System Science Data, 15, 33513364.CrossRefGoogle Scholar
Raymo, M. E. (1997) The timing of major climate terminations. Paleoceanography, 12, 577585.CrossRefGoogle Scholar
Raymo, M. E., Lisiecki, L. E. and Nisancioglu, K. H. (2006) Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science, 313, 492495.CrossRefGoogle ScholarPubMed
Raymo, M. E. and Ruddiman, W. F. (1992) Tectonic forcing of late Cenozoic climate. Nature, 359, 117122.CrossRefGoogle Scholar
Reeh, N. (1991) Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung, 59, 113128.Google Scholar
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M. and van der Plicht, J. (2013) Intrcal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55, 18691887.CrossRefGoogle Scholar
Renoult, M., Sagoo, N., Zhu, J. and Mauritsen, T. (2023) Causes of the weak emergent constraint on climate sensitivity at the last glacial maximum. Climate of the Past, 19, 323356.CrossRefGoogle Scholar
Roberts, W. H., Payne, A. J. and Valdes, P. J. (2016) The role of basal hydrology in the surging of the Laurentide ice sheet. Climate of the Past, 12, 16011617.CrossRefGoogle Scholar
Roche, D., Paillard, D. and Cortijo, E. (2004) Constraints on the duration and freshwater release of Heinrich event 4 through isotope modelling. Nature, 432, 379382.CrossRefGoogle ScholarPubMed
Roe, G. and Allen, M. (1999) A comparison of competing explanations for the 100,000-yr ice age cycle. Geophysical Research Letters, 26, 22592262.CrossRefGoogle Scholar
Rohling, E. J., Foster, G. L., Gernon, T. M., Grant, K. M., Heslop, D., Hibbert, F. D., Roberts, A. P. and Yu, J. (2022) Comparison and synthesis of sea-level and deep-sea temperature variations over the past 40 million years. Reviews of Geophysics, 60, e2022RG000775.CrossRefGoogle Scholar
Rohling, E. J., Sluijs, A., Dijkstra, H. A., Köhler, P., van de Wal, R. S. W., von der Heydt, A. S., Beerling, D. J., Berger, A., Bijl, P. K., Crucifix, M., DeConto, R., Drijfhout, S. S., Fedorov, A., Foster, G. L., Ganopolski, A., Hansen, J., Hönisch, B., Hooghiemstra, H., Huber, M., Huybers, P., Knutti, R., Lea, D. W., Lourens, L. J., Lunt, D., Masson-Delmotte, V., Medina-Elizalde, M., Otto-Bliesner, B., Pagani, M., Pälike, H., Renssen, H., Royer, D. L., Siddall, M., Valdes, P., Zachos, J. C., Zeebe, R. E. (2015) Making sense of palaeoclimate sensitivity. Nature, 491, 683691.Google Scholar
Royer, J. F., Deque, M. and Pestiaux, P. (1983) Orbital forcing of the inception of the Laurentide ice sheet. Nature, 304, 4346.CrossRefGoogle Scholar
Ruddiman, W. F. (2003) The atmospheric greenhouse era began thousands of years ago. Climatic Change, 61, 261293.CrossRefGoogle Scholar
Saltzman, B. (1978) A survey of statistical-dynamical models of the terrestrial climate. Advances in Geophysics, 20, 183304.CrossRefGoogle Scholar
Saltzman, B. (2002) Dynamical Paleoclimatology: Generalized Theory of Global Climate Change. Academic Press, San Diego, CA, and London, UK, 354.Google Scholar
Saltzman, B. and Maasch, K. A. (1988) Carbon cycle instability as a cause of the late Pleistocene ice age oscillations: Modeling the asymmetric response. Global Biogeochemical Cycles, 2, 177185.CrossRefGoogle Scholar
Sarmiento, J. L. and Toggweiler, J. R. (1984) A new model for the role of the oceans in determining atmospheric pCO2. Nature, 308, 621624.CrossRefGoogle Scholar
Schannwell, C., Mikolajewicz, U., Ziemen, F. and Kapsch, M. L. (2023) Sensitivity of Heinrich-type ice-sheet surge characteristics to boundary forcing perturbations. Climate of the Past, 19, 179198.CrossRefGoogle Scholar
Schiller, A., Mikolajewicz, U. and Voss, R. (1997) The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Climate Dynamics, 13, 325347.CrossRefGoogle Scholar
Schmidt, H., Alterskjær, K., Bou Karam, D., Boucher, O., Jones, A., Kristjánsson, J. E., Niemeier, U., Schulz, M., Aaheim, A., Benduhn, F. and Lawrence, M. (2012) Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: Climate responses simulated by four earth system models. Earth System Dynamics, 3, 6378.CrossRefGoogle Scholar
Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A., Chappellaz, J., Köhler, P., Joos, F., Stocker, T. F., Leuenberger, M. and Fischer, H. (2012) Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science, 336, 711714.CrossRefGoogle ScholarPubMed
Schmittner, A. and Galbraith, E. D. (2008) Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature, 456, 373376.CrossRefGoogle ScholarPubMed
Schneider von Deimling, T., Held, H., Ganopolski, A. and Rahmstorf, S. (2006) Climate sensitivity estimated from ensemble simulations of glacial climate. Climate Dynamics, 27, 149163.CrossRefGoogle Scholar
Sellers, W. D. (1969) A global climatic model based on the energy balance of the earth-atmosphere system. Journal of Applied Meteorology and Climatology, 8, 392400.2.0.CO;2>CrossRefGoogle Scholar
Shackleton, N. J. (1974) Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial. Colloques Internationaux du C.N.R.S. N° 219.Google Scholar
Sherriff-Tadano, S., Abe-Ouchi, A., Yoshimori, M., Oka, A. and Chan, W. L. (2018) Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change. Climate Dynamics, 50, 28812903.CrossRefGoogle Scholar
Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J. and Watanabe, M. (2020) An assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58, e2019RG000678.CrossRefGoogle ScholarPubMed
Shi, X., Werner, M., Yang, H., D’Agostino, R., Liu, J., Yang, C. and Lohmann, G. (2023) Unraveling the complexities of the last glacial maximum climate: The role of individual boundary conditions and forcings. Climate of the Past, 19, 21572175.CrossRefGoogle Scholar
Skinner, L. C. and Bard, E. (2022) Radiocarbon as a dating tool and tracer in paleoceanography. Reviews of Geophysics, 60, e2020RG000720.CrossRefGoogle Scholar
Smagorinsky, J. (1963) General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91, 99164.2.3.CO;2>CrossRefGoogle Scholar
Snyder, C. W. (2016) Evolution of global temperature over the past two million years. Nature, 538, 226228.CrossRefGoogle ScholarPubMed
Spötl, C. and Mangini, A. (2002) Stalagmite from the Austrian Alps reveals Dansgaard–Oeschger events during isotope stage 3: Implications for the absolute chronology of Greenland ice cores. Earth and Planetary Science Letters, 203, 507518.CrossRefGoogle Scholar
Spratt, R. M. and Lisiecki, L. E. (2016) A late Pleistocene sea level stack. Climate of the Past, 12, 10791092.CrossRefGoogle Scholar
Stap, L. B., Van de Wal, R. S. W., De Boer, B., Bintanja, R. and Lourens, L. J. (2014) Interaction of ice sheets and climate during the past 800 000 years. Climate of the Past, 10, 21352152.CrossRefGoogle Scholar
Stephens, B. B. and Keeling, R. F. (2000) The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature, 404, 171174.CrossRefGoogle ScholarPubMed
Stocker, B. D., Yu, Z., Massa, C. and Joos, F. (2017) Holocene peatland and ice-core data constraints on the timing and magnitude of CO2 emissions from past land use. Proceedings of the National Academy of Sciences, 114, 14921497.CrossRefGoogle ScholarPubMed
Stocker, T. F. and Johnson, J. (2003) A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18, 1087.CrossRefGoogle Scholar
Stocker, T. F. and Wright, D. G. (1991) Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature, 351, 729732.CrossRefGoogle Scholar
Stommel, H. (1961) Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230.CrossRefGoogle Scholar
Stouffer, R. J., Yin, J. J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H. and Hu, A. (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. Journal of Climate, 19, 13651387.CrossRefGoogle Scholar
Sulpis, O., Boudreau, B. P., Mucci, A., Jenkins, C., Trossman, D. S., Arbic, B. K. and Key, R. M. (2018) Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2. Proceedings of the National Academy of Sciences, 115, 11700–11705.CrossRefGoogle Scholar
Swingedouw, D., Mignot, J., Braconnot, P., Mosquet, E., Kageyama, M. and Alkama, R. (2009) Impact of freshwater release in the North Atlantic under different climate conditions in an OAGCM. Journal of Climate, 22, 63776403.CrossRefGoogle Scholar
Talento, S., Willeit, M. and Ganopolski, A. (2024) New estimation of critical insolation–CO2 relationship for triggering glacial inception. Climate of the Past, 20, 13491364.CrossRefGoogle Scholar
Tan, N., Ramstein, G., Dumas, C., Contoux, C., Ladant, J. B., Sepulchre, P., Zhang, Z. and De Schepper, S. (2017) Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate. Earth and Planetary Science Letters, 472, 266276.CrossRefGoogle Scholar
Tarasov, L., Dyke, A. S., Neal, R. M. and Peltier, W. R. (2012) A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth and Planetary Science Letters, 315, 3040.CrossRefGoogle Scholar
Tarasov, L. and Peltier, W. R. (1997) A high-resolution model of the 100 ka ice-age cycle. Annals of Glaciology, 25, 5865.CrossRefGoogle Scholar
Teller, J. T., Leverington, D. W. and Mann, J. D. (2002) Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews, 21, 879887.CrossRefGoogle Scholar
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J. and Poulsen, C. J. (2020) Glacial cooling and climate sensitivity revisited. Nature, 584, 569573.CrossRefGoogle Scholar
Timmermann, A., Yun, K. S., Raia, P., Ruan, J., Mondanaro, A., Zeller, E., Zollikofer, C., Ponce de León, M., Lemmon, D., Willeit, M. and Ganopolski, A. (2022) Climate effects on archaic human habitats and species successions. Nature, 604, 495501.CrossRefGoogle ScholarPubMed
Toggweiler, J. R., Russell, J. L. and Carson, S. R. (2006) Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, PA2005.CrossRefGoogle Scholar
Tripati, A. K., Hill, P. S., Eagle, R. A., Mosenfelder, J. L., Tang, J., Schauble, E. A., Eiler, J. M., Zeebe, R. E., Uchikawa, J., Coplen, T. B. and Ries, J. B. (2015) Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition. Geochimica et Cosmochimica Acta, 166, 344371.CrossRefGoogle Scholar
Tripati, A. K., Sahany, S., Pittman, D., Eagle, R. A., Neelin, J. D., Mitchell, J. L. and Beaufort, L. (2014) Modern and glacial tropical snowlines controlled by sea surface temperature and atmospheric mixing. Nature Geoscience, 7, 205209.CrossRefGoogle Scholar
Turco, R. P., Toon, O. B., Ackerman, T. P., Pollack, J. B. and Sagan, C. (1983) Nuclear winter: Global consequences of multiple nuclear explosions. Science, 222, 12831292.CrossRefGoogle Scholar
Vamborg, F. S. E., Brovkin, V. and Claussen, M. (2011) The effect of a dynamic background albedo scheme on Sahel/Sahara precipitation during the mid-Holocene. Climate of the Past, 7, 117131.CrossRefGoogle Scholar
Vettoretti, G., Ditlevsen, P., Jochum, M. and Rasmussen, S. O. (2022) Atmospheric CO2 control of spontaneous millennial-scale ice age climate oscillations. Nature Geoscience, 15, 17.CrossRefGoogle Scholar
Vettoretti, G. and Peltier, W. R. (2003) Post-Eemian glacial inception. Part I: The impact of summer seasonal temperature bias. Journal of Climate, 16, 889911.2.0.CO;2>CrossRefGoogle Scholar
WAIS Divide Project Members (2015) Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 520, 661665.CrossRefGoogle Scholar
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. (2001) A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294, 23452348.CrossRefGoogle ScholarPubMed
Wegwerth, A., Ganopolski, A., Ménot, G., Kaiser, J., Dellwig, O., Bard, E., Lamy, F. and Arz, H. W. (2015) Black Sea temperature response to glacial millennial-scale climate variability. Geophysical Research Letters, 42, 81478154.CrossRefGoogle Scholar
Weitzel, N., Andres, H., Baudouin, J. P., Kapsch, M. L., Mikolajewicz, U., Jonkers, L., Bothe, O., Ziegler, E., Kleinen, T., Paul, A. and Rehfeld, K. (2024) Towards spatio-temporal comparison of simulated and reconstructed sea surface temperatures for the last deglaciation. Climate of the Past, 8, 865890.CrossRefGoogle Scholar
Weertman, J. (1974) Stability of the junction of an ice sheet and an ice shelf. Journal of Glaciology, 13, 311.CrossRefGoogle Scholar
Weertman, J. (1976) Milankovitch solar radiation variations and ice age ice sheet sizes. Nature, 261, 1720.CrossRefGoogle Scholar
Willeit, M., Calov, R., Talento, S., Greve, R., Bernales, J., Klemann, V., Bagge, M. and Ganopolski, A. (2024) Glacial inception through rapid ice area increase driven by albedo and vegetation feedbacks. Climate of the Past, 20, 597623.CrossRefGoogle Scholar
Willeit, M. and Ganopolski, A. (2024) Generalized stability landscape of the Atlantic meridional overturning circulation. Earth System Dynamics, 15, 14171434.CrossRefGoogle Scholar
Willeit, M., Ganopolski, A., Calov, R. and Brovkin, V. (2019) Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Science Advances, 5, eaav7337.CrossRefGoogle ScholarPubMed
Willeit, M., Ganopolski, A., Calov, R., Robinson, A. and Maslin, M. (2015) The role of CO2 decline for the onset of Northern Hemisphere glaciation. Quaternary Science Reviews, 119, 2234.CrossRefGoogle Scholar
Wilcox, P. S., Dorale, J. A., Baichtal, J. F., Spötl, C., Fowell, S. J., Edwards, R. L. and Kovarik, J. L. (2019) Millennial-scale glacial climate variability in Southeastern Alaska follows Dansgaard-Oeschger cyclicity. Scientific Reports, 9, 7880.CrossRefGoogle ScholarPubMed
Winton, M. and Sarachik, E. S. (1993) Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. Journal of Physical Oceanography, 23, 13891410.2.0.CO;2>CrossRefGoogle Scholar
Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C., Mulvaney, R., Röthlisberger, R., de Angelis, M., Boutron, C. F. and Hansson, M. (2006) Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature, 440, 491496.CrossRefGoogle ScholarPubMed
Yin, Q. Z., Wu, Z. P., Berger, A., Goosse, H. and Hodell, D. (2021) Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials. Science, 373, 10351040.CrossRefGoogle ScholarPubMed
Yun, K. S., Timmermann, A., Lee, S. S., Willeit, M., Ganopolski, A. and Jadhav, J. (2023) A transient coupled general circulation model (CGCM) simulation of the past 3 million years. Climate of the Past, 19, 19511974.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686693.CrossRefGoogle ScholarPubMed
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J. and McCarren, H. (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science, 308, 16111615.CrossRefGoogle ScholarPubMed
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., Klein, S. A. and Taylor, K. E. (2020) Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters, 47, e2019GL085782.CrossRefGoogle Scholar
Zhang, R. and Delworth, T. L. (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate, 18, 18531860.CrossRefGoogle Scholar
Zhang, X., Knorr, G., Lohmann, G. and Barker, S. (2017) Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state. Nature Geoscience, 10, 518523.CrossRefGoogle Scholar
Zhang, X., Prange, M., Merkel, U. and Schulz, M. (2014) Instability of the Atlantic overturning circulation during marine isotope stage 3. Geophysical Research Letters, 41, 42854293.CrossRefGoogle Scholar
Zhou, Y. and McManus, J. F. (2024) Heinrich event ice discharge and the fate of the Atlantic meridional overturning circulation. Science, 384, 983986.CrossRefGoogle ScholarPubMed
Zhu, J., Otto-Bliesner, B. L., Brady, E. C., Poulsen, C. J., Tierney, J. E., Lofverstrom, M. and DiNezio, P. (2021) Assessment of equilibrium climate sensitivity of the community earth system model version 2 through simulation of the last glacial maximum. Geophysical Research Letters, 48, e2020GL091220.CrossRefGoogle Scholar
Zhu, J., Poulsen, C. J. and Tierney, J. E. (2019) Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Science Advances, 5, eaax1874.CrossRefGoogle ScholarPubMed
Ziemen, F. A., Kapsch, M. L., Klockmann, M. and Mikolajewicz, U. (2019) Heinrich events show two-stage climate response in transient glacial simulations. Climate of the Past, 15, 153168.CrossRefGoogle Scholar
Zweck, C. and Huybrechts, P. (2005) Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. Journal of Geophysical Research, 110, D07103.CrossRefGoogle Scholar

Accessibility standard: WCAG 2.0 A

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Andrey Ganopolski, Potsdam Institute for Climate Impact Research
  • Book: Quaternary Climate Dynamics
  • Online publication: 17 December 2025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Andrey Ganopolski, Potsdam Institute for Climate Impact Research
  • Book: Quaternary Climate Dynamics
  • Online publication: 17 December 2025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Andrey Ganopolski, Potsdam Institute for Climate Impact Research
  • Book: Quaternary Climate Dynamics
  • Online publication: 17 December 2025
Available formats
×