Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-xmwfq Total loading time: 0 Render date: 2025-12-25T12:07:52.206Z Has data issue: false hasContentIssue false

References for Volume 2

Published online by Cambridge University Press:  17 December 2025

Christopher W. Churchill
Affiliation:
New Mexico State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Quasar Absorption Lines , pp. 1439 - 1460
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abbas, A., Churchill, C. W., Kacprzak, G. G., et al. 2024, The mass density of Mgii absorbers from the Australian Dark Energy Survey, ApJ, 966, 24210.3847/1538-4357/ad35ccCrossRefGoogle Scholar
Abramowitz, M., & Stegun. I. A. 1972, Handbook of Mathematical Functions, New York, Dover PublicationsGoogle Scholar
Acharya, A. & Khaire, V. 2022, How robust are the inferred density and metallicity of the circumgalactic medium?, MNRAS, 509, 555910.1093/mnras/stab3316CrossRefGoogle Scholar
Akerman, C. J., Carigi, L., Nissen, P. E., et al. 2004, The evolution of the C/O ratio in metal-poor halo stars, A&A, 414, 931Google Scholar
Aldenius, M., Johansson, S., & Murphy, M. T. 2006, Accurate laboratory wavelengths for quasar absorption-line constraints on varying fundamental constants, MNRAS, 370, 44410.1111/j.1365-2966.2006.10491.xCrossRefGoogle Scholar
Aldrovandi, S. M. V., & Pequignot, D. 1973, Radiative and dielectronic recombination coefficients for complex ions, A&A, 25, 137Google Scholar
Alimohamadi, P. & Ferland, G. J. 2022, A practical guide to the partition function of atoms and ions, PASP, 134, 103710.1088/1538-3873/ac7664CrossRefGoogle Scholar
Allington-Smith, J. R., Dubbeldam, C. M., Content, R., et al. 2004, Integral field spectroscopy with the Gemini Near-Infrared Spectrograph, Proc. SPIE, 5492, 70110.1117/12.551627CrossRefGoogle Scholar
Altay, G., Theuns, T., Schaye, J., et al. 2011, Through thick and thin-Hi absorption in cosmological simulations, ApJL, 737, L3710.1088/2041-8205/737/2/L37CrossRefGoogle Scholar
Altun, Z., Yumak, A., Yavuz, I., Badnell, N. R., Loch, S. D., & Pindzola, M. S. 2007, Dielectronic recombination data for dynamic finite-density plasmas. XIII. The magnesium isoelectronic sequence, A&A, 474, 1051Google Scholar
Arabsalmani, M., Møller, P., Fynbo, J. P. U., et al. 2015a, On the mass-metallicity relation, velocity dispersion, and gravitational well depth of GRB host galaxies, MNRAS, 446, 99010.1093/mnras/stu2138CrossRefGoogle Scholar
Arbey, A. & Mahmoudi, F. 2021, Dark Matter and the early Universe: A review, Prog. Part. Nucl. Phys., 119, 10386510.1016/j.ppnp.2021.103865CrossRefGoogle Scholar
Arnaud, M., & J. Raymond R. 1992, Iron ionization and recombination rates and ionization equilibrium, ApJ, 398, 39410.1086/171864CrossRefGoogle Scholar
Arnaud, M., & Rothenflung, R. 1985, An updated evaluation of recombination and ionization rates, A&AS, 60, 425Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, The chemical composition of the sun, ARA&A, 47, 481Google Scholar
Avila, G., Guirao, C., & Baader, T. 2012, High efficiency inexpensive 2-slices image slicers, Proc. SPIE, 8446, 84469M10.1117/12.927448CrossRefGoogle Scholar
Bacon, R., Accardo, M., Adjali, L., et al. 2010, The MUSE second-generation VLT instrument, Proc. SPIE, 7735, 77350810.1117/12.856027CrossRefGoogle Scholar
Bacon, R., Copin, Y., Monnet, G., et al. 2001, The SAURON project - I. The panoramic integral-field spectrograph, MNRAS, 326, 23CrossRefGoogle Scholar
Badnell, N. R. 2003, Radiative recombination data for modeling dynamic finite-density plasmas, ApJS, 167, 33410.1086/508465CrossRefGoogle Scholar
Badnell, N. R., O’Mullane, M. G., Summers, H. P., et al. 2003, Dielectronic recombination data for dynamic finite-density plasmas. I. Goals and methodology, A&A, 406, 1151Google Scholar
Bahcall, J. N., & Peebles, P. J. E. 1969, Statistical tests for the origin of absorption lines observed in quasi-qtellar sources, ApJL, 156, L710.1086/180337CrossRefGoogle Scholar
Bahcall, J. N., & Wolf, R. A. 1968, Fine-structure transitions, ApJ, 152, 70110.1086/149589CrossRefGoogle Scholar
Bainbridge, M. B. & Webb, J. K. 2017, Artificial intelligence applied to the automatic analysis of absorption spectra: Objective measurement of the fine structure constant, MNRAS, 468, 1639Google Scholar
Bajtlik, S., Duncan, R. C., & Ostriker, J. P. 1988, Quasar ionization of Lyman-alpha clouds - The proximity effect, a probe of the ultraviolet background at high redshift, ApJ, 327, 57010.1086/166217CrossRefGoogle Scholar
Balbus, S. A. & Soker, N. 1989, Theory of local thermal instability in spherical systems, ApJ, 341, 61110.1086/167521CrossRefGoogle Scholar
Baldry, I. K. & Bland-Hawthorn, J. 2000, A tunable echelle imager, PASP, 112, 111210.1086/316604CrossRefGoogle Scholar
Barden, S. C. & Armandroff, T. 1995, Performance of the WIYN fiber-fed MOS system: Hydra, Proc. SPIE, 2476, 5610.1117/12.211839CrossRefGoogle Scholar
Barlow, R. 2003, Asymmetric errors, in Statistical Problems in Particle Physics, Astrophysics, and Cosmology, Proc. PHYSTAT 2003, Standford University Press, 250Google Scholar
Barlow, T. A., & Sargent, W. L. W. 1997, Keck high resolution spectroscopy of PKS 0123+257: Intrinsic absorption in a radio-loud quasar, AJ, 113, 13610.1086/118239CrossRefGoogle Scholar
Bashkin, S., & Stoner, J. O. 1975, Atomic Energy Levels and Grotrian Diagrams: Volume I. Hydrogen I – Phosphorous XV, Amsterdam, North-Holland Publishing CompanyGoogle Scholar
Becker, G. D., Rauch, M., & Sargent, W. L. W. 2009, High-redshift metals. I. The decline of Civ at z > 5.3, ApJ, 698, 101010.1088/0004-637X/698/2/1010CrossRef+5.3,+ApJ,+698,+1010>Google Scholar
Bennett, C. L., Larson, D., Weiland, J. L., et al. 2013, Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results, ApJS, 208, 2010.1088/0067-0049/208/2/20CrossRefGoogle Scholar
Berg, D. A., Skillman, E. D., Henry, R. B. C., et al. 2016, Carbon and oxygen abundances in low metallicity dwarf galaxies, ApJ, 827, 12610.3847/0004-637X/827/2/126CrossRefGoogle Scholar
Bergeron, J. 1986, The Mgii absorption system in the QSO PKS 2128-12 - A galaxy disc/halo with a radius of 65 kpc, A&A, 155, L8Google Scholar
Bergeron, J., Petitjean, P., Sargent, W. L. W., et al. 1994, The Hubble Space Telescope quasar absorption line key project. VI: Properties of the metal-rich systems, ApJ, 436, 3310.1086/174878CrossRefGoogle Scholar
Bergeron, J., & Stasińska, G. 1986, Absorption line systems in QSO spectra - Properties derived from observations and from photoionization models, A&A, 169, 1Google Scholar
Bergvall, N., Marquart, T., Way, M. J., et al. 2016, Local starburst galaxies and their descendants. Statistics from the Sloan Digital Sky Survey, A&A, 587, A72Google Scholar
Bershady, M. A., Andersen, D. R., Harker, J., et al. 2004, SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration, PASP, 116, 56510.1086/421057CrossRefGoogle Scholar
Bethe, H. A., & Salpeter, E. E. 1957, Quantum Mechanics of One and Two Electron Atoms, New York, Academic Press10.1007/978-3-662-12869-5CrossRefGoogle Scholar
Bingham, R. G., Gellatly, D. W., Jenkins, C. R., et al. 1994, Fiber-fed spectrograph for the 4.2-m William Herschel Telescope, Proc. SPIE, 2198, 5610.1117/12.176776CrossRefGoogle Scholar
Bland-Hawthorn, J. & Maloney, P. R. 1999, The escape of ionizing photons from the Galaxy, ApJL, 510, L3310.1086/311797CrossRefGoogle Scholar
Boggess, N. W., Mather, J. C., Weiss, R., et al. 1992, The COBE mission– Its design and performance two years after launch, ApJ, 397, 42010.1086/171797CrossRefGoogle Scholar
Bohlin, R. C., Dickinson, M. E., & Calzetti, D. 2001, Spectrophotometric standards from the far-ultraviolet to the near-infrared: STIS and NICMOS fluxes, AJ, 122, 211810.1086/323137CrossRefGoogle Scholar
Bohr, N. 1913, On the constitution of atoms and molecules. Part I., Philos. Mag., 26, 110.1080/14786441308634955CrossRefGoogle Scholar
Boksenberg, A., & Sargent, W. L. W. 2015, Properties of QSO metal-line absorption systems at high redshifts: Nature and evolution of the absorbers and new evidence on escape of ionizing radiation from galaxies, ApJS, 218, 710.1088/0067-0049/218/1/7CrossRefGoogle Scholar
Bolzonella, M., Miralles, J.-M., & Pelló, R. 2000, Photometric redshifts based on standard SED fitting procedures, A&A, 363, 476Google Scholar
Bonnet, H., Conzelmann, R., Delabre, B., et al. 2004, First light of SINFONI AO-module at VLT, Proc. SPIE, 5490, 13010.1117/12.551187CrossRefGoogle Scholar
Bosman, S. E. I., Davies, F. B., Becker, G. D., et al. 2022, Hydrogen reionisation ends by z = 5.3: Lyman-α optical depth measured by the XQR-30 sample, MNRAS, 514, 5510.1093/mnras/stac1046CrossRefGoogle Scholar
Bouché, N. F. 2017, Gas Accretion and star-formation rates with IFUs and background quasars, Ap&SS, 430, 355Google Scholar
Boyer, W., & Lynas-Gray, A. E. 2014, Evaluation of the Voigt function to arbitrary precision, MNRAS, 444, 255510.1093/mnras/stu1606CrossRefGoogle Scholar
Bransden, B. H., & Joachain, C. J. 2003, Physics of Atoms and Molecules, London, PearsonGoogle Scholar
Bruzual, A., G., & Charlot, S. 1993, Spectral evolution of stellar populations using isochrone synthesis, ApJ, 405, 538CrossRefGoogle Scholar
Buchner, J., Georgakakis, A., Nandra, K., et al. 2014, X-ray spectral modeling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue, A&A, 564, A125Google Scholar
Buchner, J. 2022, Comparison of step samplers for nested sampling, Phys. Sci. Forum, 5, 46Google Scholar
Bundy, K., Bershady, M. A., Law, D. R., et al. 2015, Overview of the SDSS-IV MaNGA Survey: Mapping nearby Galaxies at Apache Point Observatory, ApJ, 798, 710.1088/0004-637X/798/1/7CrossRefGoogle Scholar
Bunn, E. F., & Hogg, D. W. 2009, The kinematic origin of the cosmological redshift, Am. J. Phys., 77, 68810.1119/1.3129103CrossRefGoogle Scholar
Burbidge, G. R., Odell, S. L., Roberts, D. H., & Smith, H. E. 1977, On the origin of the absorption spectra of quasistellar and BL Lacertae objects, ApJ, 218, 3310.1086/155654CrossRefGoogle Scholar
Burchett, J. N., Tripp, T. M., Prochaska, J. X., et al. 2019, The COS Absorption Survey of Baryon Harbors (CASBaH): Warm-hot circumgalactic gas reservoirs traced by Neviii absorption, ApJL, 877, L2010.3847/2041-8213/ab1f7fCrossRefGoogle Scholar
Burles, S. & Tytler, D. 1998a, The deuterium abundance toward Q1937–1009, ApJ, 499, 69910.1086/305667CrossRefGoogle Scholar
Carroll, S. M., Press, W. M., & Turner, E. L. 1992, The cosmological constant, ARA&A, 30, 499Google Scholar
Carswell, R. F. & Webb, J. K. 2014, VPFIT: Voigt profile fitting program, ASCL, ascl:1408.015Google Scholar
Carswell, R. F., Lanzetta, K. M., Parnell, H. C., et al. 1991, High-resolution spectroscopy of Q1100-264 again, ApJ, 371, 3610.1086/169868CrossRefGoogle Scholar
Cashman, F. H., Kulkarni, V. P., Kisielius, R., Ferland, G. J., & Bogdanovich, P. 2017, Atomic data revisions for transitions relevant to observations of interstellar, circumgalactic, and intergalactic matter, ApJS, 230, 810.3847/1538-4365/aa6d84CrossRefGoogle Scholar
Cassata, P., Tasca, L. A. M., Le Fèvre, O., et al. 2015, The VIMOS Ultra-Deep Survey (VUDS): Fast increase in the fraction of strong Lyman- α emitters from z = 2 to z = 6, A&A, 573, A24Google Scholar
Cen, R., & Fang, T. 2006, Where are the baryons? III. Nonequilibrium effects and observables, ApJ, 650, 57310.1086/506506CrossRefGoogle Scholar
Chardin, J., Kulkarni, G., & Haehnelt, M. G. 2018b, Self-shielding of hydrogen in the IGM during the epoch of reionization, MNRAS, 478, 1065CrossRefGoogle Scholar
Charlton, J. C., Ding, J., Zonak, S. G., et al. 2003, High-resolution STIS/Hubble Space Telescope and HIRES/Keck spectra of three weak Mgii absorbers toward PG 1634+706, ApJ, 589, 11110.1086/374353CrossRefGoogle Scholar
Charlton, J. C., Mellon, R. R., Rigby, J. R., & Churchill, C. W. 2000, Anticipating high-resolution STIS spectra of four multiphase Mgii absorbers: A Test of photoionization models, ApJ, 545, 63510.1086/317825CrossRefGoogle Scholar
Chen, H.-W., Helsby, J. E., Gauthier, J.-R., et al. 2010a, An empirical characterization of extended cool gas around galaxies using Mgii absorption features, ApJ, 714, 152110.1088/0004-637X/714/2/1521CrossRefGoogle Scholar
Chen, H.-W., Johnson, S. D., Zahedy, F. S., et al. 2017a, Gauging metallicity of diffuse gas under an uncertain ionizing radiation field, ApJL, 842, L1910.3847/2041-8213/aa762dCrossRefGoogle Scholar
Chen, S.-F. S., Simcoe, R. A., Torrey, P., et al. 2017b, Mgii absorption at 2 < z < 7 with Magellan/Fire. III. Full statistics of absorption toward 100 high-redshift QSOs, ApJ, 850, 18810.3847/1538-4357/aa9707CrossRefGoogle Scholar
Cheng, T.-Y., Cooke, R. J., & Rudie, G. 2022, Harvesting the Ly α forest with convolutional neural networks, MNRAS, 517, 75510.1093/mnras/stac2631CrossRefGoogle Scholar
Cherrey, M., Bouché, N. F., Zabl, J., et al. 2024, MusE GAs FLOw and Wind (MEGAFLOW) X. The cool gas and covering fraction of Mgii in galaxy groups, MNRAS, 528, 48110.1093/mnras/stad3764CrossRefGoogle Scholar
Chiappini, C., Romano, D., & Matteucci, F. 2003, Oxygen, carbon and nitrogen evolution in galaxies, MNRAS, 339, 6310.1046/j.1365-8711.2003.06154.xCrossRefGoogle Scholar
Churchill, C. W. 1995, Introduction to echelle data reduction using the Image Reduction Analysis Facility: Emphasizing the Hamilton echelle spectrograph, LOTR, 74Google Scholar
Churchill, C. W. 1997, The low-ionization gaseous context in intermediate redshift galaxies, Ph.D. Thesis, University of California, Santa CruzGoogle Scholar
Churchill, C. W., Abbas, A., Kacprzak, G. G., & Nielsen, N. 2015, The evolution of Mgii absorbers from z = 7 to z = 0, MNRAS, in pressGoogle Scholar
Churchill, C. W., & Allen, S. L. 1995, A treatment for background correction on the Hamilton echelle spectrograph, PASP, 107, 19310.1086/133536CrossRefGoogle Scholar
Churchill, C. W. & Charlton, J. C. 1999, The multiple phases of interstellar and halo gas in a possible group of galaxies at z ~ 1, AJ, 118, 5910.1086/300910CrossRefGoogle Scholar
Churchill, C. W., Evans, J. L., Stemock, B., et al. 2020, Mgii absorbers in high-resolution quasar spectra. I. Voigt profile models, ApJ, 904, 2810.3847/1538-4357/abbb34CrossRefGoogle Scholar
Churchill, C. W., Klimek, E., Medina, A., & Vander Vliet, R. 2014, Ionization modeling of astrophysical gaseous structures. I. The optically thin regime, eprint, astro-ph/1409.0916Google Scholar
Churchill, C. W., & Le Brun, V. 1998, High-metallicity Mgii absorbers in the z < 1 Ly α forest of PKS 0454+039: Giant low surface brightness galaxies?, ApJ, 499, 67710.1086/305681CrossRefGoogle Scholar
Churchill, C. W., Mellon, R. R., Charlton, J. C., & Vogt, S. S. 2003, The spatial, ionization, and kinematic conditions of the z = 1.39 damped Ly α absorber in Q0957+561A, B, ApJ, 593, 20310.1086/376444CrossRefGoogle Scholar
Churchill, C. W., Mellon, R. R., Charlton, J. C., et al. 1999a, The Civ Absorption-Mgii kinematics connection in <z> : 0.7 galaxies, ApJl, 519, L43Google Scholar
Churchill, C. W., Mellon, R. R., Charlton, J. C., et al. 2000a, Low- and high-ionization absorption properties of Mgii absorption-selected galaxies at intermediate redshifts. I. General properties, ApJ, 130, 91Google Scholar
Churchill, C. W., Mellon, R. R., Charlton, J. C., et al. 2000b, Low- and high-ionization absorption properties of Mgii absorption-selected galaxies at intermediate redshifts. II. Taxonomy, kinematics, and galaxies, ApJ, 543, 57710.1086/317120CrossRefGoogle Scholar
Churchill, C. W., Steidel, C. C., & Vogt, S. S. 1996, On the spatial and kinematic distributions of Mgii absorbing gas in z ≃ 0.7 galaxies, ApJ, 471, 16410.1086/177960CrossRefGoogle Scholar
Churchill, C. W., Vander Vliet, R., Trujillo-Gomez, S., et al. 2015, Direct insights into observational absorption line analysis methods of the circumgalactic medium using cosmological simulations, ApJ, 802, 1010.1088/0004-637X/802/1/10CrossRefGoogle Scholar
Churchill, C. W., & Vogt, S. S. 2001, The kinematics of intermediate-redshift Mgii absorbers, AJ, 122, 67910.1086/321174CrossRefGoogle Scholar
Churchill, C. W., Vogt, S. S., & Charlton, J. C. 2003, The physical conditions of rntermediate-redshift Mgii absorbing clouds from Voigt profile analysis, AJ, 125, 9810.1086/345513CrossRefGoogle Scholar
Claudi, R. U., Turatto, M., Gratton, R. G., et al. 2008, SPHERE IFS: The spectro-differential imager of the VLT for exoplanets search, Proc. SPIE, 7014, 70143E10.1117/12.788366CrossRefGoogle Scholar
Clauset, A., Shalizi, C. R., & Newman, M. E. J. 2009, Power-law distributions in empirical data, SIAM Review, 51, 66110.1137/070710111CrossRefGoogle Scholar
Cliver, E. W. & D’Huys, E. 2018, Size distributions of solar proton events and their associated soft X-ray flares: Application of the maximum likelihood estimator, ApJ, 864, 4810.3847/1538-4357/aad043CrossRefGoogle Scholar
Codoreanu, A., Ryan-Weber, E. V., Crighton, N. H. M., et al. 2017, The comoving mass density of Mgii from z ≃ 2–5.5, MNRAS, 472, 1023CrossRefGoogle Scholar
Cole, S., Norberg, P., Baugh, C. M., et al. 2001, The 2dF galaxy redshift survey: Near-infrared galaxy luminosity functions, MNRAS, 326, 25510.1046/j.1365-8711.2001.04591.xCrossRefGoogle Scholar
Coleman, G. D., Wu, C.-C., & Weedman, D. W. 1980, Colors and magnitudes predicted for high redshift galaxies, ApJS, 43, 39310.1086/190674CrossRefGoogle Scholar
Compton, A. H. 1923, A quantum theory of the scattering of X-rays by light elements, Phys. Rev., 21, 48310.1103/PhysRev.21.483CrossRefGoogle Scholar
Connolly, A. J., Szalay, A. S., Bershady, M. A., et al. 1995, Spectral classification of galaxies: An orthogonal approach, AJ, 110, 107110.1086/117587CrossRefGoogle Scholar
Cooke, R. J., Prochaska, J. X., Zavarygin, E. et al. 2019, ALIS: Absorption (and emission) line software, github, /rcooke-ast/ALISGoogle Scholar
Cooksey, K. L., Kao, M. M., Simcoe, R. A., O’Meara, J. M., & Prochaska, J. X. 2013, Precious metals in SDSS quasar spectra. I. Tracking the evolution of strong, 1.5 < z < 4.5 Civ absorbers with thousands of systems, ApJ, 763, 3710.1088/0004-637X/763/1/37CrossRefGoogle Scholar
Cooper, T. J., Rudie, G. C., Chen, H.-W., et al. 2021, The Cosmic Ultraviolet Baryon Survey (CUBS) IV: The complex multiphase circumgalactic medium as revealed by partial Lyman limit systems, MNRAS, 508, 435910.1093/mnras/stab2869CrossRefGoogle Scholar
Cooper, T. J., Simcoe, R. A., Cooksey, K. L., et al. 2015, The incidence of low-metallicity Lyman-limit systems at z ~ 3.5: Implications for the cold-flow hypothesis of baryonic accretion, ApJ, 812, 5810.1088/0004-637X/812/1/58CrossRefGoogle Scholar
Cooper, T. J., Simcoe, R. A., Cooksey, K. L., et al. 2019, Heavy element absorption systems at 5.0 < z < 6.8: Metal-poor neutral gas and a diminishing signature of highly ionized circumgalactic matter, ApJ, 882, 7710.3847/1538-4357/ab3402CrossRefGoogle Scholar
Cowan, R. D. 1981, The Theory of Atomic Structure and Spectra, Berkeley, University of California Press10.1525/9780520906150CrossRefGoogle Scholar
Cox, D. P. & Tucker, W. H. 1969, Ionization equilibrium and radiative cooling of a low-density plasma, ApJ, 157, 115710.1086/150144CrossRefGoogle Scholar
Crenshaw, D. M., Kraemer, S. B., Boggess, A., et al. 1999, Intrinsic absorption lines in Seyfert 1 galaxies. I. Ultraviolet spectra from the Hubble Space Telescope, ApJ, 516, 75010.1086/307144CrossRefGoogle Scholar
Crighton, N. H. M., Hennawi, J. F., & Prochaska, J. X. 2013, Metal-poor, cool gas in the circumgalactic medium of a z = 2.4 star-forming galaxy: Direct evidence for cold accretion?, ApJL, 776, L1810.1088/2041-8205/776/2/L18CrossRefGoogle Scholar
Crighton, N. H. M., Hennawi, J. F., Simcoe, R. A., et al. 2015a, Metal-enriched, sub-kiloparsec gas clumps in the circumgalactic medium of a faint z = 2.5 galaxy, MNRAS, 446, 1810.1093/mnras/stu2088CrossRefGoogle Scholar
Croom, S. M., Lawrence, J. S., Bland-Hawthorn, J., et al. 2012, The Sydney-AAO Multi-object Integral field spectrograph, MNRAS, 421, 872Google Scholar
Culliton, C., Charlton, J. C., Eracleous, M., et al. 2019, Probing quasar winds using intrinsic narrow absorption lines, MNRAS, 488, 469010.1093/mnras/stz1642CrossRefGoogle Scholar
D’Agostini, G., & Raso, M. 2000, Uncertainties due to imperfect knowledge of systematic effects: General considerations and approximation formulae, eprint, arXiv:hep-ex/0002056Google Scholar
Dalgarno, A. & McCray, R. A. 1972, Heating and ionization of Hi regions, ARA&A, 10, 375Google Scholar
D’Ammando, G., Colonna, G., Pietanza, L. D., et al. 2010, Computation of thermodynamic plasma properties: A simplified approach, Spectrochimica Acta – Part B: Atomic Spectroscopy, 65, issue 8, 60310.1016/j.sab.2010.05.002CrossRefGoogle Scholar
Danforth, C. W., Keeney, B. A., Stocke, J. T., et al. 2010, Hubble/COS observations of the Ly α forest toward the BL Lac object 1ES 1553+113, ApJ, 720, 97610.1088/0004-637X/720/1/976CrossRefGoogle Scholar
Danforth, C. W., Keeney, B. A., Tilton, E. M., et al. 2016, An HST/COS survey of the low-redshift intergalactic medium. I. Survey, methodology, and overall results, ApJ, 817, 11110.3847/0004-637X/817/2/111CrossRefGoogle Scholar
Danforth, C. W. & Shull, J. M. 2006, The Ly β and Ovi forest in the local Universe, in Astrophysics in the Far Ultraviolet: Five years of Discovery with FUSE, ASP Conf. Ser. 348, 357Google Scholar
Davies, R. L., Ryan-Weber, E., D’Odorico, V., et al. 2023a, The XQR-30 metal absorber catalogue: 778 absorption systems spanning 2 ≤ zleq 6.5, MNRAS, 521, 28910.1093/mnras/stac3662CrossRefGoogle Scholar
Davis, T. M., & Lineweaver, C. H. 2004, Expanding confusion: Common misconceptions of cosmological horizons and the superluminal expansion of the Universe, PASA, 21, 97CrossRefGoogle Scholar
Dawson, K. S., Schlegel, D. J., Ahn, C. P., et al. 2013, The Baryon Oscillation Spectroscopic Survey of SDSS-III, AJ, 145, 1010.1088/0004-6256/145/1/10CrossRefGoogle Scholar
De Barros, S., Pentericci, L., Vanzella, E., et al. 2017, VLT/FORS2 view at z ~ 6: Lyman-α emitter fraction and galaxy physical properties at the edge of the epoch of cosmic reionization, A&A, 608, A123Google Scholar
de Galan, L., Smith, R., & Winefordner, J. D. 1968, The electronic partition functions of atoms and ions between 1500 K and 7000 K, Spectrochimica Acta – Part B: Atomic Spectroscopy, 23, issue 8, 52110.1016/0584-8547(68)80032-1CrossRefGoogle Scholar
de Vaucouleurs, G. & Corwin, H. G. 1985, The distance of the Hercules supercluster from supernovae and SBC spirals, and the Hubble constant, ApJ, 297, 2310.1086/163499CrossRefGoogle Scholar
Dekker, H., D’Odorico, S., Kaufer, A., Delabre, B., & Kotzlowski, H. 2000, Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory, Proc. SPIE, 4008, 53410.1117/12.395512CrossRefGoogle Scholar
Collaboration, DESI, Abdul-Karim, M., Aguilar, J., et al. 2025, DESI DR2 results II: Measurements of baryon acoustic oscillations and cosmological constraints, eprint, arXiv:2503.14738Google Scholar
Collaboration, DESI, Adame, A. G., Aguilar, J., et al. 2024, Validation of the scientific program for the Dark Energy Spectroscopic Instrument, AJ, 167, 6210.3847/1538-3881/ad0b08CrossRefGoogle Scholar
Ding, J., Charlton, J. C., Bond, N. A., Zonak, S. G., & Churchill, C. W. 2003a, A Quadruple-Phase Strong Mg II Absorber at z 0.9902 toward PG 1634+706, ApJ, 587, 55110.1086/368250CrossRefGoogle Scholar
Ding, J., Charlton, J. C., & Churchill, C. W. 2005, The absorption signature of six Mgii-selected Systems over 0.5 ≤ z ≤ 0.9, ApJ, 621, 61510.1086/427623CrossRefGoogle Scholar
Ding, J., Charlton, J. C., Churchill, C. W., & Palma, C. 2003b, The multiphase absorption systems toward PG 1206+459, ApJ, 590, 74610.1086/375028CrossRefGoogle Scholar
Dittmann, O. J., & Koeppen, J. 1995, Quasar absorption lines. I. The chemical composition of the absorbing clouds, A&A, 297, 671Google Scholar
D’Odorico, V., Bañados, E., Becker, G. D., et al. 2023, XQR-30: The ultimate XSHOOTER quasar sample at the reionization epoch, MNRAS, 523, 139910.1093/mnras/stad1468CrossRefGoogle Scholar
D’Odorico, V., Calura, F., Cristiani, S., et al. 2010, The rise of the Civ mass density at z < 2.5, MNRAS, 401, 271510.1111/j.1365-2966.2009.15856.xCrossRefGoogle Scholar
D’Odorico, V., Finlator, K., Cristiani, S., et al. 2022, The evolution of the Si iv content in the Universe from the epoch of reionization to cosmic noon, MNRAS, 512, 238910.1093/mnras/stac545CrossRefGoogle Scholar
Dopita, M. A., & Sutherland, R. S. 2003, Astrophysics of the Diffuse Universe, Berlin, Springer10.1007/978-3-662-05866-4CrossRefGoogle Scholar
Draganova, N. 2015, On the diversity of Ovi absorbers at high redshift, Ph.D. Thesis, Universität Potsdam, eprint, arXiv:1511.04604Google Scholar
Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium, Princeton, Princeton University Press10.1515/9781400839087CrossRefGoogle Scholar
Drory, N., MacDonald, N., Bershady, M. A., et al. 2015, The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5-m Telescope, AJ, 149, 7710.1088/0004-6256/149/2/77CrossRefGoogle Scholar
Dutta, R., Fumagalli, M., Fossati, M., et al. 2020a, MUSE Analysis of Gas around Galaxies (MAGG) - II: Metal-enriched halo gas around z ~ 1 galaxies, MNRAS, 499, 5022Google Scholar
Dutta, R., Fumagalli, M., Fossati, M., et al. 2021, Metal-enriched halo gas across galaxy overdensities over the last 10 billion years, MNRAS, 508, 457310.1093/mnras/stab2752CrossRefGoogle Scholar
Dutta, S., Muzahid, S., Schaye, J., et al. 2024c, MUSEQuBES: The kinematics of Ovi-bearing gas in and around low-redshift galaxies, ApJ, 980, 26410.3847/1538-4357/adabbdCrossRefGoogle Scholar
Efron, B., & Tibshirani, R. J. 1994, An introduction to the bootstrap, in Monographs on Statistics and Applied Probability, London, Chapman & HALL/CRCGoogle Scholar
Eisenhauer, F., Abuter, R., Bickert, K., et al. 2003, SINFONI - Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT, Proc. SPIE, 4841, 154810.1117/12.459468CrossRefGoogle Scholar
Eldridge, J. J. & Stanway, E. R. 2009, Spectral population synthesis including massive binaries, MNRAS, 400, 101910.1111/j.1365-2966.2009.15514.xCrossRefGoogle Scholar
Elfessi, A., & Reineke, D. M. 2001, A Bayesian look at classical estimation: The exponential distribution, J. Educ. Stat., 9, 110.1080/10691898.2001.11910648CrossRefGoogle Scholar
Ellison, S. L. 2006, An efficient technique for pre-selecting low-redshift damped Ly α systems, MNRAS, 368, 33510.1111/j.1365-2966.2006.10098.xCrossRefGoogle Scholar
Elmegreen, B. G. & Scalo, J. 2004, Interstellar turbulence I: Observations and processes, ARA&A, 42, 211Google Scholar
Emerson, D. 1996, Interpreting Astronomical Spectra, New Jersey, Wiley-VCHGoogle Scholar
Escala, I., Wetzel, A., Kirby, E. N., et al. 2018, Modeling chemical abundance distributions for dwarf galaxies in the Local Group: The impact of turbulent metal diffusion, MNRAS, 474, 219410.1093/mnras/stx2858CrossRefGoogle Scholar
Evans, J. L. 2011, Mgii quasar absorption lines systems as a probe of galaxy halo kinematic evolution, Ph.D. Thesis, New Mexico State UniversityGoogle Scholar
Evans, J. L., Churchill, C. W., Murphy, M. T., et al. 2013, The redshift distribution of intervening weak Mgii quasar absorbers and a curious dependence on quasar luminosity, ApJ, 768, 310.1088/0004-637X/768/1/3CrossRefGoogle Scholar
Fabbian, D., Nissen, P. E., Asplund, M., et al. 2009, The C/O ratio at low metallicity: Constraints on early chemical evolution from observations of Galactic halo stars, A&A, 500, 1143Google Scholar
Faber, S. M., Phillips, A. C., Kibrick, R. I., et al. 2003, The DEIMOS spectrograph for the Keck II Telescope: Integration and testing, Proc. SPIE, 4841, 165710.1117/12.460346CrossRefGoogle Scholar
Faerman, Y., Sternberg, A., & McKee, C. F. 2017, Massive warm/hot galaxy coronae as probed by UV/X-Ray oxygen absorption and emission. I. Basic model, ApJ, 835, 5210.3847/1538-4357/835/1/52CrossRefGoogle Scholar
Faucher-Giguère, C.-A. 2020, A cosmic UV/X-ray background model update, MNRAS, 493, 161410.1093/mnras/staa302CrossRefGoogle Scholar
Ferland, G. J. 2002, Hazy: A brief introduction to Cloudy 96, University of Kentucky Department of Physics and Astronomy Internal ReportGoogle Scholar
Ferland, G. J. 2003, Quantitative spectroscopy of photoionized clouds, ARA&A, 41, 517Google Scholar
Ferland, G. J., Chatzikos, M., Guzmán, F., et al. 2017, The 2017 release of Cloudy, RMxAA, 53, 385Google Scholar
Ferland, G. J., Korista, K. T., Verner, D. A., et al. 1998, Cloudy 90: Numerical simulation of plasmas and their spectra, PASP, 110, 761Google Scholar
Ferland, G. J., Porter, R. L., van Hoof, P. A. M., et al. 2013, The 2013 release of Cloudy, RMxAA, 49, 137Google Scholar
Feroz, F., Hobson, M. P., & Bridges, M. 2009, MULTINEST: An efficient and robust Bayesian inference tool for cosmology and particle physics, MNRAS, 398, 160110.1111/j.1365-2966.2009.14548.xCrossRefGoogle Scholar
Field, G. B. 1965, Thermal instability, ApJ, 142, 53110.1086/148317CrossRefGoogle Scholar
Fielding, D. B. & Bryan, G. L. 2022, The structure of multiphase galactic winds, ApJ, 924, 8210.3847/1538-4357/ac2f41CrossRefGoogle Scholar
Filippenko, A. V. 1982, The importance of atmospheric differential refraction in spectrophotometry, PASP, 94, 71510.1086/131052CrossRefGoogle Scholar
Fontana, A. & Ballester, P. 1995, FITLYMAN: A Midas tool for the analysis of absorption spectra, The Messenger, 80, 37Google Scholar
Ford, A. B., Oppenheimer, B. D., Davé, R., et al. 2013, Hydrogen and metal line absorption around low-redshift galaxies in cosmological hydrodynamic simulations, MNRAS, 432, 8910.1093/mnras/stt393CrossRefGoogle Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D., et al. 2013, EMCEE: The MCMC hammer, PASP, 125, 30610.1086/670067CrossRefGoogle Scholar
Fox, A. J., Wakker, B. P., Barger, K. A., et al. 2014, The COS/UVES absorption survey of the Magellanic Stream. III. Ionization, total mass, and inflow rate onto the Milky Way, ApJ, 787, 14710.1088/0004-637X/787/2/147CrossRefGoogle Scholar
Fox, A. J., Wakker, B. P., Savage, B. D., et al. 2005, Multiphase high-velocity clouds toward HE 0226-4110 and PG 0953+414, ApJ, 630, 33210.1086/431915CrossRefGoogle Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, Final results from the Hubble space telescope key project to measure the Hubble constant, ApJ, 553, 4710.1086/320638CrossRefGoogle Scholar
Freedman, W. L., Madore, B. F., Scowcroft, V., et al. 2012, Carnegie Hubble program: A mid-infrared calibration of the Hubble constant, ApJ, 758, 2410.1088/0004-637X/758/1/24CrossRefGoogle Scholar
Frieman, J. A., Turner, M. S., & Huterer, D. 2008, Dark energy and the accelerating Universe, ARA&A, 46, 385Google Scholar
Fumagalli, M., O’Meara, J. M., & Prochaska, J. X. 2016, The physical properties of z > 2 Lyman limit systems: New constraints for feedback and accretion models, MNRAS, 455, 410010.1093/mnras/stv2616CrossRefGoogle Scholar
Gaikwad, P., Srianand, R., Choudhury, T. R., et al. 2017, Voigt profile parameter estimation routine (Viper): Hi photoionization rate at z < 0.5, MNRAS, 467, 317210.1093/mnras/stx248CrossRefGoogle Scholar
Ganguly, R., Eracleous, M., Charlton, J. C., & Churchill, C. W. 1999, Intrinsic narrow absorption lines in Keck HIRES spectra of a sample of six quasars, AJ, 117, 259410.1086/300882CrossRefGoogle Scholar
Garzilli, A., Theuns, T., & Schaye, J. 2020, Measuring the temperature and profiles of Ly α absorbers, MNRAS, 492, 219310.1093/mnras/stz3585CrossRefGoogle Scholar
Gaunt, J. A. 1930, Continuous absorption, Philos. Trans. R. Soc., 229, 163Google Scholar
Gauss, C. F. 1823, Theoria combinationis obsevationum erroribus minimis obnoxiae, Werke, Vol. 4, Göttingen, GermanyGoogle Scholar
Gehren, T., & Ponz, D. 1986, Echelle background correction, A&A, 168, 386Google Scholar
Ghavamian, P., Aloisi, D., Lennon, D. et al. 2009, Preliminary characterization of the post-launch line spread functions of COS, Cosmic Origins Spectrograph Instrument Science Report, 2009-01 Version 1.0, Baltimore, Space Telescope Science InstituteGoogle Scholar
Gibson, J. L., Lehner, N., Oppenheimer, B. D., et al. 2022, The COS CGM Compendium. IV. Effects of varying Ionization backgrounds on metallicity determinations in the z < 1 circumgalactic medium, AJ, 164, 910.3847/1538-3881/ac69d0CrossRefGoogle Scholar
Gilliland, R. L. 1992, Details of noise sources and reduction processes, in Astronomical CCD Observing and Reduction Techniques, ASP Conf. Ser. 23, 68Google Scholar
Gimeno, G., Roth, K., Chiboucas, K., et al. 2016, On-sky commissioning of Hamamatsu CCDs in GMOS-S, Proc. SPIE, 9908, 99082SGoogle Scholar
Gnat, O., & Sternberg, A. 2007, Time-dependent ionization in radiatively cooling gas, ApJS, 168, 21310.1086/509786CrossRefGoogle Scholar
Gnedin, N. Y., & Hollon, N. 2012, Cooling and heating funtions of photoionized gas, ApJS, 202, 1310.1088/0067-0049/202/2/13CrossRefGoogle Scholar
Gordon, W. 1929, Zur berechnung der matrizen bein wasserstoff atom, Ann. Phys. (Berl.), 2, 103110.1002/andp.19293940807CrossRefGoogle Scholar
Gray, D. F. 1974, On scattered light corrections for stellar spectrographs, PASP, 86, 52610.1086/129640CrossRefGoogle Scholar
Gray, D. F. 2005, The Observation and Analysis of Stellar Photospheres, Astrophysics Series, Vol. 20, Cambridge, Cambridge University PressGoogle Scholar
Green, J. C., Froning, C. S., Osterman, S., et al. 2012, The Cosmic origins spectrograph, ApJ, 744, 6010.1088/0004-637X/744/1/60CrossRefGoogle Scholar
Green, L. C., Matsushima, S., & Kolchin, E. K. 1958, Tables of the continuum wave function for hydrogen, ApJS, 3, 45910.1086/190041CrossRefGoogle Scholar
Green, L. C., Rush, P. P., & Chandler, C. D. 1957, Oscillator strengths and matrix elements for the electric dipole moment for hydrogen, ApJS, 3, 3710.1086/190031CrossRefGoogle Scholar
Griem, H. R. 1962, High-density corrections in plasma spectroscopy, Phys. Rev., 128, issue 3, 99710.1103/PhysRev.128.997CrossRefGoogle Scholar
Griesmann, U., & Kling, R. 2000, Interferometric measurement of resonance transition wavelengths in Civ, Si iv, Al iii, Al ii, and Si ii, ApJ, 563, 11310.1086/312741CrossRefGoogle Scholar
Griffith, E., Weinberg, D. H., Johnson, J. A., et al. 2021, The similarity of abundance ratio trends and nucleosynthetic patterns in the Milky Way disk and bulge, ApJ, 909, 7710.3847/1538-4357/abd6beCrossRefGoogle Scholar
Groves, B., Dopita, M. A., Sutherland, R. S., et al. 2008, Modeling the pan-spectral energy distribution of starburst galaxies. IV. The controlling parameters of the starburst SED, ApJS, 176, 43810.1086/528711CrossRefGoogle Scholar
Guth, A. H. 1981, Inflationary Universe: A possible solution to the horizon and flatness problems, Phys. Rev. D, 23, 34710.1103/PhysRevD.23.347CrossRefGoogle Scholar
Haardt, F., & Madau, P. 1996, Radiative transfer in a clumpy Universe. II. The ultraviolet extragalactic background, ApJ, 461, 2010.1086/177035CrossRefGoogle Scholar
Haardt, F., & Madau, P. 2001, Modeling the UV/X-ray cosmic background with CUBA, in Clusters of Galaxies and the High Redshift Universe Observed in X-rays, XXIst Moriond Astrophysica Meeting, Saclay, CEA, 64Google Scholar
Haardt, F., & Madau, P. 2012, Radiative transfer in a clumpy Universe. IV. New synthesis models of the cosmic UV/x-ray background, ApJ, 746, 12510.1088/0004-637X/746/2/125CrossRefGoogle Scholar
Hafen, Z., Faucher-Giguère, C.-A., Anglés-Alcázar, D., et al. 2019, The origins of the circumgalactic medium in the FIRE simulations, MNRAS, 488, 124810.1093/mnras/stz1773CrossRefGoogle Scholar
Haislmaier, K. J., Tripp, T. M., Katz, N., et al. 2021, The COS Absorption Survey of Baryon Harbors: Unveiling the physical conditions of circumgalactic gas through multiphase Bayesian ionization modelling, MNRAS, 502, 499310.1093/mnras/staa3544CrossRefGoogle Scholar
Hallstadius, L. 1979, Extended measurements of isotope shifts in Mgi, Zeitschrift für Physik A, 291, 1220Google Scholar
Halverson, N. W., Leitch, E. M., Pryke, C., et al. 2002, Degree angular scale interferometer first results: A measurement of the cosmic microwave background angular power spectrum, ApJ, 568, 3810.1086/338879CrossRefGoogle Scholar
Hamann, F., Barlow, T. A., Junkkarinen, V., & Burbidge, E. M. 1997, High-resolution spectra of intrinsic absorption lines in the quasi-stellar object UM 675, ApJ, 478, 8010.1086/303781CrossRefGoogle Scholar
Hamann, F., & Ferland, G. 1999, Elemental abundances in quasistellar objects: Star formation and galactic nuclear evolution at high redshifts, ARA&A, 37, 487Google Scholar
Hamann, F., & Sabra, B. 2004, The diverse nature of intrinsic absorbers in AGNs, in AGN Physics with the Sloan Digital Sky Survey, ASP Conf. Ser. 311, 203Google Scholar
Hamuy, M., Walker, A. R., Suntzeff, N. B., Gigoux, P., Heathcote, S. R., & Phillips, M. M. 1992, Southern spectrophotometric standards, PASP, 104, 53310.1086/133028CrossRefGoogle Scholar
Hanany, S., Ade, P., Balbi, A., et al. 2000, Maxima-1: A measurement of the cosmic microwave background anisotropy on angular scales of 10′ – 5°, ApJL, 545, L510.1086/317322CrossRefGoogle Scholar
Harrison, E. 1993, The redshift-distance and velocity-distance law, ApJ, 403, 2810.1086/172179CrossRefGoogle Scholar
Hasan, F., Churchill, C. W., Stemock, B., et al. 2020, Evolution of Civ absorbers. I. The cosmic incidence, ApJ, 904, 4410.3847/1538-4357/abbe0bCrossRefGoogle Scholar
Hasan, F., Churchill, C. W., Stemock, B., et al. 2022, Evolution of Civ Absorbers. II. Where does Civ live?, ApJ, 942, 1210.3847/1538-4357/ac308cCrossRefGoogle Scholar
Hebb, M. H., & Menzel, D. H. 1940, Physical processes in gaseous nebulae. X. Collisional excitation of nebulium, ApJ, 92, 40810.1086/144230CrossRefGoogle Scholar
Hecht, E. & Zajac, A. 1974, Optics, Boston, Addison WesleyGoogle Scholar
Hennawi, J. F., Prochaska, J. X., Burles, S., et al. 2006, Quasars Probing Quasars. I. Optically thick absorbers near luminous quasars, ApJ, 651, 6110.1086/507069CrossRefGoogle Scholar
Henry, R. B. C., & Worthey, G. 1999, The distribution of heavy elements in spiral and elliptical galaxies, PASP, 111, 91910.1086/316403CrossRefGoogle Scholar
Herzberg, H. 1944, Atomic Spectra and Atomic Structure, New York, Dover PublicationsGoogle Scholar
Hinshaw, G., Larson, D., Komatsu, E., et al. 2013, Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results, ApJS, 208, 1910.1088/0067-0049/208/2/19CrossRefGoogle Scholar
Hirai, Y. & Saitoh, T. R. 2017, Efficiency of metal mixing in dwarf galaxies, ApJL, 838, L2310.3847/2041-8213/aa6799CrossRefGoogle Scholar
Hiss, H., Walther, M., Hennawi, J. F., et al. 2018, A new measurement of the temperature-density relation of the IGM from Voigt profile fitting, ApJ, 865, 4210.3847/1538-4357/aada86CrossRefGoogle Scholar
Hogg, D. W. 1999, Distance measures in cosmology, eprint, astro-ph/9905116Google Scholar
Holmberg, E. 1976, in Galaxies and the Universe: Volume 9, Stars and Stellar Systems, Chicago, Chicago University Press, 123Google Scholar
Horne, K. 1986, An optimal extraction algorithm for CCD spectroscopy, PASP, 98, 60910.1086/131801CrossRefGoogle Scholar
Howarth, I. D. 2015, VAPID: Voigt absorption-profile [interstellar] dabbler, ASCL, ascl:1506.010Google Scholar
Howell, S., B. 2000, Handbook of CCD Astronomy, Cambridge, Cambridge University PressGoogle Scholar
Howk, J. C., & Sembach, K. R. 2000, Background and scattered-light subtraction in the high-resolution echelle modes of the Space Telescope imaging spectrograph, AJ, 119, 248110.1086/301354CrossRefGoogle Scholar
Hu, E. M., Kim, T.-S., Cowie, L. L., Songaila, A., & Rauch, M. 1995, The distribution of column densities and b-values in the Lyman-alpha forest, AJ, 110, 152610.1086/117625CrossRefGoogle Scholar
Hu, W., Chen, C., Fang, D., Wang, Y., Lu, F., & Yang, F. 1996, Systematic study on ionization cross sections of electron-ion collisions for the Li-like isoelectronic sequence, J. Phys. B, 29, 288710.1088/0953-4075/29/13/022CrossRefGoogle Scholar
Hubble, E. 1929, A relation between distance and radial velocity among extra-galactic nebulae, PNAS, 15, 16810.1073/pnas.15.3.168CrossRefGoogle ScholarPubMed
Hubble, E. & Humason, M. L. 1931, The Velocity-Distance Relation among Extra-Galactic Nebulae, ApJ, 74, 4310.1086/143323CrossRefGoogle Scholar
Hubeny, I., & Mihalas, D. 2015, The Theory of Stellar Atmospheres: An Introduction to Astrophysical Non-Equilibrium Quantitative Spectroscopic Analysis, Princeton, Princeton University PressGoogle Scholar
Humlíc̆ek, J. 1979, An efficient method for evaluation of the complex probability function: The Voigt function and its derivatives, J. Quant. Spectrosc. Radiat. Transf., 21, 30910.1016/0022-4073(79)90062-1CrossRefGoogle Scholar
Hummels, C. B., Bryan, G. L., Smith, B. D., et al. 2013, Constraints on hydrodynamical subgrid models from quasar absorption line studies of the simulated circumgalactic medium, MNRAS, 430, 154810.1093/mnras/sts702CrossRefGoogle Scholar
Hummer, D. G., & Seaton, M. J. 1963, The ionization structure of planetary nebulae, MNRAS, 125, 43710.1093/mnras/125.5.437CrossRefGoogle Scholar
Hussain, T., Muzahid, S., Narayanan, A., et al. 2015, HST/COS detection of a Neviii absorber towards PG 1407+265: An unambiguous tracer of collisionally ionized hot gas?, MNRAS, 446, 244410.1093/mnras/stu2285CrossRefGoogle Scholar
Huterer, D., & Shafer, D. L. 2018, Dark energy two decades after: Observables, probes, consistency tests, Rep. Prog. Phys., 81, 01690110.1088/1361-6633/aa997eCrossRefGoogle ScholarPubMed
Ishita, D., Misawa, T., Itoh, D., et al. 2021, MCMC-based Voigt profile fitting to a Mini-BAL System in the quasar UM675, ApJ, 921, 11910.3847/1538-4357/ac14b4CrossRefGoogle Scholar
Izotov, Y. I., Stasińska, G., & Guseva, N. G. 2013, Primordial 4He abundance: A determination based on the largest sample of Hii regions with a methodology tested on model Hii regions, A&A, 558, A57Google Scholar
Jalan, P., Khaire, V., Vivek, M., et al. 2024, FLAME: Fitting Lyα absorption lines using machine learning, A&A, 688, 126Google Scholar
Jannuzi, B. T., Bahcall, J. N., Bergeron, J., et al. 1998, The Hubble Space Telescope quasar absorption line key project. XIII. A census of absorption-line systems at low redshift, ApJS, 118, 110.1086/313130CrossRefGoogle Scholar
Jeans, J., H. 1902, The stability of spherical nebulae, Philos. Trans. R. Soc., 199, 312Google Scholar
Jenkins, E. B. 1996, A procedure for correcting the apparent optical depths of moderately saturated interstellar absorption lines, ApJ, 471, 29210.1086/177969CrossRefGoogle Scholar
Jensen, J. B., Blakeslee, J. P., Cantiello, M., et al. 2025, The TRGB-SBF project. III. Refining the HST surface brightness fluctuation distance scale calibration with JWST, eprint, arXiv:2502.15935Google Scholar
Johnson, J. A., Fields, B. D., & Thompson, T. A. 2020, The origin of the elements: A century of progress, Phil. Trans. A, 378, 20190301Google Scholar
Johnson, S. D., Chen, H.-W., & Mulchaey, J. S. 2013, Probing the IGM-galaxy connection at z <0.5. II. New insights into the galaxy environments of Ovi absorbers in PKS 0405-123, MNRAS, 434, 176510.1093/mnras/stt1137CrossRefGoogle Scholar
Johnson, S. D., Chen, H.-W., & Mulchaey, J. S. 2015b, On the origin of excess cool gas in quasar host haloes, MNRAS, 452, 255310.1093/mnras/stv1481CrossRefGoogle Scholar
Kaastra, J. S., & Mewe, R. 1993, X-ray emission from thin plasmas. I - Multiple Auger ionisation and fluorescence processes for Be to Zn, A&AS, 97, 443Google Scholar
Kacprzak, G. G., Churchill, C. W., Steidel, C. C., et al. 2012b, Discovery of multiphase cold accretion in a massive galaxy at z = 0.7, MNRAS, 427, 302910.1111/j.1365-2966.2012.21945.xCrossRefGoogle Scholar
Kellermann, K. I. 1993, The cosmological deceleration parameter estimated from the angular-size/redshift relation for compact radio sources, Nature, 361, 13410.1038/361134a0CrossRefGoogle Scholar
Khaire, V. & Srianand, R. 2015, Photon underproduction crisis: Are QSOs sufficient to resolve it?, MNRAS, 451, L3010.1093/mnrasl/slv060CrossRefGoogle Scholar
Khaire, V. & Srianand, R. 2019, New synthesis models of consistent extragalactic background light over cosmic time, MNRAS, 484, 417410.1093/mnras/stz174CrossRefGoogle Scholar
Kim, T.-S., Bolton, J. S., Viel, M., et al. 2007, An improved measurement of the flux distribution of the Ly α forest in QSO absorption spectra: The effect of continuum fitting, metal contamination and noise properties, MNRAS, 382, 165710.1111/j.1365-2966.2007.12406.xCrossRefGoogle Scholar
Kim, T.-S., Hu, E. M., Cowie, L. L., & Songaila, A. 1997, The redshift evolution of the Ly-alpha forest, AJ, 114, 110.1086/118446CrossRefGoogle Scholar
Kim, T.-S., Partl, A. M., Carswell, R. F., et al. 2013, The evolution of Hi and Civ quasar absorption line systems at 1.9 < z < 3.2, A&A, 552, A77Google Scholar
Kingdon, J. B., & Ferland, G. J. 1996, Rate coefficients for charge transfer between hydrogen and the first 30 elements, ApJS, 106, 20510.1086/192335CrossRefGoogle Scholar
Kippenhahn, R., Weigert, A., & Weiss, A. 2012, Stellar Structure and Evolution, Berlin, Springer10.1007/978-3-642-30304-3CrossRefGoogle Scholar
Klein, O., & Nashina, Y. 1929 On the scattering of radiation by free electrons according to the new relativistic quantum dynamics of Dirac, Zeitschrift für Physik, 52, 85310.1007/BF01366453CrossRefGoogle Scholar
Kobayashi, C., Karakas, A. I., & Lugaro, M. 2020, The origin of elements from carbon to uranium, ApJ, 900, 17910.3847/1538-4357/abae65CrossRefGoogle Scholar
Kochanoc, V. P. 2011 Efficient approximations to the Voigt and Rautian-Sobelman profiles, Atmos. Ocean. Opt., V24, No. 5, 432Google Scholar
Komatsu, E., Dunkley, J., Nolta, M. R., et al. 2009 Five-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation, ApJS, 180, 33010.1088/0067-0049/180/2/330CrossRefGoogle Scholar
Kompaneets, A. S. 1957, The establishment of the thermal equilibrium between quanta and electrons, Sov. Phys. JETP, 4, 730Google Scholar
Kramida, A. E. 2010, A critical compilation of experimental data on spectral lines and energy levels of hydrogen, deuterium, and tritium, Data Nuclear Tables, 96, 58610.1016/j.adt.2010.05.001CrossRefGoogle Scholar
Kramida, A. E., Ralchenko, Y., Reader, J., & The NIST ASD Team 2014, NIST atomic spectra database, V5.2, 2015-Jun19 (http://physics.nist.gov/asd)Google Scholar
Kriss, G. A. 2011, Improved medium resolution line spread functions for COS FUV spectra, COS Instr. Sci. Rep. 2011-01 Version 1.0, Baltimore: Space Telescope Science InstituteGoogle Scholar
Krogager, J.-K. 2018, VoigtFit: Absorption line fitting for Voigt profiles, ASCL, ascl:1811.016Google Scholar
Krolik, J. H., McKee, C. F., & Tarter, C. B. 1981, Two-phase models of quasar emission line regions, ApJ, 249, 42210.1086/159303CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1959, Fluid mechanics, Course of Theoretical Physics, Oxford, Pergamon PressGoogle Scholar
Lanzetta, K. M. 1991, Evolution of high-redshift lyman-limit absorption systems, ApJ, 375, 110.1086/170164CrossRefGoogle Scholar
Lanzetta, K. M. 1993, QSO absorption lines: Implications for galaxy formation and evolution, in The Environment and Evolution of Galaxies, 188, Dordrecht, Kluwer, 23710.1007/978-94-011-1882-8_15CrossRefGoogle Scholar
Lanzetta, K. M., Wolfe, A. M., & Turnshek, D. A. 1987, An absorption-line survey of 32 QSOs at red wavelengths - properties of the Mgii absorbers, ApJ, 322, 73910.1086/165769CrossRefGoogle Scholar
Larkin, J., Barczys, M., Krabbe, A., et al. 2006, OSIRIS: A diffraction limited integral field spectrograph for Keck, Proc. SPIE, 6269, 62691A10.1117/12.672061CrossRefGoogle Scholar
Larkin, J. E., Chilcote, J. K., Aliado, T., et al. 2014, The integral field spectrograph for the Gemini planet imager, Proc. SPIE, 9147, 91471KGoogle Scholar
Lauroesch, J. T., Truran, J. W., Welty, D. E., & York, D. G. 1996, QSO absorption line systems and early chemical evolution, PASP, 108, 64110.1086/133780CrossRefGoogle Scholar
Lehner, N., Howk, J. C., Tripp, T. M., et al. 2013, The bimodal metallicity distribution of the cool circumgalactic medium at z ≤ 1, ApJ, 770, 13810.1088/0004-637X/770/2/138CrossRefGoogle Scholar
Lehner, N., O’Meara, J. M., Howk, J. C., et al. 2016, The cosmic evolution of the metallicity distribution of ionized gas traced by Lyman limit systems, ApJ, 833, 28310.3847/1538-4357/833/2/283CrossRefGoogle Scholar
Lehner, N., Savage, B. D., Wakker, B. P., et al. 2006, Low-redshift intergalactic absorption lines in the spectrum of HE 0226–4110, ApJS, 164, 110.1086/500932CrossRefGoogle Scholar
Lehner, N., Wotta, C. B., Howk, J. C., et al. 2018, The COS CGM Compendium. I. Survey design and initial results, ApJ, 866, 3310.3847/1538-4357/aadd03CrossRefGoogle Scholar
Lehner, N., Wotta, C. B., Howk, J. C., et al. 2019, The COS CGM Compendium. III. Metallicity and physical properties of the cool circumgalactic medium at z ≤ 1, ApJ, 887, 510.3847/1538-4357/ab41fdCrossRefGoogle Scholar
Leitherer, C., Ekström, S., Meynet, G., et al. 2014, The effects of stellar rotation. II. A comprehensive set of Starburst99 models, ApJS, 212, 1410.1088/0067-0049/212/1/14CrossRefGoogle Scholar
Leitherer, C., Ortiz Otálvaro, P. A., Bresolin, F., et al. 2010, A library of theoretical ultraviolet spectra of massive, hot stars for evolutionary synthesis, ApJS, 189, 30910.1088/0067-0049/189/2/309CrossRefGoogle Scholar
Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999, Starburst99: Synthesis models for galaxies with active star formation, ApJS, 123, 310.1086/313233CrossRefGoogle Scholar
Lemaître, G. 1927, Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques, Annales de la Société Scientifique de Bruxelles, 47, 49 (title translation: “A homogeneous Universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae”)Google Scholar
Lequeux, J. 2005, The Interstellar Medium, Berlin, Springer10.1007/b137959CrossRefGoogle Scholar
Levich, E. V., & Sunyaev, R. A. 1970, The heating of gas in the vicinity of quasars, nuclei of Seyfert galaxies, and pulsars by the induced Compton effect, ApJL, 7, 69Google Scholar
Li, W.-K., & Blinder, S. M. 2014, Atomic states: The L-S and j-j coupling schemes and their correlation, eprint, astro-ph/1409.2032Google Scholar
Liang, C. J. & Kravtsov, A. 2017, BayesVP: Full Bayesian Voigt profile fitting, ASCL, ascl:1711.004Google Scholar
Liang, C. J. & Remming, I. 2020, On the model of the circumgalactic mist: The implications of cloud sizes in galactic winds and haloes, MNRAS, 491, 505610.1093/mnras/stz3403CrossRefGoogle Scholar
Liang, C. J., Kravtsov, A. V., & Agertz, O. 2018, Observing the circumgalactic medium of simulated galaxies through synthetic absorption spectra, MNRAS, 479, 182210.1093/mnras/sty1668CrossRefGoogle Scholar
Lidman, C., Tucker, B. E., Davis, T. M., et al. 2020, OzDES multi-object fibre spectroscopy for the Dark Energy Survey: Results and second data release, MNRAS, 496, 1910.1093/mnras/staa1341CrossRefGoogle Scholar
Lu, L., Sargent, W. L. W., Womble, D. S., & Takada-Hidai, M. 1996, The Lyman-alpha forest at z ≈ 4: Keck HIRES observations of Q0000–26, ApJ, 472, 50910.1086/526756CrossRefGoogle Scholar
Lynch, R. S. & Charlton, J. C. 2007, Physical properties of weak Mgii absorbers at z ~ 2, ApJ, 666, 6410.1086/519826CrossRefGoogle Scholar
Madau, P. 1995, Radiative transfer in a clumpy Universe: The colors of high-redshift galaxies, ApJ, 441, 1810.1086/175332CrossRefGoogle Scholar
Madau, P., Haardt, F., & Rees, M. J. 1999, Radiative transfer in a clumpy Universe. III. The nature of cosmological ionizing sources, ApJ, 514, 64810.1086/306975CrossRefGoogle Scholar
Madhavacheril, M. S., Qu, F. J., Sherwin, B. D., et al. 2024, The Atacama Cosmology Telescope: DR6 gravitational lensing map and cosmological parameters, ApJ, 962, 11310.3847/1538-4357/acff5fCrossRefGoogle Scholar
Maller, A. H., & Bullock, J. S. 2004, Multiphase galaxy formation: high-velocity clouds and the missing baryon problem, MNRAS, 355, 69410.1111/j.1365-2966.2004.08349.xCrossRefGoogle Scholar
Manuwal, A., Narayanan, A., Muzahid, S., et al. 2019, Civ absorbers tracing cool gas in dense galaxy group/cluster environments, MNRAS, 485, 30Google Scholar
Mar, D. P. & Bailey, G. 1995, Xvoigt - an Interactive absorption line fitting program for the X-window system, PASA, 12, 239Google Scholar
Marsh, T. R. 1989, The extraction of highly distorted spectra, PASP, 101, 103210.1086/132570CrossRefGoogle Scholar
Martinez, P., & Klotz, A. 1998, A Practical Guide to CCD Astronomy, Cambridge, Cambridge University PressGoogle Scholar
Masiero, J. R., Charlton, J. C., Ding, J., et al. 2005, Models of five absorption-line systems along the line of sight toward PG 0117+213, ApJ, 623, 5710.1086/428426CrossRefGoogle Scholar
Massey, P., & Jacoby, G. H. 1992, CCD data: The good, the bad, and the ugly, in Astronomical CCD Observing and Reduction Techniques, ASP Conf. Ser. 23, 240Google Scholar
Massey, P., Strobel, K., Barnes, J. V., & Anderson, E. 1988, Spectrophotometric standards, ApJ, 328, 31510.1086/166294CrossRefGoogle Scholar
Matejek, M. S., & Simcoe, R. A. 2012, A Survey of Mgii absorption at 2 < z < 6 with Magellan/FIRE. I. Sample and evolution of the Mgii frequency, ApJ, 761, 11210.1088/0004-637X/761/2/112CrossRefGoogle Scholar
Mathes, N. L., Churchill, C. W., Kacprzak, G. G., et al. 2014, Halo mass dependence of Hi and Ovi absorption: Evidence for differential kinematics, ApJ, 792, 12810.1088/0004-637X/792/2/128CrossRefGoogle Scholar
Mathews, W. G. & Prochaska, J. X. 2017, Circumgalactic oxygen absorption and feedback, ApJL, 846, L2410.3847/2041-8213/aa8861CrossRefGoogle Scholar
Matteucci, F. 2021, Modeling the chemical evolution of the Milky Way, A&ARv, 29, 5Google Scholar
McKee, C. F. & Begelman, M. C. 1990, Steady evaporation and condensation of isolated clouds in hot plasma, ApJ, 358, 39210.1086/168995CrossRefGoogle Scholar
McKee, C. F. & Cowie, L. L. 1977, The evaporation of spherical clouds in a hot gas. II. Effects of radiation, ApJ, 215, 21310.1086/155350CrossRefGoogle Scholar
McLean, I. S., Steidel, C. C., Epps, H. W., et al. 2010, Design and development of MOSFIRE: The multi-object spectrometer for infrared exploration at the Keck Observatory, Proc. SPIE, 7735, 77351E10.1117/12.856715CrossRefGoogle Scholar
McLean, I. S., Steidel, C. C., Epps, H. W., et al. 2012, MOSFIRE, the multi-object spectrometer for infra-red exploration at the Keck Observatory, Proc. SPIE, 8446, 84460J10.1117/12.924794CrossRefGoogle Scholar
McQuinn, M. & Werk, J. K. 2018, Implications of the large Ovi columns around low-redshift L* galaxies, ApJ, 852, 3310.3847/1538-4357/aa9d3fCrossRefGoogle Scholar
McQuinn, M. 2016, The evolution of the intergalactic medium, ARA&A, 54, 313Google Scholar
McQuinn, M., Oh, S. P., & Faucher-Giguère, C.-A. 2011, On Lyman-limit systems and the evolution of the intergalactic ionizing background, ApJ, 743, 8210.1088/0004-637X/743/1/82CrossRefGoogle Scholar
Meiksin, A. A. 2009, The physics of the intergalactic medium, Rev. Mod. Phys., 81, 140510.1103/RevModPhys.81.1405CrossRefGoogle Scholar
Menzel, D. 1930, Atomic coefficients of general absorption, PLicO, 17, 222Google Scholar
Menzel, D., & Pekeris, C. 1935, Absorption coefficients and H-line intensities, MNRAS, 96, 77Google Scholar
Mihalas, D. 1978, Stellar Atmospheres, San Francisco, W. H. Freeman & CompanyGoogle Scholar
Mihalas, D., & Mihalas, B. D. 1984, Foundation of Radiation Hydrodynamics, New York, Oxford University PressGoogle Scholar
Misawa, T., Charlton, J. C., Eracleous, M., et al. 2007a, A census of intrinsic narrow absorption lines in the spectra of quasars at z = 2–4, ApJS, 171, 110.1086/513713CrossRefGoogle Scholar
Misawa, T., Saez, C., Charlton, J. C., et al. 2016, Multi-sightline observation of narrow absorption lines in lensed quasar SDSS J1029+2623, ApJ, 825, 2510.3847/0004-637X/825/1/25CrossRefGoogle Scholar
Misawa, T., Tytler, D., Iye, M., et al. 2007b, Spectroscopic analysis of Hi absorption-line systems in 40 HIRES quasars, AJ, 134, 163410.1086/521557CrossRefGoogle Scholar
Mo, H. J., & Miralda-Escudé, J. 1996, Gaseous galactic halos and quasi-stellar object absorption-line systems, ApJ, 469, 58910.1086/177808CrossRefGoogle Scholar
Mollá, M., García-Vargas, M. L., & Bressan, A. 2009, PopStar I: Evolutionary synthesis model description, MNRAS, 398, 45110.1111/j.1365-2966.2009.15160.xCrossRefGoogle Scholar
Moore, C. E. 1970, Selected Tables of Atomic Spectra, NSRDS-NBS, Washington, DC, U.S. Department of CommerceGoogle Scholar
Moore, C. E., & Merrill, P. W. 1968, Partial Grotrian Diagrams of Astrophysical Interest, NSRDS-NBS-23, Washington, DC, U.S. Department of Commerce10.6028/NBS.NSRDS.23CrossRefGoogle Scholar
Morrissey, P., Matuszewski, M., Martin, D. C., et al. 2018, The Keck Cosmic Web Imager Integral Field Spectrograph, ApJ, 864, 9310.3847/1538-4357/aad597CrossRefGoogle Scholar
Morton, D. C., & Morton, W. A. 1972a, Absorption-line profiles in the quasi-stellar object PHL 957, ApJ, 174, 23710.1086/151487CrossRefGoogle Scholar
Morton, W. A. & Morton, D. C. 1972, Absorption lines in the spectrum of the quasar TON 1530, ApJ, 178, 60710.1086/151821CrossRefGoogle Scholar
Muniruzzaman, A. N. M. 1957, On measures of location and dispersion and tests of hypotheses in a pare to population, Calcutta Statistical Association Bulletin, 7, 11510.1177/0008068319570303CrossRefGoogle Scholar
Murdoch, H. S., Hunstead, R. W., Pettini, M., & Blades, J. C. 1986, Absorption spectrum of the z = 3.78 QSO 2000–330. II - The redshift and equivalent width distributions of primordial hydrogen clouds, ApJ, 309, 1910.1086/164573CrossRefGoogle Scholar
Murphy, M. T. & Cooksey, K. L. 2017, Subaru Telescope limits on cosmological variations in the fine-structure constant, MNRAS, 471, 493010.1093/mnras/stx1949CrossRefGoogle Scholar
Murphy, M. T., Webb, J. K., Flambaum, V. V., Churchill, C. W., & Prochaska, J. X. 2001, Possible evidence for a variable fine-structure constant from QSO absorption lines: Systematic errors, MNRAS, 327, 122310.1046/j.1365-8711.2001.04841.xCrossRefGoogle Scholar
Murphy, T. W., Matthews, K., & Soifer, B. T. 1999, A Cryogenic integral field spectrograph for the Palomar 200 inch telescope, PASP, 111, 117610.1086/316417CrossRefGoogle Scholar
Muzahid, S., Kacprzak, G. G., Churchill, C. W., et al. 2015, An extreme metallicity, large-scale outflow from a star-forming galaxy at z ~ 0.4, ApJ, 811, 13210.1088/0004-637X/811/2/132CrossRefGoogle Scholar
Muzahid, S., Srianand, R., Bergeron, J., et al. 2012, A high-resolution study of intergalactic Ovi absorbers at z : 2.3, MNRAS, 421, 446Google Scholar
Narayanan, A., Charlton, J. C., Misawa, T., etal 2008, The chemical and ionization conditions in weak Mgii absorbers, ApJ, 689, 78210.1086/592763CrossRefGoogle Scholar
Narayanan, A., Savage, B. D., Wakker, B. P., et al. 2011, Cosmic Origins Spectrograph detection of Neviii tracing warm-hot gas toward PKS 0405–123, ApJ, 730, 1510.1088/0004-637X/730/1/15CrossRefGoogle Scholar
Narayanan, A., Wakker, B. P., & Savage, B. D. 2009, Detection of Neviii in an intervening multiphase absorption system toward 3C 263, ApJ, 703, 7410.1088/0004-637X/703/1/74CrossRefGoogle Scholar
Nelson, D., Sharma, P., Pillepich, A., et al. 2020, Resolving small-scale cold circumgalactic gas in TNG50, MNRAS, 498, 239110.1093/mnras/staa2419CrossRefGoogle Scholar
Nestor, D. B., Turnshek, D. A., & Rao, S. M. 2005, Mgii absorption systems in Sloan Digital Sky Survey QSO spectra, ApJ, 628, 63710.1086/427547CrossRefGoogle Scholar
Netterfield, C. B., Ade, P. A. R., Bock, J. J., et al. 2002, A measurement by Boomerang of multiple peaks in the angular power spectrum of the cosmic microwave background, ApJ, 571, 60410.1086/340118CrossRefGoogle Scholar
Newman, M. E. J. 2006, Power laws, Pareto distributions and Zipf’s law, Contemporary Physics, 46 (5), 323 (also see eprint, arXiv:cond-mat/0414v3200)10.1080/00107510500052444CrossRefGoogle Scholar
Ng, M., Nielsen, N. M., Kacprzak, G. G., et al. 2019, Kinematics of the Ovi circumgalactic medium: Halo mass dependence and outflow signatures, ApJ, 886, 6610.3847/1538-4357/ab48ebCrossRefGoogle Scholar
Nielsen, N. M., Churchill, C. W., Kacprzak, G. G., Murphy, M. T., & Evans, J. L. 2015, MAGIICAT V. Orientation of outflows and accretion determine the kinematics and column densities of the circumgalactic medium, ApJ, 812, 8310.1088/0004-637X/812/1/83CrossRefGoogle Scholar
Nielsen, N. M., Kacprzak, G. G., Pointon, S. K., et al. 2018, MAGIICAT VI. The Mgii intragroup medium Is kinematically complex, ApJ, 869, 15310.3847/1538-4357/aaedbdCrossRefGoogle Scholar
Nielsen, N. M., Kacprzak, G. G., Pointon, S. K., et al. 2020, The CGM at Cosmic Noon with KCWI: Outflows from a star-forming galaxy at z = 2.071, ApJ, 904, 16410.3847/1538-4357/abc561CrossRefGoogle Scholar
Nomoto, K., Tominaga, N., Umeda, H., et al. 2006, Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution, Nucl. Phys. A, 777, 42410.1016/j.nuclphysa.2006.05.008CrossRefGoogle Scholar
Novotny, E. 1973, Introduction to Stellar Atmospheres and Interiors, New York, Oxford University PressGoogle Scholar
Nussbaumer, H., & Storey, P. J. 1983, Dielectronic recombination at low temperatures, A&A, 126, 75Google Scholar
Nussbaumer, H., & Storey, P. J. 1986, Dielectronic recombination at low temperatures. III - Recombination coefficients for Mg, Al, Si, A&AS, 64, 545Google Scholar
Nussbaumer, H., & Storey, P. J. 1987, Dielectronic recombination at low temperatures. IV - Recombination coefficients for neon, A&AS, 69, 123Google Scholar
Oke, J. B. 1990, Faint spectrophotometric standard stars, AJ, 99, 162110.1086/115444CrossRefGoogle Scholar
Oliveira, C. M., Hébrard, G., Howk, J. C., et al. 2003, Interstellar deuterium, nitrogen, and oxygen abundances toward GD 246, WD 2331-475, HZ 21, and Lanning 23: Results from the FUSE Mission, ApJ, 587, 23510.1086/368019CrossRefGoogle Scholar
O’Meara, J. M., Chen, H.-W., & Kaplan, D. L. 2006, A shot in the dark: A technique for locating the stellar counterparts of damped Ly α Absorbers, ApJL, 642, L9Google Scholar
Oppenheimer, B. D., Crain, R. A., Schaye, J., et al. 2016, Bimodality of low-redshift circumgalactic Ovi in non-equilibrium EAGLE zoom simulations, MNRAS, 460, 215710.1093/mnras/stw1066CrossRefGoogle Scholar
Oppenheimer, B. D., Segers, M., Schaye, J., et al. 2018a, Flickering AGN can explain the strong circumgalactic Ovi observed by COS-Halos, MNRAS, 474, 474010.1093/mnras/stx2967CrossRefGoogle Scholar
Oppenheimer, B. D., & Schaye, J. 2013, Non-equilibrium ionization and cooling of metal-enriched gas in the presence of a photoionization background, MNRAS, 434, 104310.1093/mnras/stt1043CrossRefGoogle Scholar
Osterbrock, D. E., & Ferland, G. J. 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, Sausalito, University Science BooksGoogle Scholar
Papakonstantinou, K. G. & Nikbakht, H. 2020, Hamiltonian MCMC methods for estimating rare events probabilities in high-dimensional problems, eprint, arXiv:2007.00180Google Scholar
Peacock, J. A. 1999, Cosmological Physics, Cambridge, Cambridge University PressGoogle Scholar
Peebles, P. J. E. 1996, Principles of Physical Cosmology, Princeton, Princeton University PressGoogle Scholar
Peeples, M. S., Corlies, L., Tumlinson, J., et al. 2019, Figuring out gas & galaxies in Enzo (FOGGIE). I. Resolving simulated circumgalactic absorption at 2 ≤ z ≤ 2.5, ApJ, 873, 12910.3847/1538-4357/ab0654CrossRefGoogle Scholar
Peng, L.-Y., & Gong, Q. 2010, An accurate fortran code for computing hydrogen continuum wave functions at a wide range of parameters, Comput. Phys. Commun., 181, 209810.1016/j.cpc.2010.08.034CrossRefGoogle Scholar
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999a, Measurements of Ω and Λ from 42 high-redshift supernovae, ApJ, 517, 56510.1086/307221CrossRefGoogle Scholar
Perlmutter, S., Gabi, S., Goldhaber, G., et al. 1997, Measurements of the cosmological parameters Ω and Λ from the first seven supernovae at z ≥ 0.35, ApJ, 483, 56510.1086/304265CrossRefGoogle Scholar
Peterson, B. A. 1978, QSO absorption lines and intergalactic hydrogen clouds, IAU Proceedings, 79, 389Google Scholar
Peterson, B. M., Wanders, I., Bertram, R., et al. 1998, Optical continuum and emission-line variability of Seyfert 1 galaxies, ApJ, 501, 8210.1086/305813CrossRefGoogle Scholar
Petitjean, P., & Bergeron, J. 1990, Mgii quasar absorption systems and properties of gaseous haloes, A&A, 231, 309Google Scholar
Petitjean, P., & Bergeron, J. 1994, Civ QSO absorption systems and properties of galactic haloes at high redshift, A&A, 283, 759Google Scholar
Pettini, M., Zych, B. J., Steidel, C. C., et al. 2008b, C, N, O abundances in the most metal-poor damped Lyman alpha systems, MNRAS, 385, 201110.1111/j.1365-2966.2008.12951.xCrossRefGoogle Scholar
Pickering, J. C., Thorne, A. P., Murray, J. E., et al. 2000, Accurate laboratory wavelengths of some ultraviolet lines of Cr, Zn, and Ni relevant to time variations of the fine structure constant, MNRAS, 319, 16310.1046/j.1365-8711.2000.03808.xCrossRefGoogle Scholar
Collaboration, Planck, Adam, R., Ade, P. A. R., et al. 2016a, Planck 2015 results. I. Overview of products and scientific results, A&A, 594, A1Google Scholar
Collaboration, Planck, Ade, P. A. R., Aghanim, N., et al. 2016b, Planck 2015 results. XIII. Cosmological parameters, A&A, 594, A13Google Scholar
Collaboration, Planck, Aghanim, N., Akrami, Y., et al. 2020, Planck 2018 results. VI. Cosmological parameters, A&A, 641, A6Google Scholar
Ploeckinger, S. & Schaye, J. 2020, Radiative cooling rates, ion fractions, molecule abundances, and line emissivities including self-shielding and both local and metagalactic radiation fields, MNRAS, 497, 485710.1093/mnras/staa2172CrossRefGoogle Scholar
Pointon, S. K., Kacprzak, G. G., Nielsen, N. M., et al. 2019, Relationship between the metallicity of the circumgalactic medium and galaxy orientation, ApJ, 883, 7810.3847/1538-4357/ab3b0eCrossRefGoogle Scholar
Pointon, S. K., Nielsen, N. M., Kacprzak, G. G., et al. 2017, The Impact of the Group Environment on the Ovi Circumgalactic Medium, ApJ, 844, 2310.3847/1538-4357/aa7743CrossRefGoogle Scholar
Pomraning, G. C. 1973, The Equations of Radiation Hydrodynamics, Oxford, Pergamon PressGoogle Scholar
Pradeep, J., Sankar, S., Umasree, T. M., et al. 2020, Solar-metallicity gas in the extended halo of a galaxy at z ~ 0.12, MNRAS, 493, 25010.1093/mnras/staa184CrossRefGoogle Scholar
Pradhan, A. K., & Nahar, S. N. 2011, Atomic Astrophysics and Spectroscopy, Cambridge, Cambridge University Press10.1017/CBO9780511975349CrossRefGoogle Scholar
Press, W. H. & Schechter, P. 1974, Formation of galaxies and clusters of galaxies by self-similar gravitational condensation, ApJ, 187, 425.10.1086/152650CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 2007, Numerical Recipes: The Art of Scientific Computing, New York, Cambridge University PressGoogle Scholar
Prochaska, J. X. 2003, The chemical uniformity of high-z damped Ly α protogalaxies, ApJ, 582, 4910.1086/344595CrossRefGoogle Scholar
Prochaska, J. X., Chen, H.-W., Wolfe, A. M., et al. 2008a, On the nature of velocity fields in high-z galaxies, ApJ, 672, 5910.1086/523689CrossRefGoogle Scholar
Prochaska, J. X., Werk, J. K., Worseck, G., et al. 2017, The COS-Halos Survey: Metallicities in the low-redshift circumgalactic medium, ApJ, 837, 16910.3847/1538-4357/aa6007CrossRefGoogle Scholar
Prochaska, J. X. & Wolfe, M. 1997a, A Keck HIRES investigation of the metal abundances and kinematics of three damped Ly α systems toward Q2206–199, ApJ, 474, 14010.1086/303457CrossRefGoogle Scholar
Prochaska, J. X. & Wolfe, M. 1997b, On the kinematics of the Damped Lyman-α protogalaxies, ApJ, 487, 7310.1086/304591CrossRefGoogle Scholar
Prochter, G. E., Prochaska, J. X., O’Meara, J. M., et al. 2010, The Keck + Magellan Survey for Lyman limit absorption. II. A case study on metallicity variations, ApJ, 708, 12Google Scholar
Puchwein, E., Haardt, F., Haehnelt, M. G., et al. 2019, Consistent modeling of the meta-galactic UV background and the thermal/ionization history of the intergalactic medium, MNRAS, 485, 4710.1093/mnras/stz222CrossRefGoogle Scholar
Péroux, C., Meiring, J. D., Kulkarni, V. P., et al. 2006, Metal-rich damped/subdamped Ly α quasar absorbers at z < 1, MNRAS, 372, 36910.1111/j.1365-2966.2006.10865.xCrossRefGoogle Scholar
Qu, Z. & Bregman, J. N. 2022, Absorption line search through three local group dwarf galaxy halos, ApJ, 927, 22810.3847/1538-4357/ac51dfCrossRefGoogle Scholar
Raghunathan, S., Clowes, R. G., Campusano, L. E., et al. 2016, Intervening Mgii absorption systems from the SDSS DR12 quasar spectra, MNRAS, 463, 264010.1093/mnras/stw2095CrossRefGoogle Scholar
Rahmati, A., Pawlik, A. H., Raic̆ević, M., et al. 2013, On the evolution of the Hi column density distribution in cosmological simulations, MNRAS, 430, 242710.1093/mnras/stt066CrossRefGoogle Scholar
Rao, S. M., & Turnshek, D. A. 2000, Discovery of Damped Ly α Systems at z < 1.65 and results on their incidence and cosmological mass density ApJS, 130, 110.1086/317344CrossRefGoogle Scholar
Rao, S. M., Turnshek, D. A., & Nestor, D. B. 2006, Damped Ly α systems at z < 1.65: The expanded Sloan Digital Sky Survey Hubble Space Telescope sample, ApJ, 636, 610Google Scholar
Rauch, M., Sargent, W. L. W., Womble, D. S., & Barlow, T. A. 1996, Temperature and kinematics of Civ absorption systems, ApJL, 467, L510.1086/310187CrossRefGoogle Scholar
Rees, M. J., & Ostriker, J. P. 1977, Cooling, dynamics and fragmentation of massive gas clouds - Clues to the masses and radii of galaxies and clusters, MNRAS, 179, 54110.1093/mnras/179.4.541CrossRefGoogle Scholar
Reimers, D., Baade, R., Hagen, H.-J., et al. 2001, High-resolution Ovi absorption line observations at 1.2 ≤ z ≤ 1.7 in the bright QSO HE 0515–4414, A&A, 374, 871Google Scholar
Rennehan, D. 2021, Mixing matters, MNRAS, 506, 283610.1093/mnras/stab1813CrossRefGoogle Scholar
Richards, G. T., York, D. G., Yanny, B., et al. 1999, Determining the fraction of intrinsic Civ absorption in quasi-stellar object absorption-line systems, ApJ, 513, 57610.1086/306894CrossRefGoogle Scholar
Riess, A. G., Casertano, S., Yuan, W., et al. 2018, New parallaxes of galactic Cepheids from spatially scanning the Hubble Space Telescope: Implications for the Hubble constant, ApJ, 855, 13610.3847/1538-4357/aaadb7CrossRefGoogle Scholar
Riess, A. G., Casertano, S., Yuan, W., et al. 2021, Cosmic distances calibrated to 1% precision with Gaia EDR3 parallaxes and Hubble Space Telescope photometry of 75 Milky Way Cepheids confirm tension with ΛCDM, ApJL, 908, L610.3847/2041-8213/abdbafCrossRefGoogle Scholar
Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, Observational evidence from supernovae for an accelerating Universe and a cosmological constant, AJ, 116, 100910.1086/300499CrossRefGoogle Scholar
Riess, A. G., Macri, L. M., Hoffmann, S. L., et al. 2016, A 2.4% determination of the local value of the Hubble constant, ApJ, 826, 5610.3847/0004-637X/826/1/56CrossRefGoogle Scholar
Riess, A. G., Scolnic, D., Anand, G. S., et al. 2024, JWST validates HST distance measurements: Selection of supernova subsample explains differences in JWST estimates of local H 0, ApJ, 977, 12010.3847/1538-4357/ad8c21CrossRefGoogle Scholar
Rigby, J. R., Charlton, J. C., & Churchill, C. W. 2002, The population of weak Mgii Absorbers. II. The properties of single-cloud systems, ApJ, 565, 74310.1086/324723CrossRefGoogle Scholar
Rosenwasser, B., Muzahid, S., Charlton, J. C., et al. 2018, Understanding the strong intervening Ovi absorber at z ~ 0.93 towards PG1206+459, MNRAS, 476, 225810.1093/mnras/sty211CrossRefGoogle Scholar
Rudie, G. C., Steidel, C. C., Pettini, M., et al. 2019, Column density, kinematics, and thermal state of metal-bearing gas within the virial radius of z ~ 2 star-forming galaxies in the Keck Baryonic Structure Survey, ApJ, 885, 6110.3847/1538-4357/ab4255CrossRefGoogle Scholar
Rudie, G. C., Steidel, C. C., Shapley, A. E., et al. 2013, The column density distribution and continuum opacity of the intergalactic and circumgalactic medium at redshift 〈2.4〉, ApJ, 769, 14610.1088/0004-637X/769/2/146CrossRefGoogle Scholar
Ryan-Weber, E. V., Pettini, M., & Madau, P. 2006, Intergalactic Civ absorption at redshifts 5.4 to 6, MNRAS, 371, L7810.1111/j.1745-3933.2006.00212.xCrossRefGoogle Scholar
Rybicki, G. B, & Lightman, A. P. 2004, Radiative Processes in Astrophysics, New Jersey, Wiley-VCHGoogle Scholar
Saha, M. N. 1920, LIII. Ionization in the solar chromosphere, Philos. Mag., Ser. 6, 40, 427Google Scholar
Saha, M. N. 1921, On the physical theory of stellar spectra, Proc. R. Soc. A, 99, 135Google Scholar
Sameer, Charlton, J. C., Kacprzak, G. G., et al. 2022, Probing the physicochemical properties of the Leo Ring and the Leo I group, MNRAS, 510, 5796Google Scholar
Sameer, Charlton, J. C., Norris, J. M., et al. 2021, Cloud-by-cloud, multiphase, Bayesian modeling: Application to four weak, low-ionization absorbers, MNRAS, 501, 211210.1093/mnras/staa3754CrossRefGoogle Scholar
Sameer, Charlton, J. C., Wakker, B. P., et al. 2024a, Cloud-by-cloud multiphase investigation of the circumgalactic medium of low-redshift galaxies, MNRAS, 530, 382710.1093/mnras/stae962CrossRefGoogle Scholar
Sameer, Lehner, N., Howk, J. C., et al. 2024b, The COS CGM Compendium. V: The dichotomy in the properties of Ovi associated with the low- and high-Metallicity Hi-bearing gas, ApJ, 975, 26410.3847/1538-4357/ad7af2CrossRefGoogle Scholar
Sánchez, S. F. 2006, Techniques for reducing fiber-fed and integral-field spectroscopy data: An implementation on R3D, Astron. Nachr., 327, 85010.1002/asna.200610643CrossRefGoogle Scholar
Sánchez, S. F., Kennicutt, R. C., Gil de Paz, A., et al. 2012, CALIFA, the Calar Alto Legacy Integral Field Area survey. I. Survey presentation, A&A, 538, A8Google Scholar
Sandage, A. 1961, The ability of the 200-inch Telescope to discriminate between selected world models, ApJ, 133, 35510.1086/147041CrossRefGoogle Scholar
Sandage, A. & Tammann, G. A. 1976, Steps toward the Hubble constant. VII. Distances to NGC 2403, M101, and the Virgo cluster using 21 centimeter line widths compared with optical methods: The global value of H0, ApJ, 210, 710.1086/154798CrossRefGoogle Scholar
Sankar, S., Narayanan, A., Savage, B. D., et al. 2020, Physical conditions of five Ovi absorption systems towards PG 1522+101, MNRAS, 498, 486410.1093/mnras/staa2671CrossRefGoogle Scholar
Sargent, W. L. W., Steidel, C. C., & Boksenberg, A. 1988b, Mgii absorption in the spectra of high and low redshift QSOs, ApJ, 334, 2210.1086/166814CrossRefGoogle Scholar
Sargent, W. L. W., Steidel, C. C., & Boksenberg, A. 1989, A survey of Lyman limit absorption in the spectra of 59 high-redshift QSOs, ApJS, 69, 70310.1086/191326CrossRefGoogle Scholar
Sargent, W. L. W., Young, P. J., Boksenberg, A., & Tytler, D. 1980, The distribution of Lyman-alpha absorption lines in the spectra of six QSOs - Evidence for an intergalactic origin, ApJS, 42, 4110.1086/190644CrossRefGoogle Scholar
Savage, B. D., Kim, T.-S., Wakker, B. P., et al. 2014, The properties of low redshift intergalactic Ovi absorbers determined from high S/N observations of 14 QSOs with the Cosmic Origins Spectrograph, ApJS, 212, 810.1088/0067-0049/212/1/8CrossRefGoogle Scholar
Savage, B. D., Lehner, N., Wakker, B. P., et al. 2005, Detection of Neviii in the low-redshift warm-hot intergalactic medium, ApJ, 626, 77610.1086/429985CrossRefGoogle Scholar
Savage, B. D., Narayanan, A., Wakker, B. P., et al. 2010, Ovi absorbers tracing hot gas associated with a pair of galaxies at z = 0.167, ApJ, 719, 152610.1088/0004-637X/719/2/1526CrossRefGoogle Scholar
Savage, B. D., & Sembach, K. R. 1991, The analysis of apparent optical depth profiles for interstellar absorption lines, ApJ, 379, 24510.1086/170498CrossRefGoogle Scholar
Savage, B. D., Wakker, B., Jannuzi, B. T., et al. 2000, The Hubble Space Telescope quasar absorption line key project. XV. Milky Way absorption lines, ApJS, 129, 56310.1086/313420CrossRefGoogle Scholar
Scalo, J. & Elmegreen, B. G. 2004, Interstellar turbulence II: Implications and effects, ARA&A, 42, 275Google Scholar
Scannapieco, E., Pichon, C., Aracil, B., et al. 2006, The sources of intergalactic metals, MNRAS, 365, 61510.1111/j.1365-2966.2005.09753.xCrossRefGoogle Scholar
Schaye, J. 2001a, Model-independent Insights into the nature of the Ly α forest and the distribution of matter in the Universe, ApJ, 559, 50710.1086/322421CrossRefGoogle Scholar
Schaye, J. 2001b, A physical upper limit on the Hi column density of gas clouds, ApJL, 562, L9510.1086/338106CrossRefGoogle Scholar
Schaye, J., Carswell, R. F., & Kim, T.-S. 2007, A large population of metal-rich, compact, intergalactic Civ absorbers - evidence for poor small-scale metal mixing, MNRAS, 379, 116910.1111/j.1365-2966.2007.12005.xCrossRefGoogle Scholar
Schechter, P. 1976, An analytic expression for the luminosity function for galaxies, ApJ, 203, 29710.1086/154079CrossRefGoogle Scholar
Schmidt, B. P., Suntzeff, N. B., Phillips, M. M., et al. 1998, The high-z supernova search: Measuring cosmic deceleration and global curvature of the Universe using type Ia supernovae, ApJ, 507, 4610.1086/306308CrossRefGoogle Scholar
Schneider, D. P., Hartig, G. F., Jannuzi, B. T., et al. 1993, The Hubble Space Telescope quasar absorption line key project. II - Data calibration and absorption-line selection, ApJS, 87, 4510.1086/191798CrossRefGoogle Scholar
Schroeder, D. J. 1978, Astronomical Optics, San Diego, Academic PressGoogle Scholar
Schure, K. M., Kosenko, D., Kaastra, J. S., Keppens, R., & Vink, J. 2009, A new radiative cooling curve based on an up-to-date plasma emission code, A&A, 508, 751Google Scholar
Scott, J., Bechtold, J., Dobrzycki, A., et al. 2000, A uniform analysis of the Ly α forest at z = 0–5. II. Measuring the mean intensity of the extragalactic ionizing background using the proximity effect, ApJS, 130, 6710.1086/317340CrossRefGoogle Scholar
Seaton, M. J. 1958, Thermal inelastic collision processes, Rev. Mod. Phys., 30, 97910.1103/RevModPhys.30.979CrossRefGoogle Scholar
Seaton, M. J. 1959, Radiative recombination of hydrogenic ions, MNRAS, 119, 8110.1093/mnras/119.2.81CrossRefGoogle Scholar
Sebastian, A. M., Ryan-Weber, E., Davies, R. L., et al. 2024, E-XQR-30: The evolution of MgII, Cii, and Oi across 2 < z <6, MNRAS, 530, 182910.1093/mnras/stae789CrossRefGoogle Scholar
Sembach, K. R., & Savage, B. D. 1992, Observations of highly ionized gas in the Galactic halo, ApJS, 83, 14710.1086/191734CrossRefGoogle Scholar
Seyffert, E. N., Cooksey, K. L., Simcor, R. A., et al. 2013, Precious metals in SDSS quasar spectra. II. Tracking the evolution of strong,0.4 < z < 2.3 Mgii absorbers with thousands of systems, ApJ, 779, 16110.1088/0004-637X/779/2/161CrossRefGoogle Scholar
Shaikh, F. A. 2017, The spherical derivation of the presssure expression P = (1/3)ρC2 of a ideal gas, LAJPE, 11, 3303-1Google Scholar
Sharma, S. 2017, Markov Chain Monte Carlo methods for Bayesian data analysis in astronomy, ARA&A, 55, 213Google Scholar
Shaw, J. R., Bridges, M., & Hobson, M. P. 2007, Efficient Bayesian inference for multimodal problems in cosmology, MNRAS, 378, 136510.1111/j.1365-2966.2007.11871.xCrossRefGoogle Scholar
Shenstone, A. G. 1970, The second spectrum of nickel (Ni ii), J. Res. Nat. Bur. Stand. Sect. A, 74 (6), 80110.6028/jres.074A.067CrossRefGoogle Scholar
Shull, J. M., Danforth, C. W., Tilton, E. M., Moloney, J., & Stevans, M. L. 2017, An ultraviolet survey of low-redshift partial Lyman-limit systems with the HST Cosmic Origins Spectrograph, ApJ, 849, 10610.3847/1538-4357/aa9229CrossRefGoogle Scholar
Shull, J. M., Moloney, J., Danforth, C. W., et al. 2015, The metagalactic ionizing background: A crisis in UV photon production or incorrect galaxy escape fractions?, ApJ, 811, 310.1088/0004-637X/811/1/3CrossRefGoogle Scholar
Shull, J. M., & Van Steenberg, M. 1982, The ionization equilibrium of astrophysically abundant elements, ApJS, 48, 9510.1086/190769CrossRefGoogle Scholar
Sievers, J. L., Bond, J. R., Cartwright, J. K., et al. 2003, Cosmological parameters from Cosmic Background Imager observations and comparisons with Boomerang, Dasi, and Maxima, ApJ, 591, 59910.1086/375510CrossRefGoogle Scholar
Simcoe, R. A., Sargent, W. L. W., & Rauch, M. 2002, Characterizing the warm-hot intergalactic medium at high redshift: A high-resolution survey for Ovi at z = 2.5, ApJ, 578, 73710.1086/342620CrossRefGoogle Scholar
Simcoe, R. A., Sargent, W. L. W., & Rauch, M. 2004, The distribution of metallicity in the intergalactic medium at z ~ 2.5: Ovi and Civ absorption in the spectra of seven QSOs, ApJ, 606, 9210.1086/382777CrossRefGoogle Scholar
Simcoe, R. A., Sargent, W. L. W., Rauch, M., & Becker, G. 2006, Observations of chemically enriched QSO absorbers near z ~ 2.3 galaxies: Galaxy formation feedback signatures in the intergalactic medium, ApJ, 637, 64810.1086/498441CrossRefGoogle Scholar
Slipher, V. M. 1917, Nebulae, in Proceedings of the American Philosophical Society, Nebulae, 56, 403Google Scholar
Smee, S. A., Gunn, J. E., Uomoto, A., et al. 2013, The multi-object, fiber-fed spectrographs for the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey, AJ, 146, 3210.1088/0004-6256/146/2/32CrossRefGoogle Scholar
Smette, A., Surdej, J., Shaver, P. A., et al. 1992, A spectroscopic study of UM 673 A and B: On the size of Ly α clouds, ApJ, 389, 3910.1086/171187CrossRefGoogle Scholar
Smith, B., Sigurdsson, S., & Abel, T. 2008, Metal cooling in simulations of cosmic structure formation, MNRAS, 385, 144310.1111/j.1365-2966.2008.12922.xCrossRefGoogle Scholar
Songaila, A. 1998, The redshift evolution of the metagalactic ionizing flux inferred from metal-line ratios in the Lyman forest, AJ, 115, 218410.1086/300387CrossRefGoogle Scholar
Spergel, D. N., Verde, L., Peiris, H. V., et al. 2003, First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters, ApJS, 148, 17510.1086/377226CrossRefGoogle Scholar
Spitzer, L. 1973, Physical Processes in the Interstellar Medium, New York, John Wiley & SonsGoogle Scholar
Spitzer, L., & Fitzpatrick, E. L. 1993, Composition of interstellar clouds in the disk and halo. I - HD 93521, ApJ, 409, 29910.1086/172664CrossRefGoogle Scholar
Srianand, R. 1996, Analysis of low-redshift absorbers in quasar spectra, ApJ, 462, 64310.1086/177179CrossRefGoogle Scholar
Steidel, C. C. 1990a, The high redshift extension of the survey for Civ absorption in the spectra of QSOs: The redshift evolution of heavy element absorbers, ApJS, 72, 110.1086/191407CrossRefGoogle Scholar
Steidel, C. C. 1990b, The properties of Lyman limit absorbing clouds at z = 3: Physical conditions in the extended gaseous halos of high-redshift galaxies, ApJS, 74, 3710.1086/191493CrossRefGoogle Scholar
Steidel, C. C., & Sargent, W. L. W. 1992, Mgii absorption in the spectra of 103 QSOs – Implications for the evolution of gas in high-redshift galaxies, ApJS, 80, 110.1086/191660CrossRefGoogle Scholar
Stemock, B., Churchill, C. W., Lee, A., et al. 2024, Deep learning Voigt profiles. I. Single-cloud doublets, AJ, 167, 28710.3847/1538-3881/ad402bCrossRefGoogle Scholar
Stern, J., Faucher-Giguère, C.-A., Hennawi, J. F., et al. 2018, Does circumgalactic Ovi trace low-pressure gas beyond the accretion shock? Clues from Hi and low-ion absorption, line kinematics, and dust extinction, ApJ, 865, 9110.3847/1538-4357/aac884CrossRefGoogle Scholar
Stern, J., Fielding, D., Faucher-Giguère, C.-A., et al. 2019, Cooling flow solutions for the circumgalactic medium, MNRAS, 488, 254910.1093/mnras/stz1859CrossRefGoogle Scholar
Stern, J., Hennawi, J. F., Prochaska, J. X., et al. 2016, A universal density structure for circumgalactic gas, ApJ, 830, 8710.3847/0004-637X/830/2/87CrossRefGoogle Scholar
Stocke, J. T., Keeney, B. A., Danforth, C. W., et al. 2013, Characterizing the circumgalactic medium of nearby galaxies with HST/COS and HST/STIS absorption-line spectroscopy, ApJ, 763, 14810.1088/0004-637X/763/2/148CrossRefGoogle Scholar
Stumpff, P. 1977, On the computation of barycentric radial velocities with classical perturbation theories, A&A, 56, 13Google Scholar
Stumpff, P. 1980, Two self-consistent fortran subroutines for the computation of the Earth’s motion, A&AS, 41, 1Google Scholar
Sunyaev, R. A. & Zel’dovich, Y. B. 1969, Distortions of the background radiation spectrum, Nature, 223, 72110.1038/223721a0CrossRefGoogle Scholar
Sutherland, R. S. 1998, Accurate free-free Gaunt factors for astrophysics, MNRAS, 300, 32110.1046/j.1365-8711.1998.01687.xCrossRefGoogle Scholar
Sutherland, R. S., & Dopita, M. A. 1993, Cooling functions for low-density astrophysical plasmas, ApJS, 88, 25310.1086/191823CrossRefGoogle Scholar
Suzuki, N., Tytler, D., Kirkman, D., O’Meara, J. M., & Lubin, D. 2003, Relative flux calibration of Keck HIRES echelle spectra, PASP, 115, 105010.1086/376849CrossRefGoogle Scholar
Tegmark, M., Zaldarriaga, M., & Hamilton, A. J. S. 2001, Latest cosmological constraints on the densities of hot and cold dark matter, in Sources and Detection of Dark Matter and Dark Energy in the Universe, Berlin, Springer, 12810.1007/978-3-662-04587-9_12CrossRefGoogle Scholar
Telfer, R. C., Zheng, W., Kriss, G. A., & Davidsen, A. F. 2002, The rest-frame extreme-ultraviolet spectral properties of quasi-stellar objects, ApJ, 565, 77310.1086/324689CrossRefGoogle Scholar
Tennyson, J. 2011, Astronomical Spectroscopy: An Introduction to the Atomic and Molecular Physics of Astronomical Spectra, London, World Scientific10.1142/7574CrossRefGoogle Scholar
Thompson, T. A., Quataert, E., Zhang, D., & Weinberg, D. H. 2016, An origin for multiphase gas in galactic winds and haloes, MNRAS, 455, 183010.1093/mnras/stv2428CrossRefGoogle Scholar
Tripp, T. M., Giroux, M. L., Stocke, J. T., Tumlinson, J., & Oegerle, W. R. 2001, The ionization and metallicity of the intervening Ovi absorber at z = 0.1212 in the spectrum of H1821+643, ApJ, 563, 72410.1086/323965CrossRefGoogle Scholar
Tripp, T. M., Meiring, J. D., Prochaska, J. X., et al. 2011, The hidden mass and large spatial extent of a post-starburst galaxy outflow, Science, 334, 95210.1126/science.1209850CrossRefGoogle ScholarPubMed
Tripp, T. M., Sembach, K. R., Bowen, D. V., et al. 2008, A high-resolution survey of low-redshift QSO absorption lines: Statistics and physical conditions of Ovi absorbers, ApJS, 177, 3910.1086/587486CrossRefGoogle Scholar
Tsujimoto, T., Nomoto, K., Yoshii, Y., et al. 1995, Relative frequencies of Type Ia and Type II supernovae in the chemical evolution of the Galaxy, LMC and SMC, MNRAS, 277, 94510.1093/mnras/277.3.945CrossRefGoogle Scholar
Turner, M. S. 2002, Making sense of the new cosmology, Int. J. Mod. Phys. A, 17, 18010.1142/S0217751X02013113CrossRefGoogle Scholar
Turnshek, D. A., Bohlin, R. C., Williamson, R. L., et al. 1990, An atlas of Hubble Space Telescope photometric, spectrophotometric, and polarimetric calibration objects, AJ, 99, 124310.1086/115413CrossRefGoogle Scholar
Turnshek, D. A., Rao, S. M., Nestor, D. B., et al. 2005, The metallicity - kinematics relation in large-N(Hi) absorbers, in Probing Galaxies through Quasar Absorption Lines, IAU Colloq. 199, 104Google Scholar
Tytler, D., Boksenberg, A., Sargent, W. L. W., Young, P., & Kunth, D. 1987, High-resolution spectra of 24 low-redshift QSOs - The properties of Mgii absorption systems, ApJS, 64, 66710.1086/191213CrossRefGoogle Scholar
Tytler, D., Burles, S., Lu, L., et al. 1999, The deuterium abundance at z = 0.701 toward QSO 1718+4807, AJ, 117, 6310.1086/300715CrossRefGoogle Scholar
Tytler, D., O’Meara, J. M., Suzuki, N., et al. 2000, Deuterium and the baryonic density of the Universe, Phy. Rep., 333, 40910.1016/S0370-1573(00)00032-6CrossRefGoogle Scholar
van de Voort, F. & Schaye, J. 2012, Properties of gas in and around galaxy haloes, MNRAS, 423, 299110.1111/j.1365-2966.2012.20949.xCrossRefGoogle Scholar
Vázquez, G. A., & Leitherer, C. 2005, Optimization of Starburst99 for intermediate-age and old stellar populations, ApJ, 621, 69510.1086/427866CrossRefGoogle Scholar
Verner, D. A., Ferland, G. J., Korista, K. T., & Yakovlev, D. G. 1996, Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions, ApJ, 465, 48710.1086/177435CrossRefGoogle Scholar
Verner, D. A., & Yakovlev, D. G. 1995, Analytic fits for partial photoionization cross sections, A&AS, 109, 125Google Scholar
Vidal-Madjar, A., Laurent, C., Bonnet, R. M., et al. 1977, The ratio of deuterium to hydrogen in interstellar space. III. The lines of sight to Zeta Puppis and Gamma Cassiopeiae, ApJ, 211, 9110.1086/154906CrossRefGoogle Scholar
Vietri, M., Ferrara, A., & Miniati, F. 1997, The survival of interstellar clouds against Kelvin-Helmholtz instabilities, ApJ, 483, 26210.1086/304202CrossRefGoogle Scholar
Vilkoviskij, E. Y., Yefimov, S. N., Pavlova, L. A., & Baturina, E. B. 2003, Radiation pressure and mass outflows from hot stars and quasars, AApTr, 22, 21910.1080/1055679031000080339cCrossRefGoogle Scholar
Vogt, S. S., Allen, S. L., Bigelow, B. C., et al. 1994, HIRES: The high-resolution echelle spectrometer on the Keck 10-m Telescope, Proc. SPIE, 2198, 36210.1117/12.176725CrossRefGoogle Scholar
Voit, G. M. 2019, Ambient column densities of highly ionized oxygen in precipitation-limited circumgalactic media, ApJ, 880, 13910.3847/1538-4357/ab2bfdCrossRefGoogle Scholar
Wagner, R. M. 1992, Point source spectroscopy, in Astronomical CCD Observing and Reduction Techniques, ASP Conf. Ser. 23, 160Google Scholar
Wagoner, R. V. 1967, Some effects of an intervening galaxy on the radiation from very distant objects, ApJ, 149, 46510.1086/149278CrossRefGoogle Scholar
Wang, Y., Ferland, G. J., Lykins, M. L., et al. 2014, Radiative cooling II: Effects of density and metallicity, MNRAS, 440, 310010.1093/mnras/stu514CrossRefGoogle Scholar
Webb, J. K., Carswell, R. F., & Lee, C.-C. 2021, Precision in high resolution absorption line modeling, analytic Voigt derivatives, and optimization methods, MNRAS, 508, 362010.1093/mnras/stab2895CrossRefGoogle Scholar
Webb, J. K., Flambaum, V. V., Churchill, C. W., et al. 1999, Search for time variation of the fine structure constant, PRL, 82, 88410.1103/PhysRevLett.82.884CrossRefGoogle Scholar
Welty, D. E., Hobbs, L. M., & York, D. G. 1991, Predicted profiles of ultraviolet interstellar absorption lines, ApJS, 75, 42510.1086/191537CrossRefGoogle Scholar
Werk, J. K., Prochaska, J. X., Cantalupo, S., et al. 2016, The COS-Halos Survey: Origins of the highly ionized circumgalactic medium of star-forming galaxies, ApJ, 833, 5410.3847/1538-4357/833/1/54CrossRefGoogle Scholar
Werk, J. K., Prochaska, J. X., Thom, C., et al. 2013, The COS-Halos Survey: An empirical description of metal-line absorption in the low-redshift circumgalactic medium, ApJS, 204, 1710.1088/0067-0049/204/2/17CrossRefGoogle Scholar
Werk, J. K., Prochaska, J. X., Tumlinson, J., et al. 2014, The COS-Halos Survey: Physical conditions and baryonic mass in the low-redshift circumgalactic medium, ApJ, 792, 810.1088/0004-637X/792/1/8CrossRefGoogle Scholar
Weymann, R. J., Carswell, R. F., & Smith, M. G. 1981, Absorption lines in the spectra of quasistellar objects, ARA&A, 19, 41Google Scholar
Wiersma, R. P. C., Schaye, J., & Smith, B. D. 2009, The effect of photoionization on the cooling rates of enriched, astrophysical plasmas, MNRAS, 393, 9910.1111/j.1365-2966.2008.14191.xCrossRefGoogle Scholar
Wiese, W. L. & Fuhr, J. R. 2009, Accurate atomic transition probabilities for hydrogen, helium, and lithium, J. Phys. Chem. Ref. Data, 38, 56510.1063/1.3077727CrossRefGoogle Scholar
Wolfe, A. M., Turnshek, D. A., Smith, H. E., & Cohen, R. D. 1986, Damped Lyman-alpha absorption by disk galaxies with large redshifts. I - The Lick survey, ApJS, 61, 24910.1086/191114CrossRefGoogle Scholar
Wood, B. E., & Linsky, J. L. 1997, A new measurement of the electron density in the local interstellar medium, ApJL, 474, L3910.1086/310428CrossRefGoogle Scholar
Wood, C. M., Bershady, M. A., Eigenbrot, A. D., et al. 2012, HexPak and GradPak: Variable-pitch dual-head IFUs for the WIYN 3.5m Telescope Bench Spectrograph, Proc. SPIE, 8446, 84462W10.1117/12.926580CrossRefGoogle Scholar
Woodgate, B. E., Grady, C., Endres, M., et al. 2006, Narrow-band imagery with the Goddard Fabry-Perot: Probing the epoch of active accretion for PMS stars, BAAS, 208, 4319Google Scholar
Woodgate, B. E., Kimble, R. A., Bowers, C. W., et al. 1998, The Space Telescope Imaging Spectrograph design, PASP, 110, 118310.1086/316243CrossRefGoogle Scholar
Wotta, C. B., Lehner, N., Howk, J. C., et al. 2016, Low-metallicity absorbers account for half of the dense circumgalactic gas at z ≤ 1, ApJ, 831, 9510.3847/0004-637X/831/1/95CrossRefGoogle Scholar
Wotta, C. B., Lehner, N., Howk, J. C., et al. 2019, The COS CGM Compendium. II. Metallicities of the partial and Lyman limit systems at z ≤ 1, ApJ, 872, 8110.3847/1538-4357/aafb74CrossRefGoogle Scholar
Young, P. J., Sargent, W. L. W., & Boksenberg, A. 1982b, Civ absorption in an unbiased sample of 33 QSOs: Evidence for the intervening galaxy hypothesis, ApJS, 48, 45510.1086/190786CrossRefGoogle Scholar
Zabl, J., Bouché, N. F., Schroetter, I., et al. 2020, MusE GAs FLOw and Wind (MEGAFLOW) IV. A two sightline tomography of a galactic wind, MNRAS, 492, 457610.1093/mnras/stz3607CrossRefGoogle Scholar
Zafar, T., Péroux, C., Popping, A., et al. 2013a, The ESO UVES advanced data products quasar sample. II. Cosmological evolution of the neutral gas mass density, A&A, 556, A141Google Scholar
Zahedy, F. S., Chen, H.-W., Cooper, T. M., et al. 2021, The cosmic ultraviolet baryon survey (CUBS) - III. Physical properties and elemental abundances of Lyman-limit systems at z < 1, MNRAS, 506, 877Google Scholar
Zahedy, F. S., Chen, H.-W., Johnson, S. D., et al. 2019, Characterizing circumgalactic gas around massive ellipticals at z ~ 0.4 - II. Physical properties and elemental abundances, MNRAS, 484, 225710.1093/mnras/sty3482CrossRefGoogle Scholar
Zhang, L., Wang, F., Liu, H., et al. 2024, Influences of partition function cutoff versus lowering of ionization energy on spectroscopic temperature measurement in aluminum plasmas, IEEE Trans. on Plasma Sci., 52, issue 8, 317410.1109/TPS.2024.3452482CrossRefGoogle Scholar
Zhang, Z., Zhang, X., Li, H., et al. 2024, Low- and high-velocity Ovi in Milky Way-like galaxies: The role of stellar feedback, ApJ, 962, 1510.3847/1538-4357/ad10a4CrossRefGoogle Scholar
Zhao, Y., Ge, J., Yuan, X., et al. 2019, Identifying Mgii narrow absorption lines with deep learning, MNRAS, 487, 80110.1093/mnras/stz1197CrossRefGoogle Scholar
Zhu, G., & Ménard, B. 2013a, The JHU-SDSS Metal Absorption Line Catalog: Redshift evolution and properties of Mgii absorbers, ApJ, 770, 13010.1088/0004-637X/770/2/130CrossRefGoogle Scholar
Zipf, G. K. 1949, Human Behavior and the Principle of Least Effort, Addison-Wesley, Reading, MAGoogle Scholar
Zonak, S. G., Charlton, J. C., Ding, J., et al. 2004, The absorption signatures of dwarf galaxies: The z = 1.04 multi-cloud weak Mgii absorber toward PG 1634+706, ApJ, 606, 19610.1086/382939CrossRefGoogle Scholar
Zurlo, A., Vigan, A., Mesa, D., et al. 2014, Performance of the VLT Planet Finder SPHERE. I. Photometry and astrometry precision with IRDIS and IFS in laboratory, A&A, 572, A85Google Scholar

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×