Published online by Cambridge University Press: 17 March 2022
In Chapter 7 we studied the ESGK framework. This was a reduction from the distinct distances problem to a problem about pairs of intersecting lines in R^3. In the current chapter we further reduce the problem to bounding the number of rich points of lines in R^3. We solve this incidence problem with a more involved variant of the constant-degree polynomial partitioning technique. This completes the proof of the Guth–Katz distinct distances theorem.
The original proof of Guth and Katz is quite involved. We study a simpler proof for a slightly weaker variant of the distinct distances theorem. This simpler proof was introduced by Guth and avoids the use of tools such as flat points and properties of ruled surfaces.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.