Published online by Cambridge University Press: 31 October 2025
In this chapter we discuss semianalytical methods for calculating optical fields in arbitrary geometries. Semianalytical methods rely on numerical procedures to derive analytical solutions for the problem at hand. Examples are the multiple-multipole method (MMP), the coupled-dipole method (CDM), or the method of moments (MoM). Based on the volume integral equation we show the equivalence of the CDM and the MoM. The comparison allows us to derive the most general form of the polarizability $\alpha$ of a small scatterer. We show that it reproduces the dynamic and quasi-static polarizabilities derived in previous chapters. We derive an equation for calculating the Green function of an arbitrary system, known as the Dyson equation, and discuss how it can be used to iteratively determine the electromagnetic field in an arbitrary geometry.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.