Published online by Cambridge University Press: 27 June 2025
We study the function field of a principally polarized abelian variety from the point of view of differential algebra. We implement in a concrete case the following result of I. Barsotti, which he derived from what he called the prostapheresis formula and showed to characterize theta functions: the logarithmic derivatives of the theta function along one line generate the function field. We outline three interpretations of the differential algebra of theta functions in the study of commutative rings of partial differential operators.
Henry McKean was one of the earliest contributors to the field of “integrable PDEs”, whose origin for simplicity we shall place in the late 1960s. One way in which Henry conveyed the stunning and powerful discovery of a linearizing change of variables was by choosing Isaiah 40:3-4 as an epigram for [McKean 1979]: The voice of him that crieth in the wilderness, Prepare ye the way of the Lord, make straight in the desert a highway for our God. Every valley shall be exalted and every mountain and hill shall be made low: and the crooked shall be made straight and the rough places plain. Thus, on this contribution to a volume intended to celebrate Henry's many fundamental achievements on the occasion of his birthday, my title. I use the word line in the extended sense of “linear flow”, of course, since no projective line can be contained in an abelian variety—the actual line resides in the universal cover.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.