Published online by Cambridge University Press: 27 June 2025
We consider nonlinear parabolic equations of Hamilton–Jacobi– Bellman type. The Lagrangian is assumed to be convex, but with a spatial dependence which is stationary and random. Rescaling in space and time produces a similar equation with a rapidly varying spatial dependence and a small viscosity term. Motivated by corresponding results for the linear elliptic equation with small viscosity, we seek to find the limiting behavior of the solution of the Cauchy (final value) problem in terms of a homogenized problem, described by a convex function of the gradient of the solution. The main idea is to use the principle of dynamic programming to write a variational formula for the solution in terms of solutions of linear problems. We then show that asymptotically it is enough to restrict the optimization to a subclass, one for which the asymptotic behavior can be fully analyzed. The paper outlines these steps and refers to the recently published work of Kosygina, Rezakhanlou and the author for full details.
Homogenization is a theory about approximating solutions of a differential equation with rapidly varying coefficients by a solution of a constant coefficient differential equation of a similar nature. The simplest example of its kind is the solution u ϵ of the equation on [0, ∞] ⨯ ℝ. The function a(·) is assumed to be uniformly positive, continuous and periodic of period 1.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.