Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-m4fzj Total loading time: 0 Render date: 2026-01-03T06:49:12.854Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 February 2018

Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Plant Evolutionary Developmental Biology
The Evolvability of the Phenotype
, pp. 340 - 435
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Aagaard, J. E., Olmstead, R. G., Willis, J. H. & Phillips, P. C. (2005). Duplication of floral regulatory genes in Lamiales. American Journal of Botany, 92: 12841293.10.3732/ajb.92.8.1284CrossRefGoogle ScholarPubMed
Aida, M., Ishida, T., Fukaki, H. et al. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 9: 841857.10.1105/tpc.9.6.841CrossRefGoogle ScholarPubMed
Aida, M., Ishida, T. & Tasaka, M. (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development, 126: 15631570.CrossRefGoogle ScholarPubMed
Aida, M. & Tasaka, M. (2006). Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex. Plant Molecular Biology, 60: 915928.10.1007/s11103-005-2760-7CrossRefGoogle ScholarPubMed
Ainsworth, C., Crossley, S., Buchanan-Wollaston, V., Thangavelu, M. & Parker, J. (1995). Male and female flowers of the dioecious plant sorrel show different patterns of MADS box gene expression. Plant Cell, 7: 15831598.Google ScholarPubMed
Airoldi, C. A., Bergonzi, S. & Davies, B. (2010). Single amino acid change alters the ability to specify male or female organ identity. Proceedings of the National Academy of Sciences of the United States of America, 107, 1889818902.10.1073/pnas.1009050107CrossRefGoogle ScholarPubMed
Airoldi, C. A. & Davies, B. (2012). Gene duplication and the evolution of plant MADS-box transcription factors. Journal of Genetics and Genomics, 39: 157165.10.1016/j.jgg.2012.02.008CrossRefGoogle ScholarPubMed
Al-Shehbaz, I. A., Beilstein, M. A. & Kellogg, E. A. (2006). Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Systematics and Evolution, 259: 89120.10.1007/s00606-006-0415-zCrossRefGoogle Scholar
Alados, C. L., Escos, J., Emlen, J. M. & Freeman, D. C. (1999). Characterization of branch complexity by fractal analyses. International Journal of Plant Sciences, 160: S147S155.10.1086/314220CrossRefGoogle ScholarPubMed
Alapetite, E., Baker, W. J. & Nadot, S. (2014). Evolution of stamen number in Ptychospermatinae (Arecaceae): insights from a new molecular phylogeny of the subtribe. Molecular Phylogenetics and Evolution, 76: 227240.10.1016/j.ympev.2014.02.026CrossRefGoogle ScholarPubMed
Alberch, P. (1991). From genes to phenotype: dynamical systems and evolvability. Genetica, 84: 511.10.1007/BF00123979CrossRefGoogle ScholarPubMed
Alberch, P., Gould, S. J., Oster, G. F. & Wake, D. B. (1979). Size and shape in ontogeny and phylogeny. Paleobiology, 5: 296317.CrossRefGoogle Scholar
Albert, V. A., Gustafsson, M. H. G. & Di Laurenzio, L. (1998). Ontogenetic systematics, molecular developmental genetics, and the angiosperm petal. In Molecular Systematics of Plants II: DNA Sequencing, eds. Soltis, D. E., Soltis, P. S. & Doyle, J. A.. Boston, MA: Kluwer, pp. 349374.10.1007/978-1-4615-5419-6_12CrossRefGoogle Scholar
Albert, V. A., Oppenheimer, D. & Lindqvist, C. (2002). Pleiotropy, redundancy and the evolution of flowers. Trends in Plant Science, 7: 297301.10.1016/S1360-1385(02)02300-2CrossRefGoogle ScholarPubMed
Almeida, A. M. R., Yockteng, R., Otoni, W. C. & Specht, C. D. (2015a). Positive selection on the K domain of the AGAMOUS protein in the Zingiberales suggests a mechanism for the evolution of androecial morphology. EvoDevo, 6: 7.10.1186/s13227-015-0002-xCrossRefGoogle Scholar
Almeida, A. M. R., Yockteng, R. & Specht, C. D. (2015b). Evolution of petaloidy in the Zingiberales: an assessment of the relationship between ultrastructure and gene expression patterns. Developmental Dynamics, 244: 11211132.10.1002/dvdy.24280CrossRefGoogle Scholar
Alonso-Cantabrana, H., Ripoll, J. J., Ochando, I. et al. (2007). Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene. Development, 134: 26632671.CrossRefGoogle ScholarPubMed
Alvarez, J. & Smyth, D.R. (1999). CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development, 126: 23772386.10.1242/dev.126.11.2377CrossRefGoogle ScholarPubMed
Alvarez-Buylla, E. R., Ambrose, B. A., Flores-Sandoval, E. et al. (2010). B-function expression in the flower center underlies the homeotic phenotype of Lacandonia schismatica (Triuridaceae). Plant Cell, 22: 35433559.10.1105/tpc.109.069153CrossRefGoogle ScholarPubMed
Amasino, R. (2010). Seasonal and developmental timing of flowering. The Plant Journal, 61: 10011013.10.1111/j.1365-313X.2010.04148.xCrossRefGoogle ScholarPubMed
Ambros, V. & Moss, E. G. (1994). Heterochronic genes and the temporal control of C. elegans development. Trends in Genetics, 10: 123127.10.1016/0168-9525(94)90213-5CrossRefGoogle ScholarPubMed
Ambrose, B. A., Espinosa-Matías, S., Vázquez-Santana, S. et al. (2006). Comparative floral developmental series of the Mexican triurids support a euanthial interpretation for the unusual floral structures of Lacandonia schismatica (Lacandoniaceae). American Journal of Botany, 93: 1535.10.3732/ajb.93.1.15CrossRefGoogle Scholar
Ambrose, B. A. & Ferrándiz, C. (2013). Development and the evolution of plant form. Annual Plant Reviews, 45: 277320.10.1002/9781118305881.ch9CrossRefGoogle Scholar
Ambrose, B. A., Lerner, D. R., Ciceri, P. et al. (2000). Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell, 5: 569579.10.1016/S1097-2765(00)80450-5CrossRefGoogle ScholarPubMed
Andreasen, K. & Baldwin, B. G. (2001). Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S–26S rDNA internal and external transcribed spacers. Molecular Biology and Evolution, 18: 936944.10.1093/oxfordjournals.molbev.a003894CrossRefGoogle ScholarPubMed
Andrés, F. & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13: 627639.10.1038/nrg3291CrossRefGoogle ScholarPubMed
Andriankaja, M., Dhondt, S., De Bodt, S. et al. (2012). Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Developmental Cell, 22: 6478.10.1016/j.devcel.2011.11.011CrossRefGoogle ScholarPubMed
Angenent, G. C. & Colombo, L. (1996). Molecular control of ovule development. Trends in Plant Science, 1: 228232.10.1016/S1360-1385(96)86900-0CrossRefGoogle Scholar
Antonelli, A. (2009). Have giant lobelias evolved several times independently? Life form shifts and historical biogeography of the cosmopolitan and highly diverse subfamily Lobelioideae (Campanulaceae). BMC Biology, 7: 82.10.1186/1741-7007-7-82CrossRefGoogle ScholarPubMed
Antonius, K. & Ahokas, H. (1996). Flow cytometric determination of polyploidy level in spontaneous clones of strawberries. Hereditas, 124: 285.Google Scholar
APG IV (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181: 120.10.1111/boj.12385CrossRefGoogle Scholar
Appel, O. & Al-Shehbaz, I. A. (2003). Cruciferae. In The Families and Genera of Vascular Plants, Vol. 5, eds. Kubitzki, K. & Bayer, C.. Berlin: Springer, pp. 75174.Google Scholar
Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796815.10.1038/35048692CrossRefGoogle Scholar
Arber, A. (1918). The phyllode theory of the monocotyledonous leaf, with special reference to anatomical evidence. Annals of Botany, 32: 465501.10.1093/oxfordjournals.aob.a089687CrossRefGoogle Scholar
Arber, A. (1920). Water Plants: A Study of Aquatic Angiosperms. Cambridge: Cambridge University Press.Google Scholar
Arber, A. (1921). The leaf structure of the Iridaceae, considered in relation to the phyllode theory. Annals of Botany, 35: 301336.10.1093/oxfordjournals.aob.a089760CrossRefGoogle Scholar
Arber, A. (1928). Studies in the Gramineae. V. 1). On Luziola and Dactylis. 2). On Lygeum and Nardus. Annals of Botany, 42: 391407.10.1093/oxfordjournals.aob.a090122CrossRefGoogle Scholar
Arber, A. (1941). The interpretation of leaf and root in the angiosperms. Biological Review, 16: 81105.10.1111/j.1469-185X.1941.tb01096.xCrossRefGoogle Scholar
Arber, A. (1950). The Natural Philosophy of Plant Form. Cambridge: Cambridge University Press.Google Scholar
Armbruster, W. S., Debevec, E. M. & Willson, M. F. (2002). Evolution of syncarpy in angiosperms: theoretical and phylogenetic analyses of the effects of carpel fusion on offspring quantity and quality. Journal of Evolutionary Biology, 15: 657672.10.1046/j.1420-9101.2002.00414.xCrossRefGoogle Scholar
Armstrong, J. & Douglas, A. W. (1989). The ontogenetic basis for corolla aestivation in Scrophulariaceae. Bulletin of the Torrey Botanical Club, 116: 378389.10.2307/2996628CrossRefGoogle Scholar
Arnaud, N. & Laufs, P. (2013). Plant development: brassinosteroids go out of bounds. Current Biology, 23, 152154.10.1016/j.cub.2013.01.001CrossRefGoogle ScholarPubMed
Ashton, P. S. (2003). Dipterocarpaceae. In The Families and Genera of Vascular Plants, Vol. 5, eds. Kubitzki, K. & Bayer, C.. Berlin: Springer, pp. 182197.Google Scholar
Ashton, P. S., Givnish, T. J. & Appanah, S. (1988). Staggered flowering in the Dipterocarpaceae: new insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. American Naturalist, 132: 4466.10.1086/284837CrossRefGoogle Scholar
Autran, D., Jonak, C., Belcram, K. et al. (2002). Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. EMBO Journal, 21: 60366049.10.1093/emboj/cdf614CrossRefGoogle ScholarPubMed
Bachmann, K. & Gailing, O. (2003). The genetic dissection of the stepwise evolution of morphological characters. In Deep Morphology: Toward a Renaissance of Morphology in Plant Systematics, eds. Stuessy, T. F., Mayer, V. & Hörandl, E.. Königstein: Koeltz, pp. 3562.Google Scholar
Bahadur, B., Reddy, N. P., Rao, M. M. & Farooqui, S. M. (1984). Corolla handedness in Oxalidaceae, Linaceae and Plumbaginaceae. Journal of the Indian Botanical Society, 63: 408411.Google Scholar
Bailey, C. D., Koch, M. A., Mayer, M. et al. (2006). Toward a global phylogeny of the Brassicaceae. Molecular Biology and Evolution, 23: 21422160.10.1093/molbev/msl087CrossRefGoogle Scholar
Bainbridge, K., Guyomarc’h, S., Bayer, E. et al. (2008). Auxin influx carriers stabilize phyllotactic patterning. Genes and Development, 22: 810823.10.1101/gad.462608CrossRefGoogle ScholarPubMed
Baker, C. C., Sieber, P., Wellmer, F. & Meyerowitz, E. M. (2005). The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Current Biology, 15: 303315.10.1016/j.cub.2005.02.017CrossRefGoogle ScholarPubMed
Balazadeh, S., Parlitz, S., Mueller-Roeber, B. & Meyer, R. C. (2008). Natural developmental variation in leaf and plant senescence in Arabidopsis thaliana. Plant Biology, 10: 136147.10.1111/j.1438-8677.2008.00108.xCrossRefGoogle ScholarPubMed
Baldwin, J. M. (1896). A new factor in evolution. American Naturalist, 30: 441451, 536–553.10.1086/276408CrossRefGoogle Scholar
Banks, J. A., Nishiyama, T., Hasebe, M. et al. (2011). The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science, 332: 960963.10.1126/science.1203810CrossRefGoogle ScholarPubMed
Barclay, I. R. (1975). High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature, 256: 410411.10.1038/256410a0CrossRefGoogle Scholar
Barker, M. S., Kane, N. C., Matvienko, M. et al. (2008). Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Molecular Biology and Evolution, 25: 24452455.10.1093/molbev/msn187CrossRefGoogle ScholarPubMed
Barkoulas, M., Galinha, C., Grigg, S. P. & Tsiantis, M. (2007). From genes to shape: regulatory interactions in leaf development. Current Opinion in Plant Biology, 10: 660666.10.1016/j.pbi.2007.07.012CrossRefGoogle ScholarPubMed
Barkoulas, M., Hay, A., Kougioumoutzi, E. et al. (2008). A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nature Genetics, 40: 11361141.10.1038/ng.189CrossRefGoogle ScholarPubMed
Barow, M. & Meister, A. (2003). Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell and Environment, 26: 571584.10.1046/j.1365-3040.2003.00988.xCrossRefGoogle Scholar
Barrett, R. D. H. & Schluter, D. (2008). Adaptation from standing genetic variation. Trends in Ecology and Evolution, 23: 3844.10.1016/j.tree.2007.09.008CrossRefGoogle ScholarPubMed
Barrett, S. C. H. (ed.) (1992). Evolution and Function of Heterostyly. Berlin: Springer.10.1007/978-3-642-86656-2CrossRefGoogle Scholar
Barrett, S. C. H. (2002). The evolution of plant sexual diversity. Nature Reviews Genetics, 3: 274283.10.1038/nrg776CrossRefGoogle ScholarPubMed
Barrett, S. C. H. (2010). Darwin’s legacy: The forms, function and sexual diversity of flowers. Philosophical Transactions of the Royal Society B, 365: 351368.10.1098/rstb.2009.0212CrossRefGoogle ScholarPubMed
Barrett, S. C. H., Jesson, L. K. & Baker, A. M. (2000). The evolution of stylar polymorphisms in plants. Annals of Botany, 85 (Suppl. A): 253265.10.1006/anbo.1999.1067CrossRefGoogle Scholar
Barth, S., Geier, T., Eimert, K. et al. (2009). KNOX overexpression in transgenic Kohleria (Gesneriaceae) prolongs the activity of proximal leaf blastozones and drastically alters segment fate. Planta, 230: 10811091.10.1007/s00425-009-0997-0CrossRefGoogle ScholarPubMed
Barthélémy, D. & Caraglio, Y. (2007). Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany, 99: 375407.10.1093/aob/mcl260CrossRefGoogle ScholarPubMed
Bartholmes, C., Hidalgo, O., Gleissberg, S. (2012). Evolution of the YABBY gene family with emphasis on the basal eudicot Eschscholzia californica (Papaveraceae). Plant Biology, 14: 1123.10.1111/j.1438-8677.2011.00486.xCrossRefGoogle ScholarPubMed
Bartlett, M. E. & Specht, C. D. (2010). Evidence for the involvement of GLOBOSA-like gene duplications and expression divergence in the evolution of floral morphology in the Zingiberales. New Phytologist, 187: 521541.10.1111/j.1469-8137.2010.03279.xCrossRefGoogle ScholarPubMed
Bartlett, M. E. & Specht, C. D. (2011). Changes in expression pattern of the TEOSINTE BRANCHED1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. American Journal of Botany, 98: 227243.10.3732/ajb.1000246CrossRefGoogle ScholarPubMed
Barton, M. K. (2010). Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Developmental Biology, 341: 95113.10.1016/j.ydbio.2009.11.029CrossRefGoogle ScholarPubMed
Bateman, R. M. & DiMichele, W. A. (1994). Saltational evolution of form in vascular plants: a neoGoldschmidtian synthesis. In Shape and Form in Plants and Fungi, eds. Ingram, D. S. & Hudson, A.. London: Academic Press, pp. 63102.Google Scholar
Bateman, R. M. & DiMichele, W. A. (2002). Generating and-filtering-major phenotypic novelties: NeoGoldschmidtian saltation revisited. In Developmental Genetics and Plant Evolution, eds. Cronk, Q. C. B., Bateman, R. M. & Hawkins, J. A.. London: Taylor & Francis, pp. 109159.10.1201/9781420024982.ch7CrossRefGoogle Scholar
Bateman, R. M., Hilton, J. & Rudall, P. J. (2006). Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’ and ‘bottom-up’ approaches to inferring the likely characteristics of the first flowers. Journal of Experimental Botany, 57: 34713503.10.1093/jxb/erl128CrossRefGoogle ScholarPubMed
Bateman, R. M., Hilton, J. & Rudall, P. J. (2011). Spatial separation and developmental divergence of male and female reproductive units in gymnosperms, and their relevance to the origin of the angiosperm flower. In Flowers on the Tree of Life, eds. Wanntorp, L. & De Craene, L. P. Ronse. Cambridge: Cambridge University Press, pp. 848.10.1017/CBO9781139013321.002CrossRefGoogle Scholar
Bateson, W. & Bateson, A. (1891). On variations in the floral symmetry of certain plants having irregular corollas. Journal of the Linnean Society, Botany, 28: 386424.10.1111/j.1095-8339.1891.tb01469.xCrossRefGoogle Scholar
Baum, D. A. (1998). The evolution of plant development. Current Opinion in Plant Biology, 1: 7986.10.1016/S1369-5266(98)80132-5CrossRefGoogle ScholarPubMed
Baum, D. A. & Donoghue, M. J. (2002). Transference of function, heterotopy and the evolution of plant development. In Developmental Genetics and Plant Evolution, eds. Cronk, Q. C. B., Bateman, R. M. & Hawkins, J. A.. London: Taylor & Francis, pp. 5269.Google Scholar
Baum, D. A. & Hileman, L. C. (2006). A developmental genetic model for the origin of the flower. In Flowering and its Manipulation, ed. Ainsworth, C.. Sheffield: Blackwell, pp. 327.Google Scholar
Beaulieu, J. M. & Donoghue, M. J. (2013). Fruit evolution and diversification in campanulid angiosperms. Evolution, 67: 31323144.10.1111/evo.12180CrossRefGoogle ScholarPubMed
Beilstein, M. A., Al-Shehbaz, I. A. & Kellogg, E. A. (2006). Brassicaceae phylogeny and trichome evolution. American Journal of Botany, 93: 607619.10.3732/ajb.93.4.607CrossRefGoogle ScholarPubMed
Beilstein, M. A., Nagalingum, N. S., Clements, M. D. et al. (2010). Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 107: 1872418728.10.1073/pnas.0909766107CrossRefGoogle ScholarPubMed
Bell, A. (2008). Plant Form: An Illustrated Guide to Flowering Plant Morphology, new edition. Portland, OR; London: Timber Press.Google Scholar
Bell, E. M., Lin, W., Husbands, A. Y. et al. (2012). Arabidopsis LATERAL ORGAN BOUNDARIES negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proceedings of the National Academy of Sciences of the United States of America, 109: 2114621151.10.1073/pnas.1210789109CrossRefGoogle ScholarPubMed
Bellini, C., Pacurar, D. I. & Perrone, I. (2014). Adventitious roots and lateral roots: similarities and differences? Annual Review of Plant Biology, 65: 639666.10.1146/annurev-arplant-050213-035645CrossRefGoogle ScholarPubMed
Bello, M. A., Álvarez, I., Torices, R. & Fuertes-Aguilar, J. (2013). Floral development and evolution of capitulum structure in Anacyclus (Anthemideae, Asteraceae). Annals of Botany, 112: 15971612.10.1093/aob/mcs301CrossRefGoogle Scholar
Bello, M. A., Bruneau, A., Forest, F. & Hawkins, J. A. (2009). Elusive relationships within order Fabales: phylogenetic analyses using matK and rbcL sequence data. Systematic Botany, 34: 102114.10.1600/036364409787602348CrossRefGoogle Scholar
Bello, M. A., Rudall, P. J. & Hawkins, J. A. (2012). Combined phylogenetic analyses reveal interfamilial relationships and patterns of floral evolution in the eudicot order Fabales. Cladistics, 28: 393421.10.1111/j.1096-0031.2012.00392.xCrossRefGoogle ScholarPubMed
Benková, E., Michniewicz, M., Sauer, E. et al. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115: 591602.10.1016/S0092-8674(03)00924-3CrossRefGoogle ScholarPubMed
Benlloch, R., Berbel, A., Serrano-Mislata, A. & Madueno, F. (2007). Floral initiation and inflorescence architecture: a comparative view. Annals of Botany, 100: 659676.10.1093/aob/mcm146CrossRefGoogle ScholarPubMed
Bennett, M. D. & Leitch, I. J. (2012). Plant DNA C-values Database (release 6.0, December 2012). http://data.kew.org/cvalues (accessed September 2017).Google Scholar
Berbel, A., Navarro, C. & Ferrándiz, C. et al. (2001). Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. The Plant Journal, 25: 441451.10.1046/j.1365-313x.2001.00974.xCrossRefGoogle Scholar
Berger, B. A., Thompson, V., Lim, A., Ricigliano, V. & Howarth, D.G. (2016). Elaboration of bilateral symmetry across Knautia macedonica capitula related to changes in ventral petal expression of CYCLOIDEA-like genes. EvoDevo, 7: 8.10.1186/s13227-016-0045-7CrossRefGoogle ScholarPubMed
Berger, Y., Harpaz-Saad, S., Brand, A. et al. (2009). The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development, 136: 823832.10.1242/dev.031625CrossRefGoogle ScholarPubMed
Bergthorsson, U., Adams, K. L., Thomason, B. & Palmer, J. D. (2003). Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature, 424: 197201.10.1038/nature01743CrossRefGoogle ScholarPubMed
Bergthorsson, U., Richardson, A. O., Young, G. J., Goertzen, L. R. & Palmer, J. D. (2004). Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proceedings of the National Academy of Sciences of the United States of America, 101: 1774717752.10.1073/pnas.0408336102CrossRefGoogle Scholar
Bertrand-Garcia, R. & Freeling, M. (1991). Hairy-sheath-frayed1-0: a systemic, heterochronic mutant of maize that specifies slow developmental stage transitions. American Journal of Botany, 78: 747765.10.1002/j.1537-2197.1991.tb14477.xCrossRefGoogle Scholar
Bharathan, G., Goliber, T. E., Moore, C. et al. (2002). Homologies in leaf form inferred from KNOXI gene expression during development. Science, 296: 18581860.10.1126/science.1070343CrossRefGoogle ScholarPubMed
Bissell, E. K. & Diggle, P. K. (2008). Floral morphology in Nicotiana: architectural and temporal effects on phenotypic integration. International Journal of Plant Sciences, 169: 225240.10.1086/523875CrossRefGoogle Scholar
Blaser, J. L. (1954). The morphology of the flower and inflorescence of Mitchella repens. American Journal of Botany, 41: 533539.10.1002/j.1537-2197.1954.tb14373.xCrossRefGoogle Scholar
Blázquez, M. A., Ferrándiz, C., Madueno, F. & Parcy, F. (2006). How floral meristems are built. Plant Molecular Biology, 60: 855870.10.1007/s11103-006-0013-zCrossRefGoogle ScholarPubMed
Blázquez, M. A., Soowal, L. N., Lee, I. & Weigel, D. (1997). LEAFY expression and flower initiation in Arabidopsis. Development, 124: 38353844.10.1242/dev.124.19.3835CrossRefGoogle ScholarPubMed
Blázquez, M. A. & Weigel, D. (2000). Integration of floral inductive signals in Arabidopsis. Nature, 404: 889892.10.1038/35009125CrossRefGoogle ScholarPubMed
Blein, T., Hasson, A. & Laufs, P. (2010). Leaf development: what it needs to be complex. Current Opinion in Plant Biology, 13: 7582.10.1016/j.pbi.2009.09.017CrossRefGoogle ScholarPubMed
Blein, T., Pulido, A., Vialette-Guiraud, A. et al. (2008). A conserved molecular framework for compound leaf development. Science, 322: 18351839.10.1126/science.1166168CrossRefGoogle ScholarPubMed
Bliss, B. J., Wanke, S., Barakat, A. et al. (2013). Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies. BMC Plant Biology, 13: 13.10.1186/1471-2229-13-13CrossRefGoogle ScholarPubMed
Bohs, L., Weese, T., Myers, N. et al. (2007). Zygomorphy and heteranthery in Solanum in a phylogenetic context. Acta Horticulturae, 745: 201224.10.17660/ActaHortic.2007.745.8CrossRefGoogle Scholar
Borsch, T., Löhne, C. & Wiersema, J. (2008). Phylogeny and evolutionary patterns in Nymphaeales: integrating genes, genomes and morphology. Taxon, 57: 10521081.10.1002/tax.574004CrossRefGoogle Scholar
Boss, P. K. & Thomas, M. R. (2002). Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature, 416: 847850.10.1038/416847aCrossRefGoogle ScholarPubMed
Bouche, F., Lobet, G., Tocquin, P. & Perilleux, C. (2016). FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Research, 44: D1167D1171.10.1093/nar/gkv1054CrossRefGoogle ScholarPubMed
Boudaoud, A. (2010). An introduction to the mechanics of morphogenesis for plant biologists. Trends in Plant Science, 15: 353360.10.1016/j.tplants.2010.04.002CrossRefGoogle Scholar
Bowers, J. E., Chapman, B. A., Rong, J. & Paterson, A. H. (2003). Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature, 422: 433438.10.1038/nature01521CrossRefGoogle ScholarPubMed
Bowman, J. L. (1997). Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. Journal of Biosciences, 22: 515527.10.1007/BF02703197CrossRefGoogle Scholar
Bowman, J. L., Alvarez, J., Weigel, D., Meyerowitz, E. M. & Smyth, D. R. (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 119: 721743.10.1242/dev.119.3.721CrossRefGoogle Scholar
Bowman, J. L., Bruggemann, H., Lee, J.-Y. & Mummenhoff, K. (1999). Evolutionary changes in floral structure within Lepidium L. (Brassicaceae). International Journal of Plant Sciences, 160: 917929.10.1086/314194CrossRefGoogle ScholarPubMed
Bowman, J. L., Smyth, D. R. & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. Plant Cell, 1: 3752.Google ScholarPubMed
Bown, D. (2000). Aroids: Plants of the Arum Family, 2nd edn. Portland, OR: Timber Press.Google Scholar
Box, M. S., Bateman, R. M., Glover, B. J. & Rudall, P. J. (2008). Floral ontogenetic evidence of repeated speciation via paedomorphosis in subtribe Orchidinae (Orchidaceae). Botanical Journal of the Linnean Society, 157: 429454.10.1111/j.1095-8339.2008.00794.xCrossRefGoogle Scholar
Box, M. S. & Glover, B. J. (2010). A plant developmentalist’s guide to paedomorphosis: reintroducing a classic concept to a new generation. Trends in Plant Science, 15: 241246.10.1016/j.tplants.2010.02.004CrossRefGoogle ScholarPubMed
Bradley, D., Carpenter, R., Copsey, L. et al. (1996). Control of inflorescence architecture in Antirrhinum. Nature, 379: 791797.10.1038/379791a0CrossRefGoogle ScholarPubMed
Bradley, D., Carpenter, R., Sommer, H., Hartley, N. & Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell, 72: 8595.10.1016/0092-8674(93)90052-RCrossRefGoogle ScholarPubMed
Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. & Coen, E. (1997). Inflorescence commitment and architecture in Arabidopsis. Science, 275: 8083.10.1126/science.275.5296.80CrossRefGoogle ScholarPubMed
Braybrook, S. A. & Kuhlemeier, C. (2010). How a plant builds leaves. Plant Cell, 22: 10061018.10.1105/tpc.110.073924CrossRefGoogle ScholarPubMed
Breeze, E., Harrison, E., Page, T. et al. (2008). Transcriptional regulation of plant senescence: from functional genomics to systems biology. Plant Biology, 10 Suppl 1: 99109.10.1111/j.1438-8677.2008.00076.xCrossRefGoogle ScholarPubMed
Breuil-Broyer, S., Trehin, C., Morel, P. et al. (2016). Analysis of the Arabidopsis superman allelic series and the interactions with other genes demonstrate developmental robustness and joint specification of male–female boundary, flower meristem termination and carpel compartmentalization. Annals of Botany, 117: 905923.10.1093/aob/mcw023CrossRefGoogle ScholarPubMed
Brigandt, I. & Love, A. C. (2010). Evolutionary novelty and the evo-devo synthesis: field notes. Evolutionary Biology, 37: 9399.10.1007/s11692-010-9083-6CrossRefGoogle Scholar
Brigandt, I. & Love, A. C. (2012). Conceptualizing evolutionary novelty: moving beyond definitional debates. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 318: 417427.10.1002/jez.b.22461CrossRefGoogle ScholarPubMed
Broadley, M. R., White, P. J., Hammond, J. P. et al. (2008). Evidence of neutral transcriptome evolution in plants. New Phytologist, 180: 587593.10.1111/j.1469-8137.2008.02640.xCrossRefGoogle ScholarPubMed
Brockington, S. F., Roolse, A., Randall, J. et al. (2009). Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. International Journal of Plant Sciences, 170: 627643.10.1086/597785CrossRefGoogle Scholar
Brockington, S. F., Rudall, P. J., Frohlich, M. W. et al. (2011). ‘Living stones’ reveal alternative petal identity programs within the core eudicots. The Plant Journal, 69: 193203.10.1111/j.1365-313X.2011.04797.xCrossRefGoogle ScholarPubMed
Brody, A. & Morita, S. I. (2000). A positive association between oviposition and fruit set: female choice or manipulation? Oecologia, 124: 418425.10.1007/PL00008867CrossRefGoogle ScholarPubMed
Broholm, S. K., Tähtiharju, S., Laitinen, R. A. et al. (2008). A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proceedings of the National Academy of Sciences of the United States of America, 105: 91179122.10.1073/pnas.0801359105CrossRefGoogle ScholarPubMed
Broholm, S. K., Teeri, T. H. & Elomaa, P. (2014). Molecular control of inflorescence development in Asteraceae. Advances in Botanical Research, 27: 297334.10.1016/B978-0-12-417162-6.00010-9CrossRefGoogle Scholar
Brookfield, J. F. Y. (2009). Evolution and evolvability: Celebrating Darwin 200. Biology Letters, 5: 4446.10.1098/rsbl.2008.0639CrossRefGoogle ScholarPubMed
Brunetti, R., Gissi, C., Pennati, R. et al. (2015). Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. Journal of Zoological Systematics and Evolutionary Research, 53: 186193.10.1111/jzs.12101CrossRefGoogle Scholar
Buchanan-Wollaston, V. (2007). Senescence in plants. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Buchholz, J. T. (1946). Volumetric studies of seeds, endosperm, and embryos in Pinus ponderosa during embryonic differentiation. Botanical Gazette, 108: 232244.10.1086/335409CrossRefGoogle Scholar
Budd, G. E. (1999). Does evolution in body patterning genes drive morphological change or vice versa? BioEssays, 21: 326332.10.1002/(SICI)1521-1878(199904)21:4<326::AID-BIES9>3.0.CO;2-03.0.CO;2-0>CrossRefGoogle Scholar
Burgeff, C., Liljegren, S. J., Tapia-Lopez, R., Yanosky, M. F. & Alvarez-Buylla, E. R. (2002). MADS-box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots. Planta, 214: 365372.10.1007/s004250100637CrossRefGoogle ScholarPubMed
Bürglin, T. R. (2005). Homeodomain proteins. In Encyclopedia of Molecular Cell Biology and Molecular Medicine, ed. Meyers, R. A.. Weinheim: Wiley-VCH, pp. 179222.Google Scholar
Busch, A., Horn, S., Mühlhausen, A., Mummenhoff, K. & Zachgo, S. (2012). Corolla monosymmetry: evolution of a morphological novelty in the Brassicaceae family. Molecular Biology and Evolution, 29: 12411254.10.1093/molbev/msr297CrossRefGoogle ScholarPubMed
Busch, A. & Zachgo, S. (2007). Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proceedings of the National Academy of Sciences of the United States of America, 104: 1671416719.10.1073/pnas.0705338104CrossRefGoogle ScholarPubMed
Busch, A. & Zachgo, S. (2009). Flower symmetry evolution: towards understanding the abominable mystery of angiosperm radiation. BioEssays, 31: 11811190.10.1002/bies.200900081CrossRefGoogle ScholarPubMed
Buzgo, M. & Endress, P. K. (2000). Floral structure and development of Acoraceae and its systematic relationships with basal angiosperms. International Journal of Plant Sciences, 161: 2341.10.1086/314241CrossRefGoogle ScholarPubMed
Buzgo, M., Soltis, P. S. & Soltis, D. S. (2004). Floral developmental morphology of Amborella trichopoda (Amborellaceae). International Journal of Plant Sciences, 165: 925947.10.1086/424024CrossRefGoogle Scholar
Byng, J. W. (2014). The Flowering Plants Handbook: A Practical Guide to Families and Genera of the World. Hertford: Plant Gateway.Google Scholar
Byrne, M. (2012). Making leaves. Current Opinion in Plant Biology, 15: 2430.10.1016/j.pbi.2011.10.009CrossRefGoogle ScholarPubMed
Byrne, M. E. (2006). Shoot meristem function and leaf polarity: the role of class III HD-ZIP genes. PLoS Genetics 2 (6): e89.10.1371/journal.pgen.0020089CrossRefGoogle ScholarPubMed
Byrne, M. E., Barley, R., Curtis, M. et al. (2000). ASYMMETRIC LEAVES1 mediates leaf patterning and stem cell function in Arabidopsis. Nature, 408: 967971.10.1038/35050091CrossRefGoogle ScholarPubMed
Caddick, L. R., Rudall, P. J. & Wilkin, P. (2000). Floral morphology and development in Dioscoreales. Feddes Repertorium, 111: 189230.10.1002/fedr.20001110313CrossRefGoogle Scholar
Cai, H., Liu, X., Vanneste, K. et al. (2014). The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics, 47: 6572.10.1038/ng.3149CrossRefGoogle ScholarPubMed
Callos, J. D. & Medford, J. I. (1994). Organ positions and pattern formation in the shoot apex. The Plant Journal, 6: 17.10.1046/j.1365-313X.1994.6010001.xCrossRefGoogle Scholar
Calonje, M., Cubas, P., Martinez-Zapater, J. M. & Carmona, M. J. (2004). Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiology, 135: 14911501.10.1104/pp.104.040832CrossRefGoogle ScholarPubMed
Cameron, R. J. (1970). Light intensity and growth of Eucalyptus seedlings. I. Ontogenetic variation in E. fastigiata. Australian Journal of Botany, 18: 2943.10.1071/BT9700029CrossRefGoogle Scholar
Canales, C., Barkoulas, M., Galinha, C. & Tsiantis, M. (2010). Weeds of change: Cardamine hirsuta as a new model system for studying dissected leaf development. Journal of Plant Research, 123, 2533.10.1007/s10265-009-0263-3CrossRefGoogle ScholarPubMed
Cantino, P. D., Doyle, J. A., Graham, S. W. et al. (2007). Towards a phylogenetic nomenclature of Tracheophyta. Taxon, 56: 822846.10.2307/25065864CrossRefGoogle Scholar
Carles, C. C., Choffnes-Inada, D., Reville, K., Lertpiriyapong, K. & Fletcher, J. C. (2005). ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis. Development, 132: 897911.10.1242/dev.01642CrossRefGoogle ScholarPubMed
Carles, C. C. & Fletcher, J. C. (2003). Shoot apical meristem maintenance: the art of a dynamic balance. Trends in Plant Science, 8: 394401.10.1016/S1360-1385(03)00164-XCrossRefGoogle ScholarPubMed
Carlquist, S. (1969). Toward acceptable evolutionary interpretations of floral anatomy. Phytomorphology, 19: 332362.Google Scholar
Carlquist, S. (1980). Hawaii, a Natural History, 2nd edn. Lawai, Kauai, HI: Pacific Tropical Botanical Garden.Google Scholar
Carlsbecker, A., Tandre, K., Johanson, U., Englund, M. & Engstrom, P. (2004). The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). The Plant Journal, 40: 546557.10.1111/j.1365-313X.2004.02226.xCrossRefGoogle ScholarPubMed
Carlson, J. E., Leebens-Mack, J. H., Wall, P. K. et al. (2006). EST database for early flower development in California poppy (Eschscholzia californica Cham., Papaveraceae) tags over 6,000 genes from a basal eudicot. Plant Molecular Biology, 62: 351369.10.1007/s11103-006-9025-yCrossRefGoogle ScholarPubMed
Carlson, S. E., Howarth, D. G. & Donoghue, M. J. (2011). Diversification of CYCLOIDEA-like genes in Dipsacaceae (Dipsacales): implications for the evolution of capitulum inflorescences. BMC Evolutionary Biology, 11: 325.10.1186/1471-2148-11-325CrossRefGoogle ScholarPubMed
Carpenter, R. & Coen, E. S. (1990). Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes and Development, 4: 14831493.10.1101/gad.4.9.1483CrossRefGoogle ScholarPubMed
Carraro, N., Peaucelle, A., Laufs, P. & Traas, J. (2006). Cell differentiation and organ initiation at the shoot apical meristem. Plant Molecular Biology, 60: 811826.10.1007/s11103-005-2761-6CrossRefGoogle ScholarPubMed
Caruso, C., Rigato, E. & Minelli, A. (2012). Finalism and adaptationism in contemporary biological literature. Atti dell’Istituto Veneto di Scienze Lettere ed Arti, Classe di Scienze Fisiche, Matematiche e Naturali, 170: 6976.Google Scholar
Castel, R., Kusters, E. & Koes, R. (2010). Inflorescence development in petunia: through the maze of botanical terminology. Journal of Experimental Botany, 61: 22352246.10.1093/jxb/erq061CrossRefGoogle ScholarPubMed
Causier, B., Castillo, R., Xue, Y., Schwarz-Sommer, Z. & Davies, B. (2010b). Tracing the evolution of the floral homeotic B- and C-function genes through genome synteny. Molecular Biology and Evolution, 27: 26512664.10.1093/molbev/msq156CrossRefGoogle ScholarPubMed
Causier, B., Castillo, R., Zhou, J. et al. (2005). Evolution in action: following function in duplicated floral homeotic genes. Current Biology, 15: 15081512.10.1016/j.cub.2005.07.063CrossRefGoogle ScholarPubMed
Causier, B., Schwarz-Sommer, Z. & Davies, B. (2010a). Floral organ identity: 20 years of ABCs. Seminars in Cell and Developmental Biology, 21: 7379.10.1016/j.semcdb.2009.10.005CrossRefGoogle ScholarPubMed
Cavalier-Smith, T., Chao, E. E., Snell, E. A. et al. (2014). Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Molecular Phylogenetics and Evolution, 81: 7185.10.1016/j.ympev.2014.08.012CrossRefGoogle ScholarPubMed
Cevik, V., Ryder, C. D., Popovich, A. et al. (2010). A FRUITFULL-like gene is associated with genetic variation for fruit flesh firmness in apple (Malus domestica Borkh.). Tree Genetics and Genomes, 6: 271279.10.1007/s11295-009-0247-4CrossRefGoogle Scholar
Chae, E., Tan, Q. K. G., Hill, T. A. & Irish, V. F. (2008). An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development, 135: 12351245.10.1242/dev.015842CrossRefGoogle ScholarPubMed
Champagne, C. & Sinha, N. (2004). Compound leaves: equal to the sum of their parts? Development, 131: 44014412.10.1242/dev.01338CrossRefGoogle Scholar
Champagne, C. E., Goliber, T. E., Wojchiechowski, M. F. et al. (2007). Compound leaf development and evolution in the legumes. Plant Cell, 19: 33693378.10.1105/tpc.107.052886CrossRefGoogle ScholarPubMed
Chanderbali, A. S., Albert, V. A., Leebens-Mack, J. et al. (2009). Transcriptional signatures of ancient floral developmental genetics in avocado (Persea americana; Lauraceae). Proceedings of the National Academy of Sciences of the United States of America, 106: 89298934.10.1073/pnas.0811476106CrossRefGoogle ScholarPubMed
Chanderbali, A. S., Berger, B. A., Howarth, D. G., Soltis, D. E. & Soltis, P. S. (2017). Evolution of floral diversity: genomics, genes and gamma. Philosophical Transactions of the Royal Society B, 372: 20150509.10.1098/rstb.2015.0509CrossRefGoogle ScholarPubMed
Chandler, J., Nardmann, J. & Werr, W. (2008). Plant development revolves around axes. Trends in Plant Science, 13: 7884.10.1016/j.tplants.2007.11.010CrossRefGoogle ScholarPubMed
Chapman, M. A., Tang, S., Draeger, D. et al. (2012). Genetic analysis of floral symmetry in Van Gogh’s sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae. PLoS Genetics, 8: e1002628.10.1371/journal.pgen.1002628CrossRefGoogle Scholar
Charlesworth, B. (1980). Evolution in Age-structured Populations. Cambridge: Cambridge University Press.Google Scholar
Charlesworth, D. & Guttman, D. S. (1999). The evolution of dioecy and plant sex chromosome systems. In Sex Determination in Plants, ed. Ainsworth, C. C.. Oxford: Bios Scientific, pp. 2549.Google Scholar
Chen, C., Xu, Y., Zeng, M. & Huang, H. (2001). Genetic control by Arabidopsis genes LEUNIG and FILAMENTOUS FLOWER in gynoecium fusion. Journal of Plant Research, 114: 465469.10.1007/PL00014012CrossRefGoogle Scholar
Chen, C. B., Wang, S. P. & Huang, H. (2000). LEUNIG has multiple functions in gynoecium development in Arabidopsis. Genesis, 26: 4254.10.1002/(SICI)1526-968X(200001)26:1<42::AID-GENE7>3.0.CO;2-J3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Chen, J. J., Janssen, B. J., Williams, A. & Sinha, N. (1997). A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution. Plant Cell, 9: 12891304.Google Scholar
Chen, T. C., Zhang, D. X., Larsen, K. & Larsen, S. S. (2010). Bauhinia Linnaeus. In Flora of China, 10, eds. Wu, Z. Y., Raven, P. H. & Hong, D. Y.. Beijing: Science Press; St. Louis, MO: Missouri Botanical Garden Press, pp. 621.Google Scholar
Chen, X. (2012). Small RNAs in development: insights from plants. Current Opinion in Genetics and Development, 22: 361367.10.1016/j.gde.2012.04.004CrossRefGoogle ScholarPubMed
Chitwood, D. H., Headland, L. R., Ranjan, A. et al. (2012). Leaf asymmetry as a developmental constraint imposed by auxin-dependent phyllotactic patterning. Plant Cell, 24: 110.10.1105/tpc.112.098798CrossRefGoogle ScholarPubMed
Cho, E. & Zambryski, P. C. (2011). ORGAN BOUNDARY1 defines a gene expressed at the junction between the shoot apical meristem and lateral organs. Proceedings of the National Academy of Sciences of the United States of America, 108: 21542159.10.1073/pnas.1018542108CrossRefGoogle ScholarPubMed
Cho, J. W., Park, S. C., Shin, E. A. et al. (2004). Cyclin D1 and p22ack1 play opposite roles in plant growth and development. Biochemical and Biophysical Research Communications, 324: 5257.10.1016/j.bbrc.2004.08.233CrossRefGoogle ScholarPubMed
Chuang, C. F., Running, M. P., Williams, R. W. & Meyerowitz, E. M. (1999). The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes and Development, 13: 334344.10.1101/gad.13.3.334CrossRefGoogle ScholarPubMed
Chuck, G., Meeley, R. &, Hake, S. (2008). Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development, 135: 30133019.10.1242/dev.024273CrossRefGoogle ScholarPubMed
Chung, Y. Y., Kim, S. R., Kang, H. G. et al. (1995). Characterization of two rice MADS box genes homologous to GLOBOSA. Plant Science, 109: 4556.10.1016/0168-9452(95)04153-LCrossRefGoogle Scholar
Citerne, H., Jabbour, F., Nadot, S. & Damerval, C. (2010). The evolution of floral symmetry. Advances in Botanical Research, 54: 85137.10.1016/S0065-2296(10)54003-5CrossRefGoogle Scholar
Citerne, H. L., Möller, M. & Cronk, Q. C. B. (2000). Diversity of cycloidea-like genes in Gesneriaceae in relation to floral symmetry. Annals of Botany, 86: 167176.10.1006/anbo.2000.1178CrossRefGoogle Scholar
Citerne, H. L., Pennington, R. T. & Cronk, Q. C. (2006). An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proceedings of the National Academy of Sciences of the United States of America, 103: 1201712020.10.1073/pnas.0600986103CrossRefGoogle ScholarPubMed
Citerne, H. L., Reyes, E., Le Guilloux, M. et al. (2017). Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry. Annals of Botany, 119: 367378.10.1093/aob/mcw219CrossRefGoogle ScholarPubMed
Clark, S. E. (2001). Meristems: start your signaling. Current Opinion in Plant Biology, 4: 2832.10.1016/S1369-5266(00)00131-XCrossRefGoogle ScholarPubMed
Clarke, E. (2011). Plant individuality: a solution to the demographer’s dilemma, Biology and Philosophy, 27: 321361.10.1007/s10539-012-9309-3CrossRefGoogle Scholar
Classen-Bockhoff, R. (1992). Florale Differenzierung in komplex organisierten Asteraceenköpfen. Flora, 186: 122.10.1016/S0367-2530(17)30515-7CrossRefGoogle Scholar
Classen-Bockhoff, R. (1996). Functional units beyond the level of the capitulum and cypsela in Compositae. In Compositae: Biology and Utilization, ed. Hind, D. J. N.. Kew: Royal Botanic Gardens, pp. 129160.Google Scholar
Classen-Bockhoff, R. (2001). Plant morphology: the historic concepts of Wilhelm Troll, Walter Zimmermann and Agnes Arber. Annals of Botany, 88: 11531172.10.1006/anbo.2001.1544CrossRefGoogle Scholar
Clausen, R. E. & Mann, M. C. (1924). Inheritance of Nicotiana tabacum. V. The occurrence of haploid plants in interspecific progenies. Proceedings of the National Academy of Sciences of the United States of America, 10: 121124.10.1073/pnas.10.4.121CrossRefGoogle ScholarPubMed
Clausing, G. & Renner, S. S. (2001). Evolution of growth in epiphytic Dissochaeteae (Melastomataceae). Organisms Diversity and Evolution, 1: 4560.10.1078/1439-6092-00004CrossRefGoogle Scholar
Clay, K. & Ellstrand, N. (1981). Stylar polymorphism in Epigaea repens, a dioecious species. Bulletin of the Torrey Botanical Club, 108: 305310.10.2307/2484708CrossRefGoogle Scholar
Clifford, H. T. (1987). Spikelet and floral morphology. In Grass Systematics and Evolution, eds. Soderstrom, T. R., Hilu, K. W., Campbell, C. S. & Barkworth, M. E.. Washington, DC: Smithsonian Institution Press, pp. 2130.Google Scholar
Clune, J., Mouret, J. B. & Lipson, H. (2013). The evolutionary origins of modularity. Proceedings of the Royal Society B, 280: 20122863.10.1098/rspb.2012.2863CrossRefGoogle ScholarPubMed
Coen, E. (1999). The Art of Genes. How Organisms Make Themselves. Oxford: Oxford University Press.Google Scholar
Coen, E. S., Doyle, S., Romero, J. M. et al. (1991). Homeotic genes controlling flower development in Antirrhinum. Development, Supplement, 1: 149155.Google Scholar
Coen, E. S. & Meyerowitz, E. M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature, 353: 3137.10.1038/353031a0CrossRefGoogle ScholarPubMed
Coen, E. S. & Nugent, J. M. (1994). The evolution of flowers and inflorescences. Development, 1994 (supplement): 107116.10.1242/dev.1994.Supplement.107CrossRefGoogle Scholar
Coen, E., Rolland-Lagan, A.-G., Matthews, M., Bangham, J.A. & Prusinkiewicz, P. (2004). The genetics of geometry. Proceedings of the National Academy of Sciences of the United States of America, 101: 47284735.10.1073/pnas.0306308101CrossRefGoogle ScholarPubMed
Coen, E. S., Romero, J. M., Doyle, S. et al. (1990). Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell, 63: 13111322.10.1016/0092-8674(90)90426-FCrossRefGoogle ScholarPubMed
Cohen, J. I. (2014). A phylogenetic analysis of morphological and molecular characters of Boraginaceae: evolutionary relationships, taxonomy, and patterns of character evolution. Cladistics, 30: 139169.10.1111/cla.12036CrossRefGoogle ScholarPubMed
Cole, M., Nolte, C. & Werr, W. (2006). Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana. Nucleic Acids Research, 34: 12811292.10.1093/nar/gkl016CrossRefGoogle ScholarPubMed
Colombo, L., Battaglia, R. & Kater, M. M. (2008). Arabidopsis ovule development and its evolutionary conservation. Trends in Plant Science, 13: 444450.10.1016/j.tplants.2008.04.011CrossRefGoogle ScholarPubMed
Colombo, L., Franken, J., Koetje, E. et al. (1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell, 7: 18591868.Google ScholarPubMed
Conner, J. K. (2012). Quantitative genetic approaches to evolutionary constraint: how useful? Evolution, 66: 33133320.10.1111/j.1558-5646.2012.01794.xCrossRefGoogle ScholarPubMed
Conti, L. & Bradley, D. (2007). TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell, 19: 767778.10.1105/tpc.106.049767CrossRefGoogle ScholarPubMed
Cook, C. D. K. & Rutishauser, R. (2007). Podostemaceae. In The Families and Genera of Vascular Plants, Vol. 9, ed. Kubitzki, K.. Berlin: Springer, pp. 304344.Google Scholar
Cooke, T. J., Poli, D. & Cohen, J. D. (2003). Did auxin play a crucial role in the evolution of novel body plans during the Late Silurian-Early Devonian radiation of land plants? In The Evolution of Plant Physiology: From Whole Plants to Ecosystems, eds. Hemsley, A. R. & Poole, I.. London: Linnean Society of London, pp. 85107.Google Scholar
Corbesier, L., Vincent, C., Jang, S. H. et al. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 316: 10301033.10.1126/science.1141752CrossRefGoogle ScholarPubMed
Corley, S. B., Carpenter, R., Copsey, L. & Coen, E. (2005). Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences of the United States of America, 102: 50685073.10.1073/pnas.0501340102CrossRefGoogle ScholarPubMed
Coudert, Y., Périn, C., Courtois, B., Khong, N. G. & Gantet, P. (2010). Genetic control of root development in rice, the model cereal. Trends in Plant Science, 15: 219226.10.1016/j.tplants.2010.01.008CrossRefGoogle ScholarPubMed
Couvreur, T. L. P., Franzke, A., Al-Shehbaz, I. A. et al. (2010). Molecular phylogenetics, temporal diversification and principles of evolution in the mustard family (Brassicaceae). Molecular Biology and Evolution, 27: 5571.10.1093/molbev/msp202CrossRefGoogle ScholarPubMed
Crane, P. R. (1985). Phylogenetic analysis of seed plants and the origin of angiosperms. Annals of the Missouri Botanical Garden, 72: 716793.10.2307/2399221CrossRefGoogle Scholar
Crane, P. R., Friis, E. M. & Pedersen, K. R. (1995). The origin and early diversification of angiosperms. Nature, 374: 2733.10.1038/374027a0CrossRefGoogle Scholar
Crane, P. R. & Kenrick, P. (1997). Diverted development of reproductive organs: a source of morphological innovation in land plants. Plant Systematics and Evolution, 206: 161174.10.1007/BF00987946CrossRefGoogle Scholar
Cremer, F., Lönnig, W. E., Saedler, H. & Huijser, P. (2001). The delayed terminal flower phenotype is caused by a conditional mutation in the CENTRORADIALIS gene of snapdragon. Plant Physiology, 126: 10311041.10.1104/pp.126.3.1031CrossRefGoogle ScholarPubMed
Cridge, A. G., Dearden, P. K. & Brownfield, L. R. (2016). Convergent occurrence of the developmental hourglass in plant and animal embryogenesis? Annals of Botany, 117: 833843.10.1093/aob/mcw024CrossRefGoogle Scholar
Cronk, Q. C. B. (2001). Plant evolution and development in a post-genomic context. Nature Reviews Genetics, 2: 607619.10.1038/35084556CrossRefGoogle Scholar
Cronk, Q. C. B. (2009). The Molecular Organography of Plants. Oxford: Oxford University Press.10.1093/acprof:oso/9780199550357.001.1CrossRefGoogle Scholar
Cronquist, A. (1968). The Evolution and Classification of Flowering Plants. Boston, MA: Houghton Mifflin.Google Scholar
Cronquist, A. (1981). An Integrated System of Classification of Flowering Plants. New York, NY: Columbia University Press.Google Scholar
Cubas, P. (2004). Floral zygomorphy, the recurring evolution of a successful trait. Bioessays, 26: 11751184.10.1002/bies.20119CrossRefGoogle ScholarPubMed
Cubas, P., Vincent, C. & Coen, E. (1999). An epigenetic mutation responsible for natural variation in floral symmetry. Nature, 401: 157161.10.1038/43657CrossRefGoogle ScholarPubMed
Cui, R., Han, J., Zhao, S. et al. (2010). Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). The Plant Journal, 61: 767781.10.1111/j.1365-313X.2009.04101.xCrossRefGoogle Scholar
Czapek, A. (1898). Die inverse Orientierung der Blätter von Alstroemeria. Flora, 85: 418430.Google Scholar
Dahmann, C., Oates, A. C. & Brand, M. (2011). Boundary formation and maintenance in tissue development. Nature Reviews Genetics, 12: 4355.10.1038/nrg2902CrossRefGoogle ScholarPubMed
Dai, M., Zhao, Y., Ma, O. et al. (2007). The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiology, 144: 121133.10.1104/pp.107.096586CrossRefGoogle ScholarPubMed
Damerval, C., Citerne, H., Le Guilloux, M. et al. (2013). Asymmetric morphogenetic cues along the transverse plane: shift from disymmetry to zygomorphy in the flower of Fumarioideae. American Journal of Botany, 100: 391402.10.3732/ajb.1200376CrossRefGoogle ScholarPubMed
Damerval, C., Le Guilloux, M., Jager, M. & Charon, C. (2007). Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae. Plant Physiology, 143: 759772.10.1104/pp.106.090324CrossRefGoogle ScholarPubMed
Damerval, C. & Nadot, S. (2007). Evolution of perianth and stamen characteristics with respect to floral symmetry in Ranunculales. Annals of Botany, 100: 631640.10.1093/aob/mcm041CrossRefGoogle ScholarPubMed
Daniell, H., Lin, C. S., Yu, M. & Chang, W. J. (2016). Chloroplast genomes: diversity, evolution, and applications in genetic engineering. BMC Genome Biology, 17(1): 129.Google Scholar
Danyluk, J., Kane, N. A., Breton, G. et al. (2003). TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiology, 132: 18491860.10.1104/pp.103.023523CrossRefGoogle ScholarPubMed
D’Arcy, W. (1991). The Solanaceae since 1976, with a review of its biogeography. In Solanaceae III: Taxonomy, Chemistry, Evolution, eds. Hawkes, J. G., Lester, R. W., Nee, M. & Estrada, R. N.. Kew: Royal Botanic Gardens; London: Linnean Society of London, pp. 75137.Google Scholar
Darwin, C. (1859). On the Origin of Species by Natural Selection. London: J. Murray.Google Scholar
Darwin, C. (1877). The Different Forms of Flowers on Plants of the Same Species. London: Murray.10.5962/bhl.title.110054CrossRefGoogle Scholar
Datson, P. M., Murray, B. G. & Steiner, K. E. (2008). Climate and the evolution of annual/perennial life-histories in Nemesia (Scrophulariaceae). Plant Systematics and Evolution, 270: 3957.10.1007/s00606-007-0612-4CrossRefGoogle Scholar
Davies, B., Motte, P., Keck, E. et al. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO Journal, 18: 40234034.10.1093/emboj/18.14.4023CrossRefGoogle ScholarPubMed
Davis, C. & Wurdack, K. (2004). Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science, 305: 676678.10.1126/science.1100671CrossRefGoogle ScholarPubMed
Davis, C. C. & Anderson, W. R. (2010). A complete generic phylogeny of Malpighiaceae inferred from nucleotide sequence data and morphology. American Journal of Botany, 97: 20312048.10.3732/ajb.1000146CrossRefGoogle ScholarPubMed
Davis, C. C. & Xi, Z. (2015). Horizontal gene transfer in parasitic plants. Current Opinion in Plant Biology, 26: 1419.10.1016/j.pbi.2015.05.008CrossRefGoogle ScholarPubMed
Dawkins, R. (1976). The Selfish Gene. Oxford: Oxford UniversityPress.Google Scholar
de Beer, G. R. (1930). Embryology and Evolution. Oxford: Clarendon Press.Google Scholar
de Beer, G. R. (1940). Embryos and Ancestors. Oxford: Clarendon Press.Google Scholar
de Bruijn, S., Angenent, G. C. & Kaufmann, K. (2012). Plant ‘evo-devo’ goes genomic: from candidate genes to regulatory networks. Trends in Plant Science, 17: 441447.10.1016/j.tplants.2012.05.002CrossRefGoogle ScholarPubMed
de Lange, P. J., Heenan, P. B., Houliston, G. J., Rolfe, J. R. & Mitchell, A. D. (2013). New Lepidium (Brassicaceae) from New Zealand. PhytoKeys, 24: 1147.10.3897/phytokeys.24.4375CrossRefGoogle Scholar
de Martino, G., Pan, I., Emmanuel, E., Levy, A. & Irish, V. F. (2006). Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell, 18: 18331845.10.1105/tpc.106.042978CrossRefGoogle ScholarPubMed
De Smet, I., Lau, S., Mayer, U. & Jürgens, G. (2010). Embryogenesis: the humble beginnings of plant life. The Plant Journal, 61: 959970.10.1111/j.1365-313X.2010.04143.xCrossRefGoogle ScholarPubMed
de Vries, H. (1904). Species and Varieties: Their Origin by Mutation. Chicago, IL: Open Court.Google Scholar
Della Pina, S., Souer, E. & Koes, R. (2014). Arguments in the evo-devo debate: say it with flowers! Journal of Experimental Botany, 65: 22312242.10.1093/jxb/eru111CrossRefGoogle ScholarPubMed
DeMason, D. A. & Schmidt, R. J. (2001). Roles of the Uni gene in shoot and leaf development of pea (Pisum sativum): phenotypic characterization and leaf development in the uni and uni-tac mutants. International Journal of Plant Sciences, 162: 10331051.10.1086/321924CrossRefGoogle Scholar
Dengler, N. G. (1999). Anisophylly and dorsiventral shoot symmetry. International Journal of Plant Sciences, 160: S67S80.10.1086/314218CrossRefGoogle ScholarPubMed
Dengler, N. G., Dengler, R. E. & Kaplan, D. R. (1982). The mechanism of plication in palm leaves: histogenic observations on the pinnate leaf of Chrysalidocarpus lutescens. Canadian Journal of Botany, 60: 29762980.10.1139/b82-356CrossRefGoogle Scholar
Derelle, R., Lopez, P., Le Guyader, H. & Manuel, M. (2007). Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evolution and Development, 9: 212219.10.1111/j.1525-142X.2007.00153.xCrossRefGoogle Scholar
Deroin, T. (2007). Floral vascular pattern of the endemic Malagasy genus Fenerivia Diels (Annonaceae). Adansonia, 29: 712.Google Scholar
Dewitte, W., Scofield, S., Alcasabas, A. A. et al. (2007). Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proceedings of the National Academy of Sciences of the United States of America, 104: 1453714542.10.1073/pnas.0704166104CrossRefGoogle ScholarPubMed
Di Giacomo, E., Sestili, F., Iannelli, M. A. et al. (2008). Characterization of KNOX genes in Medicago truncatula. Plant Molecular Biology, 67: 135150.10.1007/s11103-008-9307-7CrossRefGoogle ScholarPubMed
Dickinson, T. A. (1978). Epiphylly in angiosperms. Botanical Review, 44: 181232.10.1007/BF02919079CrossRefGoogle Scholar
Diggle, P. K. (1991). Labile sex expression in andromonoecious Solanum hirtum: sources of variation in mature floral structure. Canadian Journal of Botany, 69: 20332043.10.1139/b91-256CrossRefGoogle Scholar
Diggle, P. K. (1993). Developmental plasticity, genetic variation and the evolution of andromonoecy. American Journal of Botany, 80: 967973.10.1002/j.1537-2197.1993.tb15319.xCrossRefGoogle Scholar
Diggle, P. K. (1994). The expression of andromonoecy in Solanum hirtum: phenotypic plasticity and ontogenetic contingency. American Journal of Botany, 81: 13541365.10.1002/j.1537-2197.1994.tb11457.xCrossRefGoogle Scholar
Diggle, P. K. (1995). Architectural effects and the interpretation of patterns of fruit and seed development. Annual Review of Ecology and Systematics, 26: 531552.10.1146/annurev.es.26.110195.002531CrossRefGoogle Scholar
Diggle, P. K. (1997). Extreme preformation in an alpine Polygonum viviparum: an architectural and developmental analysis. American Journal of Botany, 84: 154169.10.2307/2446077CrossRefGoogle Scholar
Diggle, P. K. (1999). Heteroblasty and the evolution of flowering phenologies. International Journal of Plant Sciences, 160: S123S134.10.1086/314217CrossRefGoogle ScholarPubMed
Diggle, P. K. (2003). Architectural effects on floral form and function: a review. In Deep Morphology: Toward a Renaissance of Morphology in Plant Systematics, eds. Stuessy, T., Hörandl, E. & Mayer, V.. Königstein: Koeltz, pp. 6380.Google Scholar
Diggle, P. K. (2014). Modularity and intra-floral integration in metameric organisms: plants are more than the sum of their parts. Philosophical Transactions of the Royal Society B, 369: 20130253.10.1098/rstb.2013.0253CrossRefGoogle Scholar
Diggle, P. K., Di Stilio, V. S., Gschwend, A. R. et al. (2011). Multiple developmental processes underlie sex differentiation in angiosperms. Trends in Genetics, 27: 368376.10.1016/j.tig.2011.05.003CrossRefGoogle ScholarPubMed
Dilcher, D. L. & Crane, P. R. (1984). Archaeanthus: an early angiosperm from the Cenomanian of the western interior of North America. Annals of the Missouri Botanical Garden, 71: 351383.10.2307/2399030CrossRefGoogle Scholar
Dinneny, J. R., Weigel, D. & Yanofsky, M. F. (2005). A genetic framework for fruit patterning in Arabidopsis thaliana. Development, 132: 46874696.10.1242/dev.02062CrossRefGoogle ScholarPubMed
Dinneny, J. R., Yadegari, R., Fischer, R. L., Yanofsky, M. F. & Weigel, D. (2004). The role of JAGGED in shaping lateral organs. Development, 131: 11011110.10.1242/dev.00949CrossRefGoogle ScholarPubMed
Dinneny, J. R. & Yanofsky, M. F. (2005). Drawing lines and borders: how the dehiscent fruit of Arabidopsis is patterned. BioEssays, 27: 4249.10.1002/bies.20165CrossRefGoogle ScholarPubMed
Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. & Yanofsky, M. F. (2004). The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology, 14: 19351940.10.1016/j.cub.2004.10.028CrossRefGoogle ScholarPubMed
Dodds, P. N. & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11: 539548.10.1038/nrg2812CrossRefGoogle ScholarPubMed
Doebley, J., Stec, A. & Hubbard, L. (1997). The evolution of apical dominance in maize. Nature, 386: 485488.10.1038/386485a0CrossRefGoogle ScholarPubMed
Domazet-Lošo, T., Brajković, J. & Tautz, D. (2007). A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends in Genetics, 23, 533539.10.1016/j.tig.2007.08.014CrossRefGoogle ScholarPubMed
Domoney, C., Duc, G., Ellis, T. H. N. et al. (2006). Genetic and genomic analysis of legume flowers and seeds. Current Opinion in Plant Biology, 9: 133141.10.1016/j.pbi.2006.01.014CrossRefGoogle ScholarPubMed
Donnelly, P. M., Bonetta, D., Tsukaya, H., Dengler, R. & Dengler, N. G. (1999). Cell cycling and cell enlargement in developing leaves of Arabidopsis. Developmental Biology, 215: 407419.10.1006/dbio.1999.9443CrossRefGoogle ScholarPubMed
Donoghue, M. J. (1992). Homology. In Keywords in Evolutionary Biology, eds. Keller, E. F. & Lloyd, E. A.. Cambridge, MA: Harvard University Press, pp. 170179.Google Scholar
Donoghue, M. J. & Ree, R. H. (2000). Homoplasy and developmental constraint: a model and an example from plants. American Zoologist, 40: 759769.Google Scholar
Donoghue, M. J., Ree, R. H. & Baum, D. A. (1998). Phylogeny and the evolution of flower symmetry in the Asteridae. Trends in Plant Science, 3: 311317.10.1016/S1360-1385(98)01278-3CrossRefGoogle Scholar
Doust, A. N. (2001). The developmental basis of floral variation in Drimys winteri (Winteraceae). International Journal of Plant Sciences, 162: 697717.10.1086/320790CrossRefGoogle Scholar
Doust, A. N., Mauro-Herrera, M., Francis, A. D. & Shand, L. C. (2014). Morphological diversity and genetic regulation of inflorescence abscission zones in grasses. American Journal of Botany, 101: 17591769.10.3732/ajb.1400186CrossRefGoogle ScholarPubMed
Doyle, J. A. (2008). Integrating molecular phylogenetic evidence and paleobotanical evidence on the origin of the flower. International Journal of Plant Sciences, 167: 816843.10.1086/589887CrossRefGoogle Scholar
Doyle, J. A. & Endress, P. K. (2000). Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. International Journal of Plant Sciences, 161: S121S153.10.1086/317578CrossRefGoogle Scholar
Doyle, J. A. & Endress, P. K. (2011). Tracing the evolutionary diversification of the flower in basal angiosperms. In Flowers on the Tree of Life, eds. Wanntorp, L. & De Craene, L. P. Ronse. Cambridge: Cambridge University Press, pp. 88119.10.1017/CBO9781139013321.004CrossRefGoogle Scholar
Draghi, J. & Wagner, G. P. (2008). Evolution of evolvability in a developmental model. Evolution, 62: 301315.10.1111/j.1558-5646.2007.00303.xCrossRefGoogle Scholar
Dransfield, J. & Uhl, N.W. (1998). Palmae. In The Families and Genera of Vascular Plants. Vol. 4, ed. Kubitzki, K.. Berlin: Springer, pp. 306388.Google Scholar
Drea, S., Hileman, L. C., de Martino, G. & Irish, V. F. (2007). Functional analyses of genetic pathways controlling petal specification in poppy. Development, 134: 41574166.10.1242/dev.013136CrossRefGoogle ScholarPubMed
Dreni, L., Jacchia, S., Fornara, F. et al. (2007). The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. The Plant Journal, 52: 690699.10.1111/j.1365-313X.2007.03272.xCrossRefGoogle ScholarPubMed
Drinnan, A. N., Crane, P. R. & Hoot, S. B. (1994). Patterns of floral evolution in the early diversification of nonmagnoliid dicotyledons (eudicots). Plant Systematics and Evolution, Supplement, 8: 93122.Google Scholar
Drost, H. G., Gabel, A., Grosse, I. & Quint, M. (2015). Evidence for active maintenance of phylotranscriptomic hourglass patterns in animal and plant embryogenesis. Molecular Biology and Evolution, 32: 12211231.10.1093/molbev/msv012CrossRefGoogle ScholarPubMed
Du, X., Xiao, Q., Zhao, R. et al. (2008). TrMADS3, a new MADS-box gene, from a perennial species Taihangia rupestris (Rosaceae) is upregulated by cold and experiences seasonal fluctuation in expression level. Development Genes and Evolution, 218: 281292.10.1007/s00427-008-0218-zCrossRefGoogle ScholarPubMed
Du, Z.-Y. & Wang, Y.-Z. (2008). Significance of RT-PCR expression patterns of CYC-like genes in Oreocharis benthamii (Gesneriaceae). Journal of Systematics and Evolution, 46: 2331.Google Scholar
Duboule, D. (1994). Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development, Supplement, 1994: 135142.Google Scholar
Dubrovsky, J. G., Gambetta, G. A., Hernández-Barrera, A., Shishkova, S. & González, I. (2006). Lateral root initiation in Arabidopsis: developmental window, spatial patterning, density and predictability. Annals of Botany, 97: 903915.10.1093/aob/mcj604CrossRefGoogle ScholarPubMed
Dunwell, J. M. (2010). Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal, 8: 377424.10.1111/j.1467-7652.2009.00498.xCrossRefGoogle ScholarPubMed
Duthion, C., Ney, B. & Munier-Jolain, N. M. (1994). Development and growth of white lupin: implications for crop management. Agronomy Journal, 86: 10391045.10.2134/agronj1994.00021962008600060020xCrossRefGoogle Scholar
Eames, A. J. (1961). Morphology of the Angiosperms. New York, NY: McGraw-Hill.10.5962/bhl.title.5986CrossRefGoogle Scholar
Efroni, I., Blum, E., Goldshmidt, A. & Eshed, Y. (2008). A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell, 20: 22932306.10.1105/tpc.107.057521CrossRefGoogle ScholarPubMed
Efroni, I., Eshed, Y. & Lifschitz, E. (2010). Morphogenesis of simple and compound leaves: a critical review. Plant Cell, 22: 10191032.10.1105/tpc.109.073601CrossRefGoogle ScholarPubMed
Egea-Cortines, M. & Weiss, J. (2013). Control of plant organ size. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Ehrenreich, I. M. & Pfennig, D. W. (2016). Genetic assimilation: a review of its potential proximate causes and evolutionary consequences. Annals of Botany, 117: 769779.10.1093/aob/mcv130CrossRefGoogle ScholarPubMed
El Ottra, J. H. L., Pirani, J. R. & Endress, P. K. (2013). Fusion within and between whorls of floral organs in Galipeinae (Rutaceae): structural features and evolutionary implications. Annals of Botany, 111: 821837.10.1093/aob/mct039CrossRefGoogle ScholarPubMed
Elo, A., Lemmetyinen, J., Novak, A. et al. (2007). BpMADS4 has a central role in inflorescence initiation in silver birch (Betula pendula). Physiologia Plantarum, 131: 149158.10.1111/j.1399-3054.2007.00947.xCrossRefGoogle Scholar
Elsner, J., Michalski, M. & Kwiatkowska, D. (2012). Spatiotemporal variation of leaf epidermal cell growth: a quantitative analysis of Arabidopsis thaliana wildtype and triple cyclinD3 mutant plants. Annals of Botany, 109: 897910.10.1093/aob/mcs005CrossRefGoogle ScholarPubMed
Emery, J. F., Floyd, S. K., Alvarez, J. et al. (2003). Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Current Biology, 13: 17681774.10.1016/j.cub.2003.09.035CrossRefGoogle ScholarPubMed
Endress, M. E. (2001). Apocynaceae and Asclepiadaceae: united they stand. Haseltonia, 8: 29.Google Scholar
Endress, P. K. (1970). Die Infloreszenzen der apetalen Hamamelidaceen, ihre grundsätzliche morphologische und systematische Bedeutung. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 90: 154.Google Scholar
Endress, P. K. (1976). Die Androeciumanlage bei polyandrischen Hamamelidaceen und ihre systematische Bedeutung. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 97: 436457.Google Scholar
Endress, P. K. (1978). Blütenontogenese, Blütenabgrenzung und systematische Stellung der perianthlosen Hamamelidoideae. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 100: 249317.Google Scholar
Endress, P. K. (1982). Syncarpy and alternative modes of escaping disadvantages of apocarpy in primitive angiosperms. Taxon, 31: 4852.10.2307/1220588CrossRefGoogle Scholar
Endress, P. K. (1984). The flowering process in the Eupomatiaceae (Magnoliales). Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 104: 297319.Google Scholar
Endress, P. K. (1987a). The Chloranthaceae: reproductive structures and phylogenetic position. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 109: 153226.Google Scholar
Endress, P. K. (1987b). Floral phyllotaxis and floral evolution. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 108: 417438.Google Scholar
Endress, P. K. (1989). Chaotic floral phyllotaxis and reduced perianth in Achlys (Berberidaceae). Botanica Acta, 102: 159163.10.1111/j.1438-8677.1989.tb00085.xCrossRefGoogle Scholar
Endress, P. K. (1990a). Patterns of floral construction in ontogeny and phylogeny. Biological Journal of the Linnean Society, 39: 153175.10.1111/j.1095-8312.1990.tb00509.xCrossRefGoogle Scholar
Endress, P. K. (1990b). Evolution of reproductive structures and functions in primitive angiosperms (Magnoliidae). Memoirs of the New York Botanical Garden, 55: 534.Google Scholar
Endress, P. K. (1992). Evolution and floral diversity: the phylogenetic surroundings of Arabidopsis and Antirrhinum. International Journal of Plant Sciences, 153: S106S122.10.1086/297069CrossRefGoogle Scholar
Endress, P. K. (1994a). Diversity and Evolutionary Biology of Tropical Flowers. Cambridge: Cambridge University Press.Google Scholar
Endress, P. K. (1994b). Floral structure and evolution of primitive angiosperms: recent advances. Plant Systematics and Evolution, 192: 7997.10.1007/BF00985910CrossRefGoogle Scholar
Endress, P. K. (1994c). Evolutionary aspects of the floral structure in Ceratophyllum. Plant Systematics and Evolution, Supplement, 8: 175183.Google Scholar
Endress, P. K. (1995). Floral structure and evolution in Ranunculanae. Plant Systematics and Evolution, Supplement, 9: 4761.Google Scholar
Endress, P. K. (1996). Homoplasy in angiosperm flowers. In Homoplasy: The Recurrence of Similarity in Evolution, eds. Sanderson, M. J. & Hufford, L.. San Diego, CA: Academic Press, pp. 303325.CrossRefGoogle Scholar
Endress, P. K. (1997). Evolutionary biology of flowers: prospects for the next century. In Evolution and Diversification of Land Plants, ed. Iwatsuki, K. & Raven, P. H.. Tokyo: Springer-Verlag, pp. 99119.10.1007/978-4-431-65918-1_5CrossRefGoogle Scholar
Endress, P. K. (1998). Antirrhinum and Asteridae: evolutionary changes of floral symmetry. Symposia of the Society for Experimental Biology, 51: 133140.Google ScholarPubMed
Endress, P. K. (1999). Symmetry in flowers: diversity and evolution. International Journal of Plant Sciences, 160: S3S23.10.1086/314211CrossRefGoogle ScholarPubMed
Endress, P. K. (2001a). Evolution of floral symmetry. Current Opinion in Plant Biology, 4: 8691.10.1016/S1369-5266(00)00140-0CrossRefGoogle ScholarPubMed
Endress, P. K. (2001b). Origins of flower morphology. Journal of Experimental Zoology (Molecular and Developmental Evolution), 291: 105115.Google ScholarPubMed
Endress, P. K. (2001c). The flowers in extant basal angiosperms and inferences on ancestral flowers. International Journal of Plant Sciences, 162: 11111140.10.1086/321919CrossRefGoogle Scholar
Endress, P. K. (2004). Structure and relationships of basal relictual angiosperms. Australian Systematic Botany, 17: 343366.10.1071/SB04004CrossRefGoogle Scholar
Endress, P. K. (2006). Angiosperm floral evolution: morphological and developmental framework. Advances in Botanical Research, 44: 161.10.1016/S0065-2296(06)44001-5CrossRefGoogle Scholar
Endress, P. K. (2008a). Perianth biology in the basal grade of extant angiosperms. International Journal of Plant Sciences, 169: 844862.10.1086/589691CrossRefGoogle Scholar
Endress, P. K. (2008b). The whole and the parts: relationships between floral architecture and floral organ shape, and their repercussions on the interpretation of fragmentary floral fossils. Annals of the Missouri Botanical Garden, 95: 101120.10.3417/2006190CrossRefGoogle Scholar
Endress, P. K. (2010a). Flower structure and trends of evolution in eudicots and their major subclades. Annals of the Missouri Botanical Garden, 97: 541583.10.3417/2009139CrossRefGoogle Scholar
Endress, P. K. (2010b). Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. Journal of Systematics and Evolution, 48: 225239.10.1111/j.1759-6831.2010.00087.xCrossRefGoogle Scholar
Endress, P. K. (2010c). The evolution of floral biology in basal angiosperms. Philosophical Transactions of the Royal Society B, 365: 411421.10.1098/rstb.2009.0228CrossRefGoogle ScholarPubMed
Endress, P. K. (2010d). Synorganisation without organ fusion in the flowers of Geranium robertianum (Geraniaceae) and its not so trivial obdiplostemony. Annals of Botany, 106: 687695.10.1093/aob/mcq171CrossRefGoogle Scholar
Endress, P. K. (2011). Evolutionary diversification of the flowers in angiosperms. American Journal of Botany, 98: 370396.10.3732/ajb.1000299CrossRefGoogle ScholarPubMed
Endress, P. K. (2012). The immense diversity of floral monosymmetry and asymmetry across angiosperms. Botanical Review, 78: 345397.10.1007/s12229-012-9106-3CrossRefGoogle Scholar
Endress, P. K. (2014). Multicarpellate gynoecia in angiosperms - occurrence, development, organization and architectural constraints. Botanical Journal of the Linnean Society, 174: 143.10.1111/boj.12099CrossRefGoogle Scholar
Endress, P. K. (2015). Patterns of angiospermy development before carpel sealing across living angiosperms: diversity, and morphological and systematic aspects. Botanical Journal of the Linnean Society, 178: 556591.10.1111/boj.12294CrossRefGoogle Scholar
Endress, P. K. & Doyle, J. A. (2007). Floral phyllotaxis in basal angiosperms: development and evolution. Current Opinion in Plant Biology, 10: 5257.10.1016/j.pbi.2006.11.007CrossRefGoogle ScholarPubMed
Endress, P. K. & Doyle, J. A. (2015) Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. Taxon, 64: 10931116.10.12705/646.1CrossRefGoogle Scholar
Endress, P. K. & Igersheim, A. (2000a) Gynoecium structure and evolution in basal angiosperms. International Journal of Plant Sciences, 161: S211S223.10.1086/317572CrossRefGoogle Scholar
Endress, P. K. & Igersheim, A. (2000b). The reproductive structures of the basal angiosperm Amborella trichopoda (Amborellaceae). International Journal of Plant Sciences, 161: S237S248.10.1086/317571CrossRefGoogle Scholar
Endress, P. K., Igersheim, A., Sampson, F. B. & Schatz, G. E. (2000). Floral structure of Takhtajania and its systematic position in Winteraceae. Annals of the Missouri Botanical Garden, 87: 347365.10.2307/2666194CrossRefGoogle Scholar
Endress, P. K. & Lorence, D. H. (2004). Heterodichogamy of a novel type in Hernandia (Hernandiaceae) and its structural basis. International Journal of Plant Sciences, 165: 753763.10.1086/422049CrossRefGoogle Scholar
Endress, P. K. & Matthews, M. L. (2006a). Elaborate petals and staminodes in eudicots: diversity, function, and evolution. Organisms, Diversity and Evolution, 6: 257293.10.1016/j.ode.2005.09.005CrossRefGoogle Scholar
Endress, P. K. & Matthews, M. L. (2006b). First steps towards a floral structural characterization of the major rosid subclades. Plant Systematics and Evolution, 260: 223251.10.1007/s00606-006-0444-7CrossRefGoogle Scholar
Erbar, C. & Leins, P. (1996). Distribution of the character states ‘early’ and ‘late sympetaly’ within the ‘Sympetalae Tetracyclicae’ and presumably related groups. Botanica Acta, 109: 427440.10.1111/j.1438-8677.1996.tb00593.xCrossRefGoogle Scholar
Erbar, C. & Leins, P. (1997). Different patterns of floral development in whorled flowers, exemplified by Apiaceae and Brassicaceae. International Journal of Plant Sciences, 158: S49S64.10.1086/297506CrossRefGoogle Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M. et al. (2011). The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334: 10911097.10.1126/science.1206375CrossRefGoogle ScholarPubMed
Eshed, Y., Baum, S. F. & Bowman, J. L. (1999). Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell, 99: 199209.10.1016/S0092-8674(00)81651-7CrossRefGoogle ScholarPubMed
Eshed, Y., Baum, S. F., Perea, J. V. & Bowman, J. L. (2001). Establishment of polarity in lateral organs of plants. Current Biology, 11: 12511260.10.1016/S0960-9822(01)00392-XCrossRefGoogle ScholarPubMed
Eshed, Y., Izhaki, A., Baum, S. F., Floyd, S. K. & Bowman, J. L. (2004). Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development, 131: 29973006.10.1242/dev.01186CrossRefGoogle ScholarPubMed
Espadaler, X. & Gómez, C. (2001). Female performance in Euphorbia characias: effect of flower position on seed quantity and quality. Seed Science Research, 11: 163172.Google Scholar
Evered, D. & Marsh, J. (1989). The Cellular Basis of Morphogenesis. Chichester: Wiley.Google Scholar
Ewers, F. W. & Schmid, R. (1981). Longevity of needle fascicles of Pinus longaeva (bristlecone pine) and other North American pines. Oecologia, 51: 107115.10.1007/BF00344660CrossRefGoogle ScholarPubMed
Fahlgren, N., Jogdeo, S., Kasschau, K. D. et al. (2010). MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell, 22: 10741089.10.1105/tpc.110.073999CrossRefGoogle ScholarPubMed
Fambrini, M., Salvini, M. & Pugliesi, C. (2011). A transposon-mediate inactivation of a CYCLOIDEA-like gene originates polysymmetric and androgynous ray flowers in Helianthus annuus. Genetica, 139: 15211529.10.1007/s10709-012-9652-yCrossRefGoogle ScholarPubMed
Fauron, C., Allen, J. O., Clifton, S. & Newton, K. J. (2004). Plant mitochondrial genomes. In Molecular Biology and Biotechnology of Plant Organelles, eds. Daniell, H. & Chase, C.. Dordrecht: Kluwer, pp. 155171.Google Scholar
Feng, G., Qin, Z., Yan, J., Zhang, X. & Hu, Y. (2011). Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL. New Phytologist, 191: 635646.10.1111/j.1469-8137.2011.03710.xCrossRefGoogle ScholarPubMed
Feng, M. & Lu, A.-M. (1998). Floral organogenesis and its systematic significance of the genus Nandina (Berberidaceae). Acta Botanica Sinica, 40: 102108.Google Scholar
Feng, X., Zhao, Z., Tian, Z. et al. (2006). Control of petal shape and floral zygomorphy in Lotus japonicus. Proceedings of the National Academy of Sciences of the United States of America, 103: 49704975.10.1073/pnas.0600681103CrossRefGoogle ScholarPubMed
Ferjani, A., Horiguchi, G., Yano, S. & Tsukaya, H. (2007). Analysis of leaf development in fugu mutants of Arabidopsis reveals three compensation modes that modulate cell expansion in determinate organs. Plant Physiology, 144: 988999.10.1104/pp.107.099325CrossRefGoogle ScholarPubMed
Ferrándiz, C., Liljegren, S. J. & Yanofsky, M. F. (2000). Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science, 289: 436438.10.1126/science.289.5478.436CrossRefGoogle ScholarPubMed
Ferreira, B. G. & Isaias, R. M. S. (2014). Floral-like destiny induced by a galling Cecidomyiidae on the axillary buds of Marcetia taxifolia (Melastomataceae). Flora, 209: 391400.10.1016/j.flora.2014.06.004CrossRefGoogle Scholar
Ferrero, V., Arroyo, J., Vargas, P., Thompson, J. D. & Navarro, L. (2009). Evolutionary transitions of style polymorphisms in Lithodora (Boraginaceae). Perspectives in Plant Ecology, Evolution and Systematics, 11: 111125.10.1016/j.ppees.2009.01.004CrossRefGoogle Scholar
Ferrero, V., Rojas, D., Vale, A. & Navarro, L. (2012). Delving into the loss of heterostyly in Rubiaceae: is there a similar trend in tropical and non-tropical zones? Perspectives in Plant Ecology, Evolution and Systematics, 14: 161167.10.1016/j.ppees.2011.11.005CrossRefGoogle Scholar
Fink, W. L. (1982). The conceptual relationship between ontogeny and phylogeny. Paleobiology, 8: 254264.10.1017/S0094837300006977CrossRefGoogle Scholar
Fink, W. L. (1988). Phylogenetic analysis and the detection of ontogenetic patterns. In Heterochrony in Evolution: A Multidisciplinary Approach, ed. McKinney, M. L.. New York, NY: Plenum Press, pp. 7191.10.1007/978-1-4899-0795-0_5CrossRefGoogle Scholar
Fischer, E. (2015). Magnoliopsida (Angiosperms) p.p.: Subclass Magnoliidae [Amborellanae to Magnolianae, Lilianae p.p. (Acorales to Asparagales)]. In Syllabus of Plant Families, 13th edn, Part 4, ed. Frey, W.. Stuttgart: Borntraeger, pp. 111495.Google Scholar
Fishbein, M. (2001). Evolutionary innovation and diversification in the flowers of Asclepiadaceae. Annals of the Missouri Botanical Garden, 88: 603623.10.2307/3298636CrossRefGoogle Scholar
Fisher, J. B. (2002). Indeterminate leaves of Chisocheton (Meliaceae): survey of structure and development. Botanical Journal of the Linnean Society, 139: 207221.10.1046/j.1095-8339.2002.00050.xCrossRefGoogle Scholar
Fisher, J. B. & Rutishauser, R. (1990). Leaves and epiphyllous shoots in Chisocheton (Meliaceae): a continuum of woody leaf and stem-axes. Canadian Journal of Botany, 68: 23162328.10.1139/b90-296CrossRefGoogle Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Clarendon Press.10.5962/bhl.title.27468CrossRefGoogle Scholar
Fitting, H. (1921). Das Verblühen der Blüten. Die Naturwissenschaften, 9: 19.10.1007/BF01486446CrossRefGoogle Scholar
Floyd, S. K. & Bowman, J. L. (2007). The ancestral developmental toolkit of land plants. International Journal of Plant Sciences, 168: 135.10.1086/509079CrossRefGoogle Scholar
Floyd, S. K. & Bowman, J. L. (2010). Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology? Journal of Plant Research, 123: 4355.10.1007/s10265-009-0256-2CrossRefGoogle ScholarPubMed
Forest, F., Chase, M. W., Persson, C., Crane, P. R. & Hawkins, J. A. (2007). The role of biotic and abiotic factors in the evolution of ant-dispersal in the milkwort family (Polygalaceae). Evolution, 61: 16751694.10.1111/j.1558-5646.2007.00138.xCrossRefGoogle ScholarPubMed
Foucher, F., Morin, J., Courtiade, J. et al. (2003). DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell, 15: 27422754.10.1105/tpc.015701CrossRefGoogle ScholarPubMed
Frajman, B. & Schönswetter, P. (2011). Giants and dwarfs: molecular phylogenies reveal multiple origins of annual spurges within Euphorbia subg. Esula. Molecular Phylogenetics and Evolution, 61: 413424.10.1016/j.ympev.2011.06.011CrossRefGoogle ScholarPubMed
Francis, D. (2008). Apical meristems. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Franzke, A., Lysak, M. A., Al-Shehbaz, I. A., Koch, M. A. & Mummenhoff, K. (2011). Cabbage family affairs: the evolutionary history of Brassicaceae. Trends in Plant Science, 16: 108116.10.1016/j.tplants.2010.11.005CrossRefGoogle ScholarPubMed
Friedman, W. E., Moore, R. C. & Purugganan, M. D. (2004). The evolution of plant development. American Journal of Botany, 91: 17261741.10.3732/ajb.91.10.1726CrossRefGoogle ScholarPubMed
Friis, E. M., Doyle, J. A., Endress, P. K. & Leng, Q. (2003). Archaefructus: angiosperm precursor or specialized early angiosperm? Trends in Plant Science, 8: 369373.10.1016/S1360-1385(03)00161-4CrossRefGoogle ScholarPubMed
Friis, E. M., Eklund, H., Pedersen, K. R. & Crane, P. R. (1994). Virginianthus calycanthoides gen. et sp. nov.: a calycanthaceous flower from the Potomac group (Early Cretaceous) of eastern North America. International Journal of Plant Sciences, 155: 772785.CrossRefGoogle Scholar
Friis, E. M., Pedersen, K. R. & Crane, P. R. (2000). Reproductive structure and organization of basal angiosperms from the early Cretaceous (Barremian or Aptian) of western Portugal. International Journal of Plant Sciences, 161: 51695182.10.1086/317570CrossRefGoogle Scholar
Frohlich, M. W. & Parker, D. S. (2000). The mostly male theory of flower evolutionary origins: from genes to fossils. Systematic Botany, 25: 155170.10.2307/2666635CrossRefGoogle Scholar
Fruciano, C., Franchini, P. & Meyer, A. (2013). Resampling based approaches to study variation in morphological modularity. PLoS ONE, 8: e69376.10.1371/journal.pone.0069376CrossRefGoogle ScholarPubMed
Fujikura, U., Horiguchi, G., Ponce, M. R., Micol, J. L. & Tsukaya, H. (2009). Coordination of cell proliferation and cell expansion mediated by ribosomerelated processes in the leaves of Arabidopsis thaliana. The Plant Journal, 59: 499508.10.1111/j.1365-313X.2009.03886.xCrossRefGoogle ScholarPubMed
Fujinami, R., Ghogue, J. P. & Imaichi, R. (2013). Developmental morphology of the controversial ramulus organ of Tristicha trifaria (subfamily Tristichoideae, Podostemaceae): implications for evolution of a unique body plan in Podostemaceae. International Journal of Plant Sciences, 174: 609618.10.1086/669907CrossRefGoogle Scholar
Fujinami, R. & Imaichi, R. (2015). Developmental morphology of flattened shoots in Dalzellia ubonensis and Indodalzellia gracilis with implications for the evolution of diversified shoot morphologies in the subfamily Tristichoideae (Podostemaceae). American Journal of Botany, 102: 848859.10.3732/ajb.1500206CrossRefGoogle ScholarPubMed
Fukuda, H. (2000). Programmed cell death of tracheary elements as a paradigm in plants. Plant Molecular Biology, 44: 245253.10.1023/A:1026532223173CrossRefGoogle ScholarPubMed
Fukuda, T., Yokoyama, J. & Maki, M. (2003). Molecular evolution of cycloidea-like genes in Fabaceae. Journal of Molecular Evolution, 57: 588597.10.1007/s00239-003-2498-2CrossRefGoogle ScholarPubMed
Fukuda, Y. (1988). Phyllotaxis in two species of Rubia, R. akane and R. sikkimensis. Botanical Magazine (Tokyo), 101: 2538.10.1007/BF02488391CrossRefGoogle Scholar
Fukuhara, T., Nagmasu, H. & Okada, H. (2003). Floral vasculature, sporogenesis and gametophyte development in Pentastemona egregia (Stemonaceae). Systematics and Geography of Plants, 73: 8390.Google Scholar
Fukushima, K., Fujita, H., Yamaguchi, T. et al. (2015). Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea. Nature Communications, 6: 6450.10.1038/ncomms7450CrossRefGoogle ScholarPubMed
Fukushima, K. & Hasebe, M. (2014). Adaxial–abaxial polarity: the developmental basis of leaf shape diversity. Genesis, 52: 118.10.1002/dvg.22728CrossRefGoogle ScholarPubMed
Furumizu, C., Alvarez, J. P., Sakakibara, K. & Bowman, J. L. (2015). Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genetics, 11: e1004980.10.1371/journal.pgen.1004980CrossRefGoogle ScholarPubMed
Furutani, I., Watanabe, Y., Prieto, R. et al. (2000). The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana. Development, 127: 44434453.10.1242/dev.127.20.4443CrossRefGoogle Scholar
Fusco, G. & Minelli, A. (2010). Phenotypic plasticity in development and evolution. Philosophical Transactions of the Royal Society B, 365: 547556.CrossRefGoogle ScholarPubMed
Galego, L. & Almeida, J. (2002). Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes and Development, 16: 880891.10.1101/gad.221002CrossRefGoogle ScholarPubMed
Galimba, K. D. & Di Stilio, V. S. (2015). Sub-functionalization to ovule development following duplication of a floral organ identity gene. Developmental Biology, 405: 158172.10.1016/j.ydbio.2015.06.018CrossRefGoogle ScholarPubMed
Galis, F. (1999). Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. Journal of Experimental Zoology (Molecular and Developmental Evolution), 285: 1926.10.1002/(SICI)1097-010X(19990415)285:1<19::AID-JEZ3>3.0.CO;2-Z3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Galis, F., Van Dooren, T. J., Feuth, J. D. et al. (2006). Extreme selection in humans against homeotic transformations of cervical vertebrae. Evolution, 60: 26432654.10.1111/j.0014-3820.2006.tb01896.xCrossRefGoogle ScholarPubMed
Gallois, J. L., Woodward, C., Reddy, G. V. & Sablowski, R. (2002). Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development, 129: 32073217.10.1242/dev.129.13.3207CrossRefGoogle ScholarPubMed
Gao, J. Y., Ren, P. Y., Yang, Z. H. & Li, Q. J. (2006). The pollination ecology of Paraboea rufescens (Gesneriaceae): a buzz-pollinated tropical herb with mirror-image flowers. Annals of Botany, 97: 371376.10.1093/aob/mcj044CrossRefGoogle ScholarPubMed
Gao, Q., Tao, J.-H., Wang, Y.-Z. & Li, Z.-H. (2008). Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha (Gesneriaceae). Development, Genes and Evolution, 218: 341351.10.1007/s00427-008-0227-yCrossRefGoogle ScholarPubMed
Gao, X., Liang, W., Yin, C. et al. (2010). The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiology, 153: 728740.10.1104/pp.110.156711CrossRefGoogle ScholarPubMed
García, M. B. & Antor, R. J. (1995a). Age and size structure in populations of a long-lived dioecious geophyte: Borderea pyrenaica (Dioscoreaceae). International Journal of Plant Sciences, 156: 236243.10.1086/297246CrossRefGoogle Scholar
García, M. B. & Antor, R. J. (1995b). Sex-ratio and sexual dimorphism in the dioecious Borderea pyrenaica (Dioscoreaceae). Oecologia, 101: 5967.10.1007/BF00328901CrossRefGoogle ScholarPubMed
García, M. B., Dahlgren, J. P. & Ehrlén, J. (2011). No evidence of senescence in a 300-year-old mountain herb. Journal of Ecology, 99: 14241430.10.1111/j.1365-2745.2011.01871.xCrossRefGoogle Scholar
Garnock-Jones, P. J. & Johnson, P. N. (1987). Iti lacustris (Brassicaceae), a new genus and species from southern New Zealand. New Zealand Journal of Botany, 25: 603610.10.1080/0028825X.1987.10410091CrossRefGoogle Scholar
Gautheret, R. J. (1934). Culture du tissus cambial. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 198: 21952196.Google Scholar
Geeta, R., Davalos, L. M., Levy, A. et al. (2012). Keeping it simple: flowering plants tend to retain, and revert to, simple leaves. New Phytologist, 193: 481493.10.1111/j.1469-8137.2011.03951.xCrossRefGoogle ScholarPubMed
Gehring, W. J., Affolter, M. & Bürglin, T. R. (1994). Homeodomain proteins. Annual Review of Biochemistry, 63: 487526.10.1146/annurev.bi.63.070194.002415CrossRefGoogle ScholarPubMed
Gendron, J. M., Liu, J.-S., Fan, M. et al. (2012). Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 109: 2115221157.10.1073/pnas.1210799110CrossRefGoogle ScholarPubMed
Gensel, P. G., Kotyk, M. E. & Basinger, J. E. (2001). Morphology of above- and below-ground structures in early Devonian (Pragian-Emsian) plants. In Plants Invade the Land: Evolutionary and Environmental Perspectives, eds. Gensel, P. G. & Edwards, D.. New York, NY: Columbia University Press, pp. 83102.10.7312/gens11160-006CrossRefGoogle Scholar
Gerats, T. & Vandenbussche, M. (2005). A model system for comparative research: Petunia. Trends in Plant Science, 10: 251256.10.1016/j.tplants.2005.03.005CrossRefGoogle Scholar
Gerrath, J. M. & Lacroix, C. R. (1997). Heteroblastic sequence and leaf development in Leea guineensis. International Journal of Plant Sciences, 158: 747756.10.1086/297486CrossRefGoogle Scholar
Gerrath, J. M., Posluszny, U. & Dengler, N. G. (2001). Primary vascular patterns in the Vitaceae. International Journal of Plant Sciences, 162: 729745.10.1086/320771CrossRefGoogle Scholar
Geuten, K., Becker, A., Kaufmann, K. et al. (2006). Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia. The Plant Journal, 47: 501518.10.1111/j.1365-313X.2006.02800.xCrossRefGoogle ScholarPubMed
Geuten, K. & Irish, V. (2010). Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions. Plant Cell, 22: 25622578.10.1105/tpc.110.076026CrossRefGoogle ScholarPubMed
Gibson, G. & Dworkin, I. (2004). Uncovering cryptic genetic variation. Nature Reviews Genetics, 5: 11991212.10.1038/nrg1426CrossRefGoogle ScholarPubMed
Gilbert, S. F. & Bolker, J. A. (2001). Homologies of process and modular elements of embryonic construction. Journal of Experimental Zoology (Molecular and Developmental Evolution), 291: 112.Google ScholarPubMed
Gill, N., Buti, M., Kane, N. et al. (2014). Sequence-based analysis of structural organization and composition of the cultivated sunflower (Helianthus annuus L.) genome. Biology, 3: 295319.10.3390/biology3020295CrossRefGoogle ScholarPubMed
Gillies, A. C. M., Cubas, P., Coen, E. S. & Abbott, R. J. (2002). Making rays in the Asteraceae: genetics and evolution of variation for radiate versus discoid flower heads. In Developmental Genetics and Plant Evolution, eds. Cronk, Q. C. B., Bateman, R. M. & Hawkins, J. A.. London: Taylor & Francis, pp. 237246.Google Scholar
Giménez, E., Pineda, B., Capel, J. et al. (2010). Functional analysis of the Arlequin mutant corroborates the essential role of the Arlequin/TAGL1 gene during reproductive development of tomato. PLoS ONE, 5: e14427.10.1371/journal.pone.0014427CrossRefGoogle ScholarPubMed
Gissi, C., Hastings, K. E. M., Gasparini, F. et al. (2017). An unprecedented taxonomic revision of a model organism: the paradigmatic case of Ciona robusta and Ciona intestinalis. Zoologica Scripta, 46: 521522.10.1111/zsc.12233CrossRefGoogle Scholar
Givnish, T. J. (2010). Giant lobelias exemplify convergent evolution. BMC Biology, 8: 3.10.1186/1741-7007-8-3CrossRefGoogle ScholarPubMed
Gleissberg, S. (1998a). Comparative analysis of leaf shape development in Papaveraceae-Papaveroideae. Flora, 193: 269301.10.1016/S0367-2530(17)30849-6CrossRefGoogle Scholar
Gleissberg, S. (1998b). Comparative analysis of leaf shape development in Papaveraceae–Chelidonioideae. Flora, 193: 387409.10.1016/S0367-2530(17)30865-4CrossRefGoogle Scholar
Gleissberg, S., Groot, E. P., Schmalz, M. et al. (2005). Developmental events leading to peltate leaf structure in Tropaeolum majus (Tropaeolaceae) are associated with expression domain changes of a YABBY gene. Development Genes and Evolution, 215: 313319.10.1007/s00427-005-0479-8CrossRefGoogle ScholarPubMed
Gleissberg, S. & Kadereit, J. W. (1999). Evolution of leaf morphogenesis: evidence from developmental and phylogenetic data in Papaveraceae. International Journal of Plant Sciences, 160: 787794.10.1086/314165CrossRefGoogle Scholar
Godfrey-Smith, P. (2009). Darwinian Populations and Natural Selection. New York, NY: Oxford University Press.10.1093/acprof:osobl/9780199552047.001.0001CrossRefGoogle Scholar
Goebel, K. (1900–1905). Organography of Plants. English translation by Balfour, I.. Parts 1 and 2. Oxford: Clarendon Press.Google Scholar
Goebel, K. (1920). Die Entfaltungsbewegungen der Pflanzen und deren teleologische Deutung. Jena: Fischer.Google Scholar
Goebel, K. (1924). Die Entfaltungsbewegungen der Pflanzen und deren teleologische Deutung, 2nd edn. Jena: Fischer.Google Scholar
Goebel, K. (1928). Organographie der Pflanzen. 1. Allgemeine Organographie, 3rd edn. Jena: Fischer.Google Scholar
Goebel, K. (1930). Blütenbildung und Sprossgestaltung (Anthokladien und Infloreszenzen). Jena: G. Fischer.Google Scholar
Goebel, K. (1933). Organographie der Pflanzen III. Samenpflanzen. Jena: G. Fischer.Google Scholar
Goethe, J. W. (1790). Versuch die Metamorphose der Pflanzen zu erklären. Gotha: Ettinger.10.5962/bhl.title.127448CrossRefGoogle Scholar
Goff, S. A., Ricke, D., Lan, T. H. et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 296: 92100.10.1126/science.1068275CrossRefGoogle Scholar
Goldschmidt, R. (1940). The Material Basis of Evolution. New Haven, CT: Yale University Press.Google Scholar
Golz, J. F., Roccaro, M., Kuzoff, R. & Hudson, A. (2004). GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves. Development, 131: 36613670.10.1242/dev.01221CrossRefGoogle ScholarPubMed
González, F. & Bello, M. A. (2009). Intra-individual variation of flowers in Gunnera subgenus Panke (Gunneraceae) and proposed apomorphies for Gunnerales. Botanical Journal of the Linnean Society, 160: 262283.10.1111/j.1095-8339.2009.00974.xCrossRefGoogle Scholar
Gonzalez, N., Vanhaeren, H. & Inzé, D. (2012). Leaf size control: complex coordination of cell division and expansion. Trends in Plant Science, 17: 332340.10.1016/j.tplants.2012.02.003CrossRefGoogle ScholarPubMed
Gooh, K., Ueda, M., Aruga, K. et al. (2015). Live-cell imaging and optical manipulation of Arabidopsis early embryogenesis. Developmental Cell, 34: 242251.10.1016/j.devcel.2015.06.008CrossRefGoogle ScholarPubMed
Goto, K. & Meyerowitz, E. M. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes and Development, 8: 15481560.10.1101/gad.8.13.1548CrossRefGoogle Scholar
Gould, K. S. (1993). Leaf heteroblasty in Pseudopanax crassifolius: functional significance of leaf morphology and anatomy. Annals of Botany, 71: 6170.CrossRefGoogle Scholar
Gould, S. J. (1977). Ontogeny and Phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
Gould, S. J. (1988). The uses of heterochrony. In Heterochrony in Evolution: A Multidisciplinary Approach, ed. McKinney, M. L.. New York, NY: Plenum Press, pp. 113.Google Scholar
Gourlay, C. W., Hofer, J. M. I. & Ellis, T. H. N. (2000). Pea compound leaf architecture is regulated by interactions among the genes UNIFOLIATA, COCHLEATA, AFILA, and TENDRIL-LESS. Plant Cell, 12: 12791294.10.1105/tpc.12.8.1279CrossRefGoogle Scholar
Govindan, B., Johnson, A. J., Nair, S. N. A. et al. (2016). Nutritional properties of the largest bamboo fruit Melocanna baccifera and its ecological significance. Scientific Reports, 6: 26135.10.1038/srep26135CrossRefGoogle ScholarPubMed
Graham, L. E., Cook, M. E. & Busse, J. S. (2000). The origin of plants: body plan changes contributing to a major evolutionary radiation. Proceedings of the National Academy of Sciences of the United States of America, 97: 45354540.10.1073/pnas.97.9.4535CrossRefGoogle ScholarPubMed
Granado-Yela, C., Balaguer, L., Cayuela, L. & Méndez, M. (2017). Unusual positional effects on flower sex in an andromonoecious tree: resource competition, architectural constraints, or inhibition by the apical flower? American Journal of Botany, 104: 608615.10.3732/ajb.1600433CrossRefGoogle ScholarPubMed
Greb, T., Clarenz, O., Schäfer, E. et al. (2003). Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes and Development, 17: 11751187.10.1101/gad.260703CrossRefGoogle ScholarPubMed
Greb, T. & Lohmann, J. U. (2016). Plant stem cells. Current Biology, 26: R816R821.10.1016/j.cub.2016.07.070CrossRefGoogle ScholarPubMed
Greenwood, M. S. (1995). Juvenility and maturation in conifers: current concepts. Tree Physiology, 15: 433438.10.1093/treephys/15.7-8.433CrossRefGoogle ScholarPubMed
Greilhuber, J., Borsch, T., Müller, K. et al. (2006). Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biology, 8: 770777.10.1055/s-2006-924101CrossRefGoogle ScholarPubMed
Grew, N. (1682). The Anatomy of Plants. London: Rawlings.Google Scholar
Griesemer, J. (2014). Reproduction and scaffolded developmental processes: an integrated evolutionary perspective. In Towards a Theory of Development, eds. Minelli, A. & Pradeu, T.. Oxford: Oxford University Press, pp. 183202.10.1093/acprof:oso/9780199671427.003.0012CrossRefGoogle Scholar
Griffith, M. E., da Silva Conceição, A. & Smyth, D. R. (1999). PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development, 126: 56355644.10.1242/dev.126.24.5635CrossRefGoogle ScholarPubMed
Grimes, J. (1999). Inflorescence morphology, heterochrony, and phylogeny in the Mimosoid tribes Ingeae and Acacieae (Leguminosae: Mimosoideae). Botanical Review, 65: 317347.10.1007/BF02857753CrossRefGoogle Scholar
Grob, V., Moline, P., Pfeifer, E., Novelo, A. R. & Rutishauser, R. (2006). Developmental morphology of branching flowers in Nymphaea prolifera. Journal of Plant Research, 119: 561570.10.1007/s10265-006-0021-8CrossRefGoogle ScholarPubMed
Groover, A., DeWitt, N., Heidel, A. & Jones, A. (1997). Programmed cell death of tracheary elements differentiating in vitro. Protoplasma, 196: 197211.10.1007/BF01279568CrossRefGoogle Scholar
Gu, Q., Ferrándiz, C., Yanofsky, M. F. & Martienssen, R. (1998). The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 125: 15091517.10.1242/dev.125.8.1509CrossRefGoogle ScholarPubMed
Guédès, M. (1979). Morphology of Seed-Plants. Vaduz: Cramer.Google Scholar
Guerrant, E. O. (1982). Neotenic evolution of Delphinium nudicaule (Ranunculaceae): a hummingbird-pollinated larkspur. Evolution, 36: 699712.10.2307/2407883CrossRefGoogle ScholarPubMed
Guha, S. & Maheshwari, S. C. (1964). In vitro production of embryos from anthers of Datura. Nature, 204: 497.10.1038/204497a0CrossRefGoogle Scholar
Gunawardena, A. H. L. A. N. & Dengler, N. (2006). Alternative modes of leaf dissection in monocotyledons. Botanical Journal of the Linnean Society, 150: 2544.10.1111/j.1095-8339.2006.00487.xCrossRefGoogle Scholar
Gunawardena, A. H. L. A. N., Greenwood, J. S. & Dengler, N. G. (2004). Programmed cell death remodels lace plant leaf shape during leaf development. Plant Cell, 16: 6073.10.1105/tpc.016188CrossRefGoogle Scholar
Guo, H. S., Xie, Q., Fei, J. F. & Chua, N. H. (2005). MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell, 17: 13761386.10.1105/tpc.105.030841CrossRefGoogle ScholarPubMed
Haeckel, E. (1866). Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie, vol. 1: Allgemeine Anatomie der Organismen. Berlin: Reimer.Google Scholar
Hagemann, W. & Gleissberg, W. (1996). Organogenetic capacity of leaves: the significance of marginal blastozones in angiosperms. Plant Systematics and Evolution, 199: 121152.10.1007/BF00984901CrossRefGoogle Scholar
Hake, S., Smith, H. M. S., Holtan, H. et al. (2004). The role of KNOX genes in plant development. Annual Review of Cell and Developmental Biology, 20: 125151.10.1146/annurev.cellbio.20.031803.093824CrossRefGoogle ScholarPubMed
Hall, B. K. (1992). Evolutionary Developmental Biology. London: Chapman & Hall.10.1007/978-94-015-7926-1CrossRefGoogle Scholar
Hall, B. K. (1998). Evolutionary Developmental Biology, 2nd edn. London: Chapman and Hall.Google Scholar
Hall, B. K. (2005). Consideration of the neural crest and its skeletal derivatives in the context of novelty/innovation. Journal of Experimental Zoology (Molecular and Developmental Evolution), 304B: 548557.10.1002/jez.b.21057CrossRefGoogle Scholar
Hall, J. C., Tisdale, T. E., Donohue, K. & Kramer, E. M. (2006). Developmental basis of an anatomical novelty: heteroarthrocarpy in Cakile lanceolata and Erucaria erucarioides (Brassicaceae). International Journal of Plant Sciences, 167: 771789.10.1086/504928CrossRefGoogle Scholar
Hallgrímsson, B., Jamniczky, H., Young, N. M. et al. (2009). Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36: 355376.10.1007/s11692-009-9076-5CrossRefGoogle ScholarPubMed
Hallgrímsson, B., Jamniczky, H., Young, N. M. et al. (2012). The generation of variation and the developmental basis for evolutionary novelty. Journal of Experimental Zoology (Molecular and Developmental Evolution), 318B: 501517.10.1002/jez.b.22448CrossRefGoogle Scholar
Hamada, S., Onouchi, H., Tanaka, H. et al. (2000). Mutations in the WUSCHEL gene of Arabidopsis thaliana result in the development of shoots without juvenile leaves. The Plant Journal, 24: 91101.10.1046/j.1365-313x.2000.00858.xCrossRefGoogle ScholarPubMed
Hamant, O., Heisler, M. G., Jönsson, H. et al. (2008). Developmental patterning by mechanical signals in Arabidopsis. Science, 322: 16501655.10.1126/science.1165594CrossRefGoogle ScholarPubMed
Han, P., García-Ponce, B., Fonseca-Salazar, G., Alvarez-Buylla, E. R. & Yu, H. (2008). AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT independent photoperiod pathway. The Plant Journal, 55: 253265.10.1111/j.1365-313X.2008.03499.xCrossRefGoogle Scholar
Hannan, G. L. (1980). Heteromericarpy and dual seed germination modes in Platystemon californicus (Papaveraceae). Madroño, 27: 164170.Google Scholar
Hansen, T. F. (2003). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. BioSystems, 69: 8394.10.1016/S0303-2647(02)00132-6CrossRefGoogle ScholarPubMed
Hansen, T. F. (2006). The evolution of genetic architecture. Annual Review of Ecology and Systematics, 37: 123157.10.1146/annurev.ecolsys.37.091305.110224CrossRefGoogle Scholar
Hareven, D., Gutfinger, T., Parnis, A. et al. (1996). The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell, 84: 735744.10.1016/S0092-8674(00)81051-XCrossRefGoogle ScholarPubMed
Harling, G., Wilder, G. J. & Eriksson, R. (1998). Cyclanthaceae. In The Families and Genera of Vascular Plants, Vol. 3, ed. Kubitzki, K.. Berlin: Springer, pp. 202215.Google Scholar
Harper, J. L. & White, J. (1974). The demography of plants. Annual Review of Ecology and Systematics, 5: 419463.10.1146/annurev.es.05.110174.002223CrossRefGoogle Scholar
Harris, E. M. (1991). Floral initiation and early development in Erigeron philadelphicus (Asteraceae). American Journal of Botany, 78: 108121.10.1002/j.1537-2197.1991.tb12577.xCrossRefGoogle Scholar
Harris, E. M. (1995). Inflorescence and floral ontogeny in Asteraceae: a synthesis of historical and current concepts. Botanical Review, 61: 3278.10.1007/BF02887192CrossRefGoogle Scholar
Harris, M. A., Lock, A., Bühler, J., Oliver, S. G. & Wood, V. (2013). FYPO: the fission yeast phenotype ontology. Bioinforma, 29: 16711678.10.1093/bioinformatics/btt266CrossRefGoogle ScholarPubMed
Harrison, J., Möller, M., Langdale, J., Cronk, Q. C. B. & Hudson, A. (2005). The role of KNOX genes in the evolution of morphological novelty in Streptocarpus. Plant Cell, 17: 430443.10.1105/tpc.104.028936CrossRefGoogle ScholarPubMed
Harrison, J. C. (2017). Development and genetics in the evolution of land plant body plans. Philosophical Transactions of the Royal Society B, 372: 20150490.10.1098/rstb.2015.0490CrossRefGoogle Scholar
Hartmann, U., Höhmann, S., Nettesheim, K. et al. (2000). Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. The Plant Journal, 21: 351360.10.1046/j.1365-313x.2000.00682.xCrossRefGoogle ScholarPubMed
Hashimoto, T. (2002). Molecular genetic analysis of left–right handedness in plants. Philosophical Transactions of the Royal Society B, 357: 799808.10.1098/rstb.2002.1088CrossRefGoogle ScholarPubMed
Hasson, A., Blein, T. & Laufs, P. (2010). Leaving the meristem behind: the genetic and molecular control of leaf patterning and morphogenesis. Comptes Rendus Biologies, 333: 350360.10.1016/j.crvi.2010.01.013CrossRefGoogle ScholarPubMed
Hawkins, J. A. (2002). Evolutionary developmental biology: impact on systematic theory and practice, and the contribution of systematics. In Developmental Genetics and Plant Evolution, eds. Cronk, Q. C. B., Bateman, R. M. & Hawkins, J. A.. London: Taylor & Francis, pp. 3251.10.1201/9781420024982.ch3CrossRefGoogle Scholar
Hay, A., Barkoulas, M. & Tsiantis, M. (2006). ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development, 133, 39553961.10.1242/dev.02545CrossRefGoogle ScholarPubMed
Hay, A., Jackson, D., Ori, N. & Hake, S. (2003). Analysis of the competence to respond to KNOTTED1 activity in Arabidopsis leaves using a steroid induction system. Plant Physiology, 131: 16711680.10.1104/pp.102.017434CrossRefGoogle ScholarPubMed
Hay, A. & Tsiantis, M. (2006) The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nature Genetics, 38: 942947.10.1038/ng1835CrossRefGoogle ScholarPubMed
Hay, A. & Tsiantis, M. (2010). KNOX genes: versatile regulators of plant development and diversity. Development, 137: 31533165.10.1242/dev.030049CrossRefGoogle ScholarPubMed
Hay, A. S., Pieper, B., Cooke, E. et al. (2014). Cardamine hirsuta: a versatile genetic system for comparative studies. The Plant Journal, 78: 115.10.1111/tpj.12447CrossRefGoogle ScholarPubMed
He, C. Y. & Saedler, H. (2005). Heterotopic expression of MPF2 is the key to the evolution of the Chinese lantern of Physalis, a morphological novelty in Solanaceae. Proceedings of the National Academy of Sciences of the United States of America, 102: 57795784.10.1073/pnas.0501877102CrossRefGoogle Scholar
He, Y., Doyle, M. R. & Amasino, R. M. (2004). PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes and Development, 18 : 27742784.10.1101/gad.1244504CrossRefGoogle ScholarPubMed
Hecht, V., Foucher, F., Ferrándiz, C. et al. (2005). Conservation of Arabidopsis flowering genes in model legumes. Plant Physiology, 137: 14201434.10.1104/pp.104.057018CrossRefGoogle ScholarPubMed
Heenan, P. B. (2002). Cardamine lacustris, a new combination for Iti lacustris (Brassicaceae). New Zealand Journal of Botany, 40: 563569.10.1080/0028825X.2002.9512816CrossRefGoogle Scholar
Heenan, P. B., Molloy, P. B. J. & Smissen, R. D. (2013). Cardamine cubita (Brassicaceae), a new species from New Zealand with a remarkable reduction in floral parts. Phytotaxa, 140: 4350.10.11646/phytotaxa.140.1.4CrossRefGoogle Scholar
Heide-Jorgensen, H. S. (2013). Introduction: the parasitic syndrome in higher plants. In Parasitic Orobanchaceae, eds. Joel, D. M., Gressel, J. & Musselman, L. J.. Heidelberg: Springer, pp. 118.Google Scholar
Held, L. I. Jr. (2009). Quirks of Human Anatomy: An Evo-Devo Look at the Human Body. Cambridge: Cambridge University Press.10.1017/CBO9780511626890CrossRefGoogle Scholar
Hemerly, A., Engler, J. de A., Bergounioux, C. et al. (1995). Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. EMBO Journal, 14: 39253936.10.1002/j.1460-2075.1995.tb00064.xCrossRefGoogle ScholarPubMed
Hempel, F. D., Weigel, D., Mandel, M. A. et al. (1997). Floral determination and expression of floral regulatory genes in Arabidopsis. Development, 124: 38453853.10.1242/dev.124.19.3845CrossRefGoogle ScholarPubMed
Hendrikse, J. L., Parsons, T. E. & Hallgrímsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution and Development, 9: 393401.10.1111/j.1525-142X.2007.00176.xCrossRefGoogle Scholar
Hennig, W. (1966). Phylogenetic Systematics. Urbana, IL: University of Illinois Press.Google Scholar
Henschel, K., Kofuji, R., Hasebe, M. et al. (2002). Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Molecular Biology and Evolution, 19: 801814.10.1093/oxfordjournals.molbev.a004137CrossRefGoogle ScholarPubMed
Heyn, C. C., Dagan, O. & Nachman, B. (1974). The annual Calendula species, taxonomy and relationships. Israel Journal of Botany, 23: 169201.Google Scholar
Hibara, K., Karim, M. R., Takada, S. et al. (2006). Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell, 18: 29462957.10.1105/tpc.106.045716CrossRefGoogle ScholarPubMed
Hileman, L. C. (2012). Flowers. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Hileman, L. C. (2014a). Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philosophical Transactions of the Royal Society B, 369: 20130348.10.1098/rstb.2013.0348CrossRefGoogle ScholarPubMed
Hileman, L. C. (2014b). Bilateral flower symmetry: how, when and why? Current Opinion in Plant Biology, 17: 146152.10.1016/j.pbi.2013.12.002CrossRefGoogle Scholar
Hileman, L. C. & Baum, D. A. (2003). Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). Molecular Biology and Evolution, 20: 591600.10.1093/molbev/msg063CrossRefGoogle ScholarPubMed
Hileman, L. C. & Irish, V. F. (2009). More is better: the uses of developmental genetic data to reconstruct perianth evolution. American Journal of Botany, 96: 8395.10.3732/ajb.0800066CrossRefGoogle ScholarPubMed
Hileman, L. C., Kramer, E. M. & Baum, D. A. (2003). Differential regulation of symmetry genes and the evolution of floral morphologies. Proceedings of the National Academy of Sciences of the United States of America, 100: 1281412819.10.1073/pnas.1835725100CrossRefGoogle ScholarPubMed
Hileman, L. C., Sundstrom, J. F., Litt, A. et al. (2006). Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Molecular Biology and Evolution, 23: 22452258.10.1093/molbev/msl095CrossRefGoogle ScholarPubMed
Hill, J. P. & Lord, E. M. (1989). Floral development in Arabidopsis thaliana: comparison of the wild type and the homeotic pistillata mutant. Canadian Journal of Botany, 67: 29222936.10.1139/b89-375CrossRefGoogle Scholar
Hillson, C. J. (1979). Leaf development in Senecio rowleyanus (Compositae). American Journal of Botany, 66: 5963.10.1002/j.1537-2197.1979.tb06193.xCrossRefGoogle Scholar
Hintz, M., Bartholmes, C., Nutt, P. et al. (2006). Catching a ‘hopeful monster’: shepherd’s purse (Capsella bursa-pastoris) as a model system to study the evolution of flower development. Journal of Experimental Botany, 57: 35313542.10.1093/jxb/erl158CrossRefGoogle Scholar
Hnatiuk, R. J. (1977). Population structure of Livistona eastonii Gardn., Mitchell Plateau, Western Australia. Australian Journal of Ecology, 2: 461466.10.1111/j.1442-9993.1977.tb01161.xCrossRefGoogle Scholar
Hódar, J. A. (2002). Leaf fluctuating asymmetry of holm oak in response to drought under contrasting climatic conditions. Journal of Arid Environments, 52: 233243.10.1006/jare.2002.0989CrossRefGoogle Scholar
Hodges, S. A. (1997a). Rapid radiation due to a key innovation in columbines (Ranunculaceae: Aquilegia). In Molecular Evolution and Adaptive Radiation, eds. Givnish, T. J. & Sytsma, K. J.. Cambridge: Cambridge University Press, pp. 391405.Google Scholar
Hodges, S. A. (1997b). Floral nectar spurs and diversification. International Journal of Plant Sciences, 158: S81S88.10.1086/297508CrossRefGoogle Scholar
Hoehndorf, R., Ngonga Ngomo, A.-C. & Kelso, J. (2010). Applying the functional abnormality ontology pattern to anatomical functions. Journal of Biomedical Semantics, 1: 4.10.1186/2041-1480-1-4CrossRefGoogle ScholarPubMed
Hofer, J., Gourlay, C., Michael, A. & Ellis, T. H. N. (2001a). Expression of a class-1 knottedl-like homeobox gene is downregulated in pea compound-leaf primordia. Plant Molecular Biology, 45: 387398.10.1023/A:1010739812836CrossRefGoogle ScholarPubMed
Hofer, J., Turner, L., Hellens, R. et al. (1997). UNIFOLIATA regulates leaf and flower morphogenesis in pea. Current Biology, 7: 581587.10.1016/S0960-9822(06)00257-0CrossRefGoogle ScholarPubMed
Hofer, J., Turner, L., Moreau, C. et al. (2009). Tendril-less regulates tendril formation in pea leaves. Plant Cell, 21: 420428.10.1105/tpc.108.064071CrossRefGoogle ScholarPubMed
Hofer, J. M. I., Gourlay, C. W. & Ellis, T. H. N. (2001b). Genetic control of leaf morphology: a partial view. Annals of Botany, 88: 11291139.10.1006/anbo.2001.1379CrossRefGoogle Scholar
Hofmeister, W. (1868). Allgemeine Morphologie der Gewächse. In Handbuch der physiologischen Botanik, vol. 1(2), ed. Hofmeister, W.. Leipzig: Engelmann, pp. 405664.Google Scholar
Hohmann, N., Wolf, E. M., Lysak, M. A. & Koch, M. A. (2015). A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell, 27: 27702784.Google ScholarPubMed
Hong, L., Dumond, M., Tsugawa, S. et al. (2016). Variable cell growth yields reproducible organ development through spatiotemporal averaging. Developmental Cell, 38: 1532.10.1016/j.devcel.2016.06.016CrossRefGoogle ScholarPubMed
Honma, T. & Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409: 525529.10.1038/35054083CrossRefGoogle ScholarPubMed
Horst, N. A., Katz, A., Pereman, I. et al. (2016). A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction. Nature Plants, 2: 15209.10.1038/nplants.2015.209CrossRefGoogle ScholarPubMed
Horst, N. H. & Reski, R. (2016). Alternation of generations: unravelling the underlying molecular mechanism of a 165-year-old botanical observation. Plant Biology, 18: 549551.10.1111/plb.12468CrossRefGoogle ScholarPubMed
Howarth, D. G. & Donoghue, M. J. (2006). Phylogenetic analysis of the ‘ECE’ (CYC/TB1) clade reveals duplications predating the core eudicots. Proceedings of the National Academy of Sciences of the United States of America, 103: 91019106.10.1073/pnas.0602827103CrossRefGoogle ScholarPubMed
Howarth, D. G., Martins, T., Chimney, E. & Donoghue, M. J. (2011). Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). Annals of Botany, 107: 15211532.10.1093/aob/mcr049CrossRefGoogle ScholarPubMed
Hu, T. T., Pattyn, P., Bakker, E. G. et al. (2011). The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 43: 476481.10.1038/ng.807CrossRefGoogle ScholarPubMed
Hu, Y., Xie, Q. & Chua, N. H. (2003). The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell, 15: 19511961.10.1105/tpc.013557CrossRefGoogle ScholarPubMed
Huang, L.-J., Wang, X.-W. & Wang, X.-F. (2014). The structure and development of incompletely closed carpels in an apocarpous species, Sagittaria trifolia (Alismataceae). American Journal of Botany, 101: 12291234.10.3732/ajb.1400172CrossRefGoogle Scholar
Huang, T. & Irish, V. F. (2016). Gene networks controlling petal organogenesis. Journal of Experimental Botany, 67: 6168.10.1093/jxb/erv444CrossRefGoogle ScholarPubMed
Hubbard, L., McSteen, P., Doebley, J. & Hake, S. (2002). Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics, 162: 19271935.10.1093/genetics/162.4.1927CrossRefGoogle ScholarPubMed
Huber, H. (1998). Dioscoreaceae. In The Families and Genera of Vascular Plants, Vol. 3, ed. Kubitzki, K.. Berlin: Springer, pp. 216235.Google Scholar
Hudson, A. & Jeffree, C. (2001). Leaf and internode. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Hudson, C. J., Freeman, J. S., Jones, R. C. et al. (2014). Genetic control of heterochrony in Eucalyptus globulus. G3 (Bethesda), 4: 12351245.10.1534/g3.114.011916CrossRefGoogle Scholar
Huether, C. A. (1968). Exposure of natural genetic variability underlying the pentamerous corolla constancy in Linanthus androsaceus ssp. androsaceus. Genetics, 60: 123146.10.1093/genetics/60.1.123CrossRefGoogle ScholarPubMed
Huether, C. A. (1969). Constancy of the pentamerous corolla phenotype in natural populations of Linanthus. Evolution, 23: 572588.CrossRefGoogle ScholarPubMed
Huijser, P., Klein, J., Lönnig, W. E. et al. (1992). Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene Squamosa in Antirrhinum majus. EMBO Journal, 11: 12391249.10.1002/j.1460-2075.1992.tb05168.xCrossRefGoogle ScholarPubMed
Huxley, J. S. (1942). Evolution: The Modern Synthesis. London: Allen and Unwin.Google Scholar
Iannelli, F., Pesole, G., Sordino, P. & Gissi, C. (2007). Mitogenomics reveals two cryptic species in Ciona intestinalis. Trends in Genetics, 23: 419422.10.1016/j.tig.2007.07.001CrossRefGoogle ScholarPubMed
Ichihashi, Y., Kawade, K., Usami, T. et al. (2011). Key proliferative activity in the junction between the leaf blade and leaf petiole of Arabidopsis. Plant Physiology, 157: 11511162.10.1104/pp.111.185066CrossRefGoogle ScholarPubMed
Igersheim, A., Buzgo, M. & Endress, P. K. (2001). Gynoecium diversity and systematics in basal monocots. Botanical Journal of the Linnean Society, 136: 165.10.1111/j.1095-8339.2001.tb00555.xCrossRefGoogle Scholar
Igersheim, A. & Endress, P. K. (1998). Gynoecium diversity and systematics of the paleoherbs. Botanical Journal of the Linnean Society, 127: 289370.10.1111/j.1095-8339.1998.tb02102.xCrossRefGoogle Scholar
Ikeuchi, M., Ogawa, Y., Iwase, A. & Sugimoto, K. (2016). Plant regeneration: cellular origins and molecular mechanisms. Development, 143: 14421451.10.1242/dev.134668CrossRefGoogle ScholarPubMed
Ikezaki, M., Kojima, M., Sakakibara, H. et al. (2010). Genetic networks regulated by ASYMMETRIC LEAVES1 (AS1) and AS2 in leaf development in Arabidopsis thaliana: KNOX genes control five morphological events. The Plant Journal, 61: 7082.10.1111/j.1365-313X.2009.04033.xCrossRefGoogle ScholarPubMed
Imaichi, R., Hiyama, Y. & Kato, M. (2004). Developmental morphology of foliose shoots and seedlings of Dalzellia zeylanica (Podostemaceae) with special reference to their meristems. Botanical Journal of the Linnean Society, 144: 289302.10.1111/j.1095-8339.2003.00244.xCrossRefGoogle Scholar
Imaichi, R., Hiyama, Y. & Kato, M. (2005). Leaf development in the absence of a shoot apical meristem in Zeylanidium subulatum (Podostemaceae). Annals of Botany, 96: 5158.10.1093/aob/mci148CrossRefGoogle ScholarPubMed
Imaichi, R., Nagumo, S. & Kato, M. (2000). Ontogenic anatomy of Streptocarpus grandis (Gesneriaceae) with implications for evolution of monophyly. Annals of Botany, 86: 3746.10.1006/anbo.2000.1155CrossRefGoogle Scholar
Imbert, E. 2002. Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics, 5: 1336.10.1078/1433-8319-00021CrossRefGoogle Scholar
Immink, R. G. H., Ferrario, S., Busscher-Lange, J. et al. (2003). Analysis of the petunia MADS-box transcription factor family. Molecular Genetics and Genomics, 268: 598606.10.1007/s00438-002-0781-3CrossRefGoogle ScholarPubMed
Immink, R. G. H., Hannapel, D. J., Ferrario, S. et al. (1999). A petunia MADS box gene involved in the transition from vegetative to reproductive development. Development, 126: 51175126.10.1242/dev.126.22.5117CrossRefGoogle ScholarPubMed
Immink, R. G. H., Kaufmann, K. & Angenent, G. C. (2010). The ‘ABC’ of MADS domain protein behaviour and interactions. Seminars in Cell and Developmental Biology, 21: 8793.10.1016/j.semcdb.2009.10.004CrossRefGoogle ScholarPubMed
Immink, R. G. H., Tonaco, I. A. N., de Folter, S. et al. (2009). SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biology, 10: R24.10.1186/gb-2009-10-2-r24CrossRefGoogle ScholarPubMed
Ingram, G. C., Goodrich, J., Wilkinson, M. D. et al. (1995). Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell, 7: 15011510.Google ScholarPubMed
Inzé, D. (2003). Why should we study the plant cell cycle? Journal of Experimental Botany, 54: 11251126.10.1093/jxb/erg138CrossRefGoogle Scholar
Irish, V. F. (2006). Duplication, diversification, and comparative genetics of angiosperm MADS-box genes. Advances in Botanical Research, 44: 129161.10.1016/S0065-2296(06)44003-9CrossRefGoogle Scholar
Irish, V. F. (2009). Evolution of petal identity. Journal of Experimental Botany, 60: 25172527.10.1093/jxb/erp159CrossRefGoogle ScholarPubMed
Irish, V. F. & Sussex, I. M. (1990). Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell, 2: 741753.Google ScholarPubMed
Ishida, T., Aida, M., Takada, S. & Tasaka, M. (2000). Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Plant and Cell Physiology, 41: 6067.10.1093/pcp/41.1.60CrossRefGoogle ScholarPubMed
Ishii, H. S. & Harder, L. D. (2012). Phenological associations of within- and among-plant variation in gender with floral morphology and integration in protandrous Delphinium glaucum. Journal of Ecology, 100: 10291038.10.1111/j.1365-2745.2012.01976.xCrossRefGoogle Scholar
Itkin, M., Seybold, H., Breitel, D. et al. (2009). TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. The Plant Journal, 60: 10811095.10.1111/j.1365-313X.2009.04064.xCrossRefGoogle ScholarPubMed
Itoh, J.-I., Hasegawa, A., Kitano, H. & Nagato, Y. (1998). A recessive heterochronic mutation, plastochron1, shortens the plastochron and elongates the vegetative phase in rice. Plant Cell, 10: 15111521.10.1105/tpc.10.9.1511CrossRefGoogle ScholarPubMed
Iwamoto, A., Shimuzu, A. & Ohba, H. (2003). Floral development and phyllotactic variation in Ceratophyllum demersum (Ceratophyllaceae). American Journal of Botany, 90: 11241130.10.3732/ajb.90.8.1124CrossRefGoogle ScholarPubMed
Jaakola, L., Poole, M., Jones, M. O. et al. (2010). A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiology, 153: 16191629.10.1104/pp.110.158279CrossRefGoogle ScholarPubMed
Jabbour, F., Cossard, G., Le Guilloux, M. et al. (2014). Specific duplication and dorsoventrally asymmetric expression patterns of cycloidea-like genes in zygomorphic species of Ranunculaceae. PLoS ONE, 9: e95727.10.1371/journal.pone.0095727CrossRefGoogle ScholarPubMed
Jabbour, F., Ronse De Craene, L. P., Nadot, S. & Damerval, C. (2009). Establishment of zygomorphy on an ontogenetic spiral and evolution of perianth in the tribe Delphinieae (Ranunculaceae). Annals of Botany, 104: 809822.10.1093/aob/mcp162CrossRefGoogle Scholar
Jabbour, F., Udron, M., Le Guilloux, M. et al. (2015). Flower development schedule and AGAMOUS-like gene expression patterns in two morphs of Nigella damascena (Ranunculaceae) differing in floral architecture. Botanical Journal of the Linnean Society, 178: 608619.10.1111/boj.12297CrossRefGoogle Scholar
Jablonka, E. (2006). Genes as followers in evolution: a post-synthesis synthesis? Biology and Philosophy, 21: 143154.10.1007/s10539-004-0319-7CrossRefGoogle Scholar
Jack, T. (2004). Molecular and genetic mechanisms of floral control. Plant Cell, 16: S1S17.10.1105/tpc.017038CrossRefGoogle ScholarPubMed
Jack, T., Brockman, L. L. & Meyerowitz, E. M. (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 68: 683697.10.1016/0092-8674(92)90144-2CrossRefGoogle ScholarPubMed
Jack, T., Fox, G. L. & Meyerowitz, E. M. (1994). Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell, 76: 703716.10.1016/0092-8674(94)90509-6CrossRefGoogle ScholarPubMed
Jäger-Zürn, I. (2007). The shoot apex of Podostemaceae: de novo structure or reduction of the conventional type? Flora, 202: 383394.10.1016/j.flora.2007.04.003CrossRefGoogle Scholar
Jaillon, O., Aury, J. M., Noel, B. et al. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449: 463467.Google ScholarPubMed
James, P. J. (2009). ‘Tree and leaf’: a different angle. The Linnean, 25 (1): 1319.Google Scholar
Janssen, B.-J., Lund, L. & Sinha, N. (1998). Overexpression of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf. Plant Physiology, 117: 771786.10.1104/pp.117.3.771CrossRefGoogle ScholarPubMed
Janzen, D. H. (1976). Why bamboos wait so long to flower. Annual Review of Ecology and Systematics, 7: 347391.10.1146/annurev.es.07.110176.002023CrossRefGoogle Scholar
Jaramillo, M. A. & Kramer, E. M. (2004). APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae). Evolution and Development, 6: 449458.10.1111/j.1525-142X.2004.04053.xCrossRefGoogle ScholarPubMed
Jaramillo, M. A. & Kramer, E. M. (2007). The role of developmental genetics in understanding homology and morphological evolution in plants. International Journal of Plant Sciences, 168: 6172.10.1086/509078CrossRefGoogle Scholar
Jasinski, S., Vialette-Guiraud, A. C. & Scutt, C. P. (2010). The evolutionary-developmental analysis of plant microRNAs. Philosophical Transactions of the Royal Society B, 365: 469476.10.1098/rstb.2009.0246CrossRefGoogle ScholarPubMed
Jaya, E., Kubien, D. S., Jameson, P. E. & Clemens, J. (2010). Vegetative phase change and photosynthesis in Eucalyptus occidentalis: architectural simplification prolongs juvenile traits. Tree Physiology, 30: 393403.10.1093/treephys/tpp128CrossRefGoogle ScholarPubMed
Jesson, L. K. & Barrett, S. C. H. (2002a). Enantiostyly in Wachendorfia (Haemodoraceae); the influence of reproductive systems on the maintenance of the polymorphism. American Journal of Botany, 89: 253263.10.3732/ajb.89.2.253CrossRefGoogle ScholarPubMed
Jesson, L. K. & Barrett, S. C. H. (2002b). The genetics of mirror-image flowers. Proceedings of the Royal Society B, 269: 18351839.10.1098/rspb.2002.2068CrossRefGoogle ScholarPubMed
Jesson, L. K. & Barrett, S. C. H. (2003). The comparative biology of mirror-image flowers. International Journal of Plant Sciences, 164: S237S249.10.1086/378537CrossRefGoogle Scholar
Jeune, B. & Sattler, R. (1992). Multivariate analysis in process morphology of plants. Journal of Theoretical Biology, 156: 147167.10.1016/S0022-5193(05)80670-8CrossRefGoogle Scholar
Jeune, B. & Sattler, R. (1996). Quelques aspects d’une morphologie continuiste et dynamique. Canadian Journal of Botany, 74: 10231039.10.1139/b96-127CrossRefGoogle Scholar
Jiao, Y., Leebens-Mack, J., Ayyampalayam, S. et al. (2012). A genome triplication associated with early diversification of the core eudicots. Genome Biology, 13: R3.10.1186/gb-2012-13-1-r3CrossRefGoogle ScholarPubMed
Jiao, Y. N., Wickett, N. J., Ayyampalayam, S. et al. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature, 473, 97100.10.1038/nature09916CrossRefGoogle ScholarPubMed
Jibran, R., Hunter, D. A. & Dijkwel, P. P. (2013). Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Molecular Biology, 82: 547561.10.1007/s11103-013-0043-2CrossRefGoogle ScholarPubMed
Jiménez, S., Lawton-Rauh, A. L., Reighard, G. L., Abbott, A. G. & Bielenberg, D. G. (2009). Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach. BMC Plant Biology, 9: 81.10.1186/1471-2229-9-81CrossRefGoogle ScholarPubMed
Jones, C. S. (1992). Comparative ontogeny of a wild cucurbit and its derived cultivar. Evolution, 46: 18271847.10.2307/2410034CrossRefGoogle ScholarPubMed
Jong, K. (1973). Streptocarpus (Gesneriaceae) and the phyllomorph concept. Acta Botanica Neerlandica, 22: 243255.Google Scholar
Jong, K. & Burtt, B. L. (1975). The evolution of morphological novelty exemplified in the growth patterns of some Gesneriaceae. New Phytologist, 75: 297311.10.1111/j.1469-8137.1975.tb01400.xCrossRefGoogle Scholar
Juarez, M. T., Twigg, R. W. & Timmermans, M. C. (2004). Specification of adaxial cell fate during maize leaf development. Development, 131: 45334544.10.1242/dev.01328CrossRefGoogle ScholarPubMed
Juncosa, A. M. (1988). Floral development and character evolution in Rhizophoraceae. In Aspects of Floral Development, eds. Leins, P., Tucker, S. C. & Endress, P. K.. Berlin: Cramer, pp. 83101.Google Scholar
Juntheikki-Palovaara, I., Tähtiharju, S., Lan, T. et al. (2014). Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae). The Plant Journal, 79: 783796.10.1111/tpj.12583CrossRefGoogle ScholarPubMed
Kagale, S., Robinson, S. J., Nixon, J. et al. (2014). Polyploid evolution of the Brassicaceae during the Cenozoic era. Plant Cell, 26: 27772791.10.1105/tpc.114.126391CrossRefGoogle ScholarPubMed
Kalinka, A. T., Varga, K. M., Gerrard, D. T. et al. (2010). Gene expression divergence recapitulates the developmental hourglass model. Nature, 468: 811814.10.1038/nature09634CrossRefGoogle ScholarPubMed
Kampny, C. M., Dickinson, T. A. & Dengler, N. G. (1993). Quantitative comparison of floral development in Veronica chamaedrys and Veronicastrum virginicum (Scrophulariaceae). American Journal of Botany, 80: 449460.10.1002/j.1537-2197.1993.tb13823.xCrossRefGoogle Scholar
Kampny, C. M., Dickinson, T. A. & Dengler, N. G. (1994). Quantitative floral development in Pseudolysimachion (Scrophulariaceae): intraspecific variation and comparison with Veronica and Veronicastrum. American Journal of Botany, 81: 13431353.10.1002/j.1537-2197.1994.tb11456.xCrossRefGoogle Scholar
Kang, H. G., Jeon, J. S., Lee, S. & An, G. H. (1998). Identification of class B and class C floral organ identity genes from rice plants. Plant Molecular Biology, 38: 10211029.10.1023/A:1006051911291CrossRefGoogle Scholar
Kanno, A., Saeki, H., Kameya, T., Saedler, H. & Theissen, G. (2003). Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Molecular Biology, 52: 831841.10.1023/A:1025070827979CrossRefGoogle Scholar
Kaplan, D. (1975). Comparative developmental evaluation of the morphology of unifacial leaves in the monocotyledons. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 95: 1105.Google Scholar
Kaplan, D. R. (1970). Comparative foliar histogenesis in Acorus calamus and its bearing on the phyllode theory of monocotyledonous leaves. American Journal of Botany, 57: 331361.10.1002/j.1537-2197.1970.tb09824.xCrossRefGoogle Scholar
Kaplan, D. R. (1973). The monocotyledons: their evolution and comparative biology. VII. The problem of leaf morphology and evolution in the monocotyledons. Quarterly Review of Biology, 48: 437457.10.1086/407703CrossRefGoogle Scholar
Kaplan, D. R. (1984). Alternative modes of organogenesis in higher plants. In Contemporary Problems in Plant Anatomy, eds. White, R. A. & Dickison, W. C.. New York, NY: Academic Press, pp. 261300.10.1016/B978-0-12-746620-0.50012-7CrossRefGoogle Scholar
Kaplan, D. R. (1992). The relationship of cells to organisms in plants: problem and implications of an organismal perspective. International Journal of Plant Sciences, 153: S28S37.10.1086/297061CrossRefGoogle Scholar
Kaplan, D. R. (2001). Fundamental concepts of leaf morphology and morphogenesis: a contribution to the interpretation of molecular genetic mutants. International Journal of Plant Sciences, 162: 465474.10.1086/320135CrossRefGoogle Scholar
Kaplan, D. R., Dengler, N. G. & Dengler, R. E. (1982). The mechanisms of plication inception in palm leaves: histogenetic observations of the palmate leaves of Rhapis excelsa. Canadian Journal of Botany, 60: 29993016.10.1139/b82-357CrossRefGoogle Scholar
Kaplan, D. R. & Hagemann, W. (1991). The relationship of cell and organism in vascular plants. Bioscience, 41: 693703.10.2307/1311764CrossRefGoogle Scholar
Karoly, K. & Conner, J. K. (2000). Heritable variation in a family-diagnostic trait. Evolution, 54: 14331438.Google Scholar
Kasha, K. J. & Kao, K. N. (1970). High frequency haploid production in barley (Hordeum vulgare L.). Nature, 225: 874876.10.1038/225874a0CrossRefGoogle ScholarPubMed
Katayama, N., Kato, M., Nishiuchi, T. & Yamada, T. (2011). Comparative anatomy of embryogenesis in three species of Podostemaceae and evolution of the loss of embryonic shoot and root meristems. Evolution and Development, 13: 333342.10.1111/j.1525-142X.2011.00488.xCrossRefGoogle ScholarPubMed
Katayama, N., Kato, M. & Yamada, T. (2013). Origin and development of the cryptic shoot meristem in Zeylanidium lichenoides. American Journal of Botany, 100: 635646.10.3732/ajb.1200571CrossRefGoogle ScholarPubMed
Katayama, N., Koi, S. & Kato, M. (2010). Expression of SHOOT MERISTEMLESS, WUSCHEL, and ASYMMETRIC LEAVES1 homologs in the shoots of Podostemaceae: implications for the evolution of novel shoot organogenesis. Plant Cell, 22: 21312140.10.1105/tpc.109.073189CrossRefGoogle ScholarPubMed
Kaufmann, K., Pajoro, A. & Angenent, G. C. (2010). Regulation of transcription in plants: mechanisms controlling developmental switches. Nature Reviews Genetics, 11: 830842.10.1038/nrg2885CrossRefGoogle ScholarPubMed
Kawade, K., Horiguchi, G. & Tsukaya, H. (2010). Non-cell-autonomously coordinated organ size regulation in leaf development. Development, 137: 42214227.10.1242/dev.057117CrossRefGoogle ScholarPubMed
Kawamura, E., Horiguchi, G. & Tsukaya, H. (2010). Mechanisms of leaf tooth formation in Arabidopsis. The Plant Journal, 62: 429441.10.1111/j.1365-313X.2010.04156.xCrossRefGoogle ScholarPubMed
Kazama, Y., Fujiwara, M. T., Koizumi, A. et al. (2009). A SUPERMAN-like gene is exclusively expressed in female flowers of the dioecious plant Silene latifolia. Plant Cell Physiology, 50: 11271141.10.1093/pcp/pcp064CrossRefGoogle ScholarPubMed
Kellogg, E. A. (2000). A model of inflorescence development. In Monocots: Systematics and Evolution, eds. Wilson, K. L. & Morrison, D. A.. Melbourne: CSIRO, pp. 8488.Google Scholar
Kellogg, E. A. (2001). Evolutionary history of the grasses. Plant Physiology, 125: 11981205.10.1104/pp.125.3.1198CrossRefGoogle ScholarPubMed
Kellogg, E. A., Camara, P. E. A. S., Rudall, P. J. et al. (2013). Early inflorescence development in the grasses (Poaceae). Frontiers in Plant Science, 4: 250.10.3389/fpls.2013.00250CrossRefGoogle ScholarPubMed
Kerr, A. D. (1972). Ephemeral means ‘don’t turn your head’. American Orchid Society Bulletin, 41: 208211.Google Scholar
Kerstetter, R. A., Bollman, K., Taylor, R. A., Bomblies, K. & Poethig, R. S. (2001). KANADI regulates organ polarity in Arabidopsis. Nature, 411: 706709.10.1038/35079629CrossRefGoogle ScholarPubMed
Kerstetter, R. A. & Poethig, R. S. (1998). The specification of leaf identity during shoot development. Annual Review of Cell and Developmental Biology, 14: 373398.10.1146/annurev.cellbio.14.1.373CrossRefGoogle ScholarPubMed
Kessler, S. & Sinha, N. (2004). Shaping up: the genetic control of leaf shape. Current Opinion in Plant Biology, 7: 6572.10.1016/j.pbi.2003.11.002CrossRefGoogle ScholarPubMed
Khan, M. R., Hu, J. Y., Riss, S., He, C. & Saedler, H. (2009). MPF2-like-A MADS-box genes control the inflated calyx syndrome in Withania (Solanaceae): roles of Darwinian selection. Molecular Biology and Evolution, 26: 24632473.10.1093/molbev/msp159CrossRefGoogle ScholarPubMed
Kidner, C. A. & Timmermans, M. C. P. (2010). Signaling sides: adaxial–abaxial patterning in leaves. Current Topics in Developmental Biology, 91: 141168.10.1016/S0070-2153(10)91005-3CrossRefGoogle ScholarPubMed
Kierzkowski, D., Nakayama, N., Routier-Kierzkowska, A.-L. et al. (2012). Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science, 335: 10961099.10.1126/science.1213100CrossRefGoogle ScholarPubMed
Kim, G., LeBlanc, M. L., Wafula, E. K., de Pamphilis, C. W. & Westwood, J. H. (2014). Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science, 345: 808811.10.1126/science.1253122CrossRefGoogle ScholarPubMed
Kim, K.-J., Choi, K.-S. & Jansen, R. K. (2005a). Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). Molecular Biology and Evolution, 22: 17831792.10.1093/molbev/msi174CrossRefGoogle ScholarPubMed
Kim, M., Cui, M., Cubas, P. et al. (2008). Regulatory genes control a key morphological and ecological trait transferred between species. Science, 322: 11161119.10.1126/science.1164371CrossRefGoogle ScholarPubMed
Kim, M., McCormick, S., Timmermans, M & Sinha, N. (2003). The expression domain of PHANTASTICA determines leaflet placement in compound leaves. Nature, 424: 438443.10.1038/nature01820CrossRefGoogle ScholarPubMed
Kim, S., Koh, J., Ma, H. et al. (2005b). Sequence and expression studies of A-, B-, and E-class MADS-box homologues in Eupomatia (Eupomatiaceae): support for the bracteate origin of the calyptra. International Journal of Plant Sciences, 166: 185198.10.1086/427479CrossRefGoogle Scholar
Kim, S., Koh, J., Yoo, M. J. et al. (2005c). Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. The Plant Journal, 43: 724744.10.1111/j.1365-313X.2005.02487.xCrossRefGoogle ScholarPubMed
Kim, S., Yoo, M. J., Albert, V. A. et al. (2004). Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. American Journal of Botany, 91: 21022118.10.3732/ajb.91.12.2102CrossRefGoogle ScholarPubMed
Kirchoff, B. K. (2000). Hofmeister’s rule and primordium shape: influences on organ position in Hedychium coronarium (Zingiberaceae). In Monocots: Systematics and Evolution, eds. Wilson, K. L. & Morrison, D. A.. Melbourne: CSIRO, pp. 7583.Google Scholar
Kirchoff, B. K. (2001). Character description in phylogenetic analysis: insights from Agnes Arber’s concept of the plant. Annals of Botany, 88: 12031214.10.1006/anbo.2001.1437CrossRefGoogle Scholar
Kirchoff, B. K. (2017). Inflorescence and flower development in Musa velutina H. Wendl. & Drude (Musaceae), with a consideration of developmental variability, restricted phyllotactic direction and hand initiation. International Journal of Plant Sciences, 178: 259272.10.1086/691143CrossRefGoogle Scholar
Kirkpatrick, M. (2009). Patterns of quantitative genetic variation in multiple dimensions. Genetica, 136: 271284.10.1007/s10709-008-9302-6CrossRefGoogle ScholarPubMed
Kirschner, M. & Gerhart, J. (1998). Evolvability. Proceedings of the National Academy of Sciences of the United States of America, 95: 84208427.10.1073/pnas.95.15.8420CrossRefGoogle ScholarPubMed
Kitomi, Y., Ogawa, A., Kitano, H. & Inukai, Y. (2008). CRL4 regulates crown root formation through auxin transport in rice. Plant Root, 2: 1928.10.3117/plantroot.2.19CrossRefGoogle Scholar
Kliber, A. & Eckert, C. (2004). Sequential decline in allocation among flowers within inflorescences: proximate mechanisms and adaptive significance. Ecology, 85: 16751687.10.1890/03-0477CrossRefGoogle Scholar
Klingenberg, C. P. (1998). Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biological Reviews, 73: 79123.10.1111/j.1469-185X.1997.tb00026.xCrossRefGoogle ScholarPubMed
Klingenberg, C. P. (2005). Developmental constraints, modules and evolvability. In Variation: A Central Concept in Biology, eds. Hallgrímsson, B. & Hall, B. K.. Burlington, MA: Elsevier, pp. 219247.10.1016/B978-012088777-4/50013-2CrossRefGoogle Scholar
Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology and Systematics, 39: 115132.10.1146/annurev.ecolsys.37.091305.110054CrossRefGoogle Scholar
Knapp, S. (2010). On ‘various contrivances’: pollination, phylogeny and flower form in the Solanaceae. Philosophical Transactions of the Royal Society B, 365: 449460.10.1098/rstb.2009.0236CrossRefGoogle ScholarPubMed
Knight, C., Perroud, P. F. & Cove, D. (2009). The Moss Physcomitrella patens. London: Wiley-Blackwell.10.1002/9781444316070CrossRefGoogle Scholar
Kobayashi, K., Maekawa, M., Miyao, A., Hirochika, H. & Kyozuka, J. (2010). PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiology, 51: 4757.10.1093/pcp/pcp166CrossRefGoogle ScholarPubMed
Koch, M. & Al-Shehbaz, I. A. (2002). Molecular data indicate complex intra- and intercontinental differentiation of American Draba (Brassicaceae). Annals of the Missouri Botanical Garden, 89: 88109.10.2307/3298659CrossRefGoogle Scholar
Koch, M., Al-Shehbaz, I. A. & Mummenhoff, K. (2003). Molecular systematics, evolution, and population biology in the mustard family (Brassicaceae). Annals of the Missouri Botanical Garden, 90: 151171.10.2307/3298580CrossRefGoogle Scholar
Koch, M., Haubold, B. & Mitchell-Olds, T. (2001). Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. American Journal of Botany, 88: 534544.10.2307/2657117CrossRefGoogle ScholarPubMed
Koenig, D., Bayer, E., Kang, J., Kuhlemeier, C. & Sinha, N. (2009). Auxin patterns Solanum lycopersicum leaf morphogenesis. Development, 136: 29973006.10.1242/dev.033811CrossRefGoogle ScholarPubMed
Koenig, D. & Weigel, D. (2015). Beyond the thale: comparative genomics and genetics of Arabidopsis relatives. Nature Reviews Genetics, 16: 285298.10.1038/nrg3883CrossRefGoogle ScholarPubMed
Koes, R. (2008). Evolution and development of virtual inflorescences. Trends in Plant Science, 13: 13.10.1016/j.tplants.2007.11.004CrossRefGoogle ScholarPubMed
Kofuji, R., Sumikawa, N., Yamasaki, M. et al. (2003). Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Molecular Biology and Evolution, 20: 19631977.10.1093/molbev/msg216CrossRefGoogle ScholarPubMed
Kohn, J. R., Graham, S. W., Morton, B., Doyle, J. J. & Barrett, S. C. H. (1996). Reconstruction of the evolution of reproductive characters in Pontederiaceae using phylogenetic evidence from chloroplast DNA restriction-site variation. Evolution, 50: 14541469.Google ScholarPubMed
Koi, S., Imaichi, R. & Kato, M. (2005). Endogenous leaf initiation in the apical-meristemless shoot of Cladopus queenslandicus (Podostemaceae) and implications for evolution of shoot morphology. International Journal of Plant Sciences, 166: 199206.10.1086/427482CrossRefGoogle Scholar
Kölsch, A. & Gleissberg, S. (2006). Diversification of CYCLOIDEA-like TCP genes in the basal eudicot families Fumariaceae end Papaveraceae s.str. Plant Biology, 8: 680687.10.1055/s-2006-924286CrossRefGoogle Scholar
Konishi, S., Izawa, T., Lin, S.Y. et al. (2006). An SNP caused loss of seed shattering during rice domestication. Science, 312: 13921396.10.1126/science.1126410CrossRefGoogle ScholarPubMed
Kosuge, K. (1994). Petal evolution in Ranunculaceae. Plant Systematics and Evolution, Supplement, 8: 185191.Google Scholar
Kozlov, M. V., Wilsey, B. J., Koricheva, J. & Haukioja, E. (1996). Fluctuating asymmetry of birch leaves increases under pollution impact. Journal of Applied Ecology, 33: 14891495.10.2307/2404787CrossRefGoogle Scholar
Kozo Poljanski, B. (1936). On some ‘third’ conceptions in floral morphology. New Phytologist, 35: 479492.10.1111/j.1469-8137.1936.tb06897.xCrossRefGoogle Scholar
Kramer, E. M. (2009a). Aquilegia: a new model for plant development, ecology, and evolution. Annual Review of Plant Biology, 60: 261277.10.1146/annurev.arplant.043008.092051CrossRefGoogle ScholarPubMed
Kramer, E. M. (2009b). New model systems for the study of developmental evolution in plants. Current Topics in Developmental Biology, 86: 65107.Google Scholar
Kramer, E. M., Di Stilio, V. S. & Schluter, P. M. (2003). Complex patterns of gene duplication in the Apetala3 and Pistillata lineages of the Ranunculaceae. International Journal of Plant Sciences, 164: 111.10.1086/344694CrossRefGoogle Scholar
Kramer, E. M., Dorit, R. L. & Irish, V. F. (1998). Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics, 149: 765783.10.1093/genetics/149.2.765CrossRefGoogle ScholarPubMed
Kramer, E. M. & Hodges, S. A. (2010). Aquilegia as a model system for the evolution and ecology of petals. Philosophical Transactions of the Royal Society B, 365: 477490.10.1098/rstb.2009.0230CrossRefGoogle Scholar
Kramer, E. M., Holappa, L., Gould, B. et al. (2007). Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia. Plant Cell, 19: 750766.10.1105/tpc.107.050385CrossRefGoogle ScholarPubMed
Kramer, E. M. & Irish, V. F. (1999). Evolution of genetic mechanisms controlling petal development. Nature, 399: 144148.10.1038/20172CrossRefGoogle ScholarPubMed
Kramer, E. M. & Irish, V. F. (2000). Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. International Journal of Plant Sciences, 161: S29S40.10.1086/317576CrossRefGoogle Scholar
Kramer, E. M. & Jaramillo, M. A. (2005). Genetic basis for innovations in floral organ identity. Journal of Experimental Zoology (Molecular and Developmental Evolution), 304B: 526535.10.1002/jez.b.21046CrossRefGoogle Scholar
Kramer, E. M., Jaramillo, M. A. & Di Stilio, V. S. (2004). Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics, 166: 10111023.10.1093/genetics/166.2.1011CrossRefGoogle ScholarPubMed
Kramer, E. M., Su, H. J., Wu, C. C. & Hu, J. M. (2006). A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evolutionary Biology, 6: 30.10.1186/1471-2148-6-30CrossRefGoogle ScholarPubMed
Krizek, B. A. & Meyerowitz, E. M. (1996). The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development, 122: 1122.10.1242/dev.122.1.11CrossRefGoogle Scholar
Krolikowski, K. A., Victor, J. L., Wagler, T. N., Lolle, S. J. & Pruitt, R. J. (2003). Isolation and characterization of the Arabidopsis organ fusion gene HOTHEAD. The Plant Journal, 35: 501511.10.1046/j.1365-313X.2003.01824.xCrossRefGoogle ScholarPubMed
Kubitzki, K. (1998). Taccaceae. In The Families and Genera of Vascular Plants, Vol. 3, ed. Kubitzki, K.. Berlin: Springer, pp. 425428.Google Scholar
Kuhlemeier, C. & Reinhardt, D. (2001). Auxin and phyllotaxis. Trends in Plant Science, 6: 187189.10.1016/S1360-1385(01)01894-5CrossRefGoogle ScholarPubMed
Kuittinen, H., de Haan, A. A., Vogl, C. et al. (2004). Comparing the linkage maps of the close relatives Arabidopsis lyrata and A. thaliana. Genetics, 168: 15751584.10.1534/genetics.103.022343CrossRefGoogle ScholarPubMed
Kümpers, B. M. C., Richardson, J. E., Anderberg, A. A., Wilkie, P. & Ronse De Craene, L. (2016). The significance of meristic changes in the flowers of Sapotaceae. Botanical Journal of the Linnean Society, 180: 161192.10.1111/boj.12363CrossRefGoogle Scholar
Kutschera, U., Langguth, H., Kuo, D.-H., Weisblat, D. A. & Shankland, M. (2013). Description of a new leech species from North America, Helobdella austinensis n. sp. (Hirudinea: Glossiphoniidae), with observations on its feeding behaviour. Zoosystematics and Evolution, 89: 239246.10.1002/zoos.201300010CrossRefGoogle Scholar
Kuwabara, A., Tsukaya, H. & Nagata, T. (2001). Identification of factors that cause heterophylly in Ludwigia arcuata Walt. (Onagraceae). Plant Biology, 3: 98105.10.1055/s-2001-11748CrossRefGoogle Scholar
Kwiatkowska, D. (1995). Ontogenetic changes of phyllotaxis in Anagallis arvensis L. Acta Societatis Botanicorum Poloniae, 64: 319325.10.5586/asbp.1995.041CrossRefGoogle Scholar
Kwiatkowska, D. (1999). Formation of pseudowhorls in Peperomia verticillata (L.) A. Dietr. shoots exhibiting various phyllotactic patterns. Annals of Botany, 83: 675685.10.1006/anbo.1999.0875CrossRefGoogle Scholar
Kyozuka, J., Kobayashi, T., Morita, M. & Shimamoto, K. (2000). Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiology, 41: 710718.10.1093/pcp/41.6.710CrossRefGoogle Scholar
Labonne, J. D. J., Tamari, F. & Shore, J. S. (2010). Characterization of X-ray-generated floral mutants carrying deletions at the S-locus of distylous Turnera subulata. Heredity, 105: 235243.10.1038/hdy.2010.39CrossRefGoogle ScholarPubMed
Lacroix, C., Jeune, B. & Purcell-Macdonald, S. (2003). Shoot and compound leaf comparisons in eudicots: dynamic morphology as an alternative approach. Botanical Journal of the Linnean Society, 143: 219230.10.1046/j.1095-8339.2003.00222.xCrossRefGoogle Scholar
Lacroix, C. & Sattler, R. (1988). Phyllotaxis theories and tepal-stamen superposition in Basella rubra. American Journal of Botany, 75: 906917.10.1002/j.1537-2197.1988.tb13515.xCrossRefGoogle Scholar
Lacroix, C. R. & Sattler, R. (1994). Expression of shoot features in early leaf development of Murraya paniculata (Rutaceae). Canadian Journal of Botany, 72: 678687.10.1139/b94-088CrossRefGoogle Scholar
Lahti, D. C., Johnson, N. A., Ajie, B. C. et al. (2009). Relaxed selection in the wild. Trends in Ecology and Evolution, 24: 487496.10.1016/j.tree.2009.03.010CrossRefGoogle ScholarPubMed
Laland, K. N., Uller, T., Feldman, M. W. et al. (2015). The extended evolutionary synthesis: its structure, assumptions and predictions. Proceedings of the Royal Society B, 282: 20151019.10.1098/rspb.2015.1019CrossRefGoogle ScholarPubMed
Lamont, B. B. (1980). Tissue longevity of the arborescent monocotyledon, Kingia australis (Xanthorrhoeaceae). American Journal of Botany, 67: 12621264.10.1002/j.1537-2197.1980.tb07758.xCrossRefGoogle Scholar
Lamsdell, J. C. & Selden, P. A. (2013). Babes in the wood: a unique window into sea scorpion ontogeny. BMC Evolutionary Biology, 13, 98.10.1186/1471-2148-13-98CrossRefGoogle Scholar
Landis, J. B., Barnett, L. L. & Hileman, L. C. (2012). Evolution of petaloid sepals independent of shifts in B-class MADS box gene expression. Development Genes and Evolution, 222: 1928.10.1007/s00427-011-0385-1CrossRefGoogle ScholarPubMed
Landrein, B., Refahi, Y., Besnard, F. et al. (2015). Meristem size contributes to the robustness of phyllotaxis in Arabidopsis. Journal of Experimental Botany, 66: 13171324.10.1093/jxb/eru482CrossRefGoogle Scholar
Lang, D., van Gessel, N., Ullrich, K. K. & Reski, R. (2016). The genome of the model moss Physcomitrella patens. Advances in Botanical Research, 78: 97140.10.1016/bs.abr.2016.01.004CrossRefGoogle Scholar
Langdale, J. & Harrison, J. C. (2008). Developmental transitions during the evolution of plant form. In Evolving Pathways: Key Themes in Evolutionary Developmental Biology, eds. Minelli, A. & Fusco, G.. Cambridge: Cambridge University Press, pp. 299319.10.1017/CBO9780511541582.021CrossRefGoogle Scholar
Langer, R. H. & Wilson, D. (1965). Environmental control of cleistogamy in prairie grass (Bromus unioloides HBK). New Phytologist, 65: 8085.10.1111/j.1469-8137.1965.tb05377.xCrossRefGoogle Scholar
Langham, R. J., Walsh, J., Dunn, M. et al. (2004). Genomic duplication, fractionation and the origin of regulatory novelty. Genetics, 166: 935945.10.1093/genetics/166.2.935CrossRefGoogle ScholarPubMed
Lanner, R. M. & Connor, K. F. (2001). Does bristlecone pine senesce? Experimental Gerontology, 36: 675685.10.1016/S0531-5565(00)00234-5CrossRefGoogle ScholarPubMed
Lau, S., Slane, D., Herud, O., Kong, J. & Jürgens, G. (2012). Early embryogenesis in flowering plants: setting up the basic body pattern. Annual Review of Plant Biology, 63: 483506.10.1146/annurev-arplant-042811-105507CrossRefGoogle ScholarPubMed
Laufs, P., Grandjean, O., Jonak, C., Kieu, K. & Traas, J. (1998). Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell, 10: 13751389.10.1105/tpc.10.8.1375CrossRefGoogle ScholarPubMed
Laux, T., Mayer, K. F. X., Berger, J. & Jürgens, G. (1996). The WUSCHELL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 122: 8796.10.1242/dev.122.1.87CrossRefGoogle Scholar
Lavin, M., Herendeen, P. S. & Wojciechowski, M. F. (2005). Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Systematic Biology, 54: 575594.10.1080/10635150590947131CrossRefGoogle ScholarPubMed
Lawrence, G. H. (1951). Taxonomy of Flowering Plants. New York, NY: Macmillan.Google Scholar
Layton, D. J. & Kellogg, E. A. (2014). Morphological, phylogenetic, and ecological diversity of the new model species Setaria viridis (Poaceae: Paniceae) and its close relatives. American Journal of Botany, 101: 539557.10.3732/ajb.1300428CrossRefGoogle ScholarPubMed
Le Rouzic, A. & Carlborg, O. (2008). Evolutionary potential of hidden genetic variation. Trends in Ecology and Evolution, 23: 3337.10.1016/j.tree.2007.09.014CrossRefGoogle ScholarPubMed
Lee, J., Park, J.-J., Kim, S. L., Yim, J. & An, G. (2007). Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule and laminar joint. Plant Molecular Biology, 65: 487499.10.1007/s11103-007-9196-1CrossRefGoogle Scholar
Lee, J.-H., Lin, H., Joo, S. & Goodenough, U. (2008). Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family. Cell, 133: 829840.10.1016/j.cell.2008.04.028CrossRefGoogle ScholarPubMed
Lee, J.-Y., Baum, S. F., Oh, S. H. et al. (2005). Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development, 132: 50215032.10.1242/dev.02067CrossRefGoogle ScholarPubMed
Lee, J.-Y., Mummenhoff, K. & Bowman, J. L. (2002). Allopolyploidization and evolution of species with reduced floral structures in Lepidium L. (Brassicaceae). Proceedings of the National Academy of Sciences of The United States of America, 99: 1683516840.10.1073/pnas.242415399CrossRefGoogle ScholarPubMed
Leinfellner, W. (1958). Über die peltaten Kronblätter der Sapindaceen. Österreichische botanische Zeitschrift, 105: 443514.10.1007/BF01287807CrossRefGoogle Scholar
Leins, P. & Erbar, C. (1997). Floral developmental studies: some old and new questions. International Journal of Plant Sciences, 158: S3S12.10.1086/297504CrossRefGoogle Scholar
Leins, P. & Erbar, C. (2004). Floral organ sequences in Apiales (Apiaceae, Araliaceae, Pittosporaceae). South African Journal of Botany, 70: 468474.10.1016/S0254-6299(15)30231-3CrossRefGoogle Scholar
Leins, P. & Erbar, C. (2008). Blüte und Frucht, 2nd edn. Stuttgart: Schweizerbart.Google Scholar
Lewis, D. & Jones, D. A. (1992). The genetics of heterostyly. In Evolution and Function of Heterostyly, ed. Barrett, S. C. H.. Berlin: Springer, pp. 129150.10.1007/978-3-642-86656-2_5CrossRefGoogle Scholar
Li, D., Liu, C., Shen, L. et al. (2008). A repressor complex governs the integration of flowering signals in Arabidopsis. Developmental Cell, 15: 110120.10.1016/j.devcel.2008.05.002CrossRefGoogle ScholarPubMed
Li, G. S., Meng, Z., Kong, H. Z. et al. (2005). Characterization of candidate class A, B and E floral homeotic genes from the perianthless basal angiosperm Chloranthus spicatus (Chloranthaceae). Development Genes and Evolution, 215: 437449.10.1007/s00427-005-0002-2CrossRefGoogle Scholar
Li, H., Liang, W., Hu, Y. et al. (2011). Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. Plant Cell, 23: 25362552.10.1105/tpc.111.087262CrossRefGoogle ScholarPubMed
Li, J., Webster, M. A., Furuya, M. & Gilmartin, P. M. (2007). Identification and characterization of pin and thrum alleles of two genes that co-segregate with the Primula S locus. The Plant Journal, 51: 1831.10.1111/j.1365-313X.2007.03125.xCrossRefGoogle ScholarPubMed
Li, P. & Johnston, M. O. (2000). Heterochrony in plant evolutionary studies through the twentieth century. Botanical Review, 66: 5788.10.1007/BF02857782CrossRefGoogle Scholar
Li, P. & Johnston, M. O. (2010). Flower development and the evolution of self-fertilization in Amsinckia: the role of heterochrony. Evolutionary Biology, 37: 143168.10.1007/s11692-010-9091-6CrossRefGoogle Scholar
Li, Z., Reighard, G. L., Abbott, A. G. & Bielenberg, D. G. (2009). Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. Journal of Experimental Botany, 60: 35213530.10.1093/jxb/erp195CrossRefGoogle Scholar
Liljegren, S. J., Ditta, G. S., Eshed, H. Y. et al. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404: 766770.10.1038/35008089CrossRefGoogle ScholarPubMed
Linnaeus, C. (1754). Genera plantarum: eorumque characteres naturales secundum numerum, figuram, situm, et proportionem omnium fructificationis partium. Editio Quinta. Holmiæ: Laurentius Salvius.Google Scholar
Litt, A. (2007). An evaluation of A-function: evidence from the APETALA1 and APETALA2 gene lineages. International Journal of Plant Sciences, 168: 7391.10.1086/509662CrossRefGoogle Scholar
Litt, A. (2013). Comparative evolutionary genomics of land plants. Annual Plant Reviews, 45: 227276.10.1002/9781118305881.ch8CrossRefGoogle Scholar
Litt, A. & Irish, V. F. (2003). Duplication and diversification in the APETALA1/ FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics, 165: 821833.10.1093/genetics/165.2.821CrossRefGoogle ScholarPubMed
Litt, A. & Kramer, E. M. (2010). The ABC model and the diversification of floral organ identity. Seminars in Cell and Developmental Biology, 21: 129137.10.1016/j.semcdb.2009.11.019CrossRefGoogle ScholarPubMed
Liu, C., Thong, Z. & Yu, H. (2009a). Coming into bloom: the specification of floral meristems. Development, 136: 33793391.10.1242/dev.033076CrossRefGoogle ScholarPubMed
Liu, S., Wang, J., Wang, L. et al. (2009b) Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Research, 19: 11101119.10.1038/cr.2009.70CrossRefGoogle ScholarPubMed
Liu, Z. C., Franks, R. G. & Klink, V. P. (2000). Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell, 12: 18791891.10.1105/tpc.12.10.1879CrossRefGoogle ScholarPubMed
Liu, Z.-J. & Wang, X. (2016). A perfect flower from the Jurassic of China. Historical Biology, 28: 707719.10.1080/08912963.2015.1020423CrossRefGoogle ScholarPubMed
Lloyd, D. G. & Webb, C. J. (1977). Secondary sex characters in plants. Botanical Review, 43: 177216.10.1007/BF02860717CrossRefGoogle Scholar
Lloyd, D. G. & Webb, C. J. (1986). The avoidance of interference between the presentation of pollen and stigmas in angiosperms. I. Dichogamy. New Zealand Journal of Botany, 24: 135162.10.1080/0028825X.1986.10409725CrossRefGoogle Scholar
Loiseau, J.-E. (1969). La Phyllotaxie. Paris: Masson.Google Scholar
Lolle, S. J., Cheung, A. Y. & Sussex, I. M. (1992). Fiddlehead: an Arabidopsis mutant constitutively expressing an organ fusion program that involves interactions between epidermal cells. Developmental Biology, 152: 383392.10.1016/0012-1606(92)90145-7CrossRefGoogle Scholar
Long, J. & Barton, M. K. (2000). Initiation of axillary and floral meristems in Arabidopsis. Developmental Biology, 218: 341353.10.1006/dbio.1999.9572CrossRefGoogle ScholarPubMed
Long, J. A., Moan, E. I., Medford, J. I. et al. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 379: 6669.10.1038/379066a0CrossRefGoogle ScholarPubMed
Lord, E. M. (1979). The development of cleistogamous and chasmogamous flowers in Lamium amplexicaule (Labiatae): an example of heteroblastic inflorescence development. Botanical Gazette, 140: 3950.10.1086/337056CrossRefGoogle Scholar
Lord, E. M. (1981). Cleistogamy: a tool for the study of floral morphogenesis, function and evolution. Botanical Review, 47: 421449.10.1007/BF02860538CrossRefGoogle Scholar
Lord, E. M. (1982). Floral morphogenesis in L. amplexicaule L. (Labiateae) with a model for the evolution of the cleistogamous flower. Botanical Gazette, 143: 6372.10.1086/337271CrossRefGoogle Scholar
Lord, E. M. (2001). Heterochrony in plants. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Lord, E. M. & Hill, J. P. (1987). Evidence for heterochrony in the evolution of plant form. In Development as an Evolutionary Process, eds. Raff, R. A. & Raff, E. C.. New York, NY: Alan R. Liss, pp. 4770.Google Scholar
Love, A. C. (2010). Idealization in evolutionary developmental investigation: a tension between phenotypic plasticity and normal stages. Philosophical Transactions of the Royal Society B, 365: 679690.10.1098/rstb.2009.0262CrossRefGoogle ScholarPubMed
Luo, D., Carpenter, R., Copsey, L. et al. (1999). Control of organ asymmetry in flowers of Antirrhinum. Cell, 99: 367376.10.1016/S0092-8674(00)81523-8CrossRefGoogle ScholarPubMed
Luo, D., Carpenter, R., Vincent, C., Copsey, L. & Coen, E. (1996). Origin of floral asymmetry in Antirrhinum. Nature, 383: 794799.10.1038/383794a0CrossRefGoogle ScholarPubMed
Lynch, M. & Conery, J. S. (2000). The evolutionary fate and consequences of duplicate genes. Science, 290: 11511155.10.1126/science.290.5494.1151CrossRefGoogle ScholarPubMed
Lyndon, R. F. (1998). The Shoot Apical Meristem: Its Growth and Development. Cambridge: Cambridge University Press.Google Scholar
Lysak, M. A., Berr, A., Pecinka, A. et al. (2006). Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of America, 103: 52245229.10.1073/pnas.0510791103CrossRefGoogle ScholarPubMed
Ma, H. (1998). To be, or not to be, a flower: control of floral meristem identity. Trends in Genetics, 14: 2632.10.1016/S0168-9525(97)01309-7CrossRefGoogle ScholarPubMed
Maizel, A. (2016). Plant organ growth: stopping under stress. Current Biology, 26: R417R419.10.1016/j.cub.2016.03.056CrossRefGoogle ScholarPubMed
Malcomber, S. T. & Kellogg, E. A. (2004). Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell, 16: 16921706.10.1105/tpc.021576CrossRefGoogle ScholarPubMed
Malcomber, S. T. & Kellogg, E. A. (2005). SEPALLATA gene diversification: brave new whorls. Trends in Plant Science, 10: 427435.10.1016/j.tplants.2005.07.008CrossRefGoogle ScholarPubMed
Malcomber, S. T. & Kellogg, E. A. (2006). Evolution of unisexual flowers in grasses (Poaceae) and the putative sex-determination gene, TASSELSEED2 (TS2). New Phytologist, 170: 885899.10.1111/j.1469-8137.2006.01726.xCrossRefGoogle ScholarPubMed
Malcomber, S. T., Preston, J. C., Reinheimer, R., Kossuth, J. & Kellogg, E. A. (2006). Developmental gene evolution and the origin of grass inflorescence diversity. Advances in Botanical Research, 44: 425481.10.1016/S0065-2296(06)44011-8CrossRefGoogle Scholar
Manger, H. L. (1783). Vollstaendige Anleitung zu einer Systematischen Pomologie wodurch die Genauigste Kentniß von der Natur, Beschaffenheit und den Unterschiedenen Merkmalen aller Obstarten Enthalten Werden Kann. Zweyter Theil von den Birnen. Leipzig: J. F. Junius.Google Scholar
Manos, P. S. & Stone, D. E. (2001). Evolution, phylogeny, and systematics of the Juglandaceae. Annals of the Missouri Botanical Garden, 88: 231262.10.2307/2666226CrossRefGoogle Scholar
Mantegazza, R., Möller, M., Harrison, C. J. et al. (2007). Anisocotyly and meristem initiation in an unorthodox plant, Streptocarpus rexii (Gesneriaceae). Planta, 225: 653663.10.1007/s00425-006-0389-7CrossRefGoogle Scholar
Mantegazza, R., Tononi, P., Möller, M. & Spada, A. (2009). WUS and STM homologues are linked to the expression of lateral dominance in the acaulescent Streptocarpus rexii (Gesneriaceae). Planta, 230: 529542.10.1007/s00425-009-0965-8CrossRefGoogle Scholar
Marazzi, B. & Endress, P. K. (2008). Patterns and development of floral asymmetry in Senna (Leguminosae, Cassiinae). American Journal of Botany, 95: 2240.10.3732/ajb.95.1.22CrossRefGoogle ScholarPubMed
Marazzi, B., Endress, P. K., Paganucci de Queiroz, L. & Conti, E. (2006). Phylogenetic relationships within Senna (Leguminosae, Cassiinae) based on three chloroplast DNA regions: patterns in the evolution of floral symmetry and extrafloral nectaries. American Journal of Botany, 93: 288303.10.3732/ajb.93.2.288CrossRefGoogle ScholarPubMed
Martín-Trillo, M. & Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends in Plant Science, 15: 3139.10.1016/j.tplants.2009.11.003CrossRefGoogle Scholar
Martinez, C. C., Chitwood, D. H., Smith, R. S. & Sinha, N. R. (2016). Left–right leaf asymmetry in decussate and distichous phyllotactic systems. Philosophical Transactions of the Royal Society B, 371: 20150412.10.1098/rstb.2015.0412CrossRefGoogle ScholarPubMed
Martínez-Laborda, A. & Vera, A. (2009). Arabidopsis fruit development. Annual Plant Reviews, 38: 172203.Google Scholar
Masel, J. & Siegal, M. L. (2009). Robustness: mechanisms and consequences. Trends in Genetics, 25: 395403.10.1016/j.tig.2009.07.005CrossRefGoogle ScholarPubMed
Masel, J. & Trotter, M. V. (2010). Robustness and evolvability. Trends in Genetics, 26: 406414.10.1016/j.tig.2010.06.002CrossRefGoogle ScholarPubMed
Masiero, S., Li, M. A., Will, I. et al. (2004). INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development, 131: 59815990.10.1242/dev.01517CrossRefGoogle ScholarPubMed
Matsuhashi, S., Sakai, S. & Kudoh, H. (2012). Temperature-dependent fluctuation of stamen number in Cardamine hirsuta (Brassicaceae). International Journal of Plant Sciences, 173: 391398.10.1086/663966CrossRefGoogle Scholar
Matsui, K., Nishio, T. & Tetsuka, T. (2004). Genes outside the S supergene suppress S functions in buckwheat (Fagopyrum esculentum). Annals of Botany, 94: 805809.10.1093/aob/mch206CrossRefGoogle Scholar
Matthews, M. L. & Endress, P. K. (2008). Comparative floral structure and systematics in Chrysobalanaceae s.l. (Chrysobalanaceae, Dichapetalaceae, Euphroniaceae, and Trigoniaceae; Malpighiales). Botanical Journal of the Linnean Society, 157: 249309.10.1111/j.1095-8339.2008.00803.xCrossRefGoogle Scholar
Mauseth, J. D. (1991). Botany. Orlando, FL: Holt Rhinehart & Winston.Google Scholar
Mayer, V., Möller, M., Perret, M. & Weber, A. (2003). Phylogenetic position and generic differentiation of Epithemateae (Gesneriaceae) inferred from plastid DNA sequence data. American Journal of Botany, 90: 321329.10.3732/ajb.90.2.321CrossRefGoogle ScholarPubMed
Mayers, A. M. & Lord, E. M. (1983). Comparative flower development in the cleistogamous species Viola odorata. I. A growth rate study. American Journal of Botany, 70: 15481555.Google Scholar
Mayers, A. M. & Lord, E. M. (1984). Comparative floral development in the cleistogamous species Viola odorata. III. A histological study. Botanical Gazette, 145: 8391.10.1086/337430CrossRefGoogle Scholar
Mayo, S. J., Bogner, J. & Boyce, P. C. (1997). The Genera of Araceae. Kew: Royal Botanical Gardens.Google Scholar
Mayo, S. J., Bogner, J. & Boyce, P. C. (1998). Araceae. In The Families and Genera of Vascular Plants, Vol. 4, ed. Kubitzki, K.. Berlin: Springer, pp. 2673.Google Scholar
Mayr, E. (1982). The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Cambridge, MA: Harvard University Press.Google Scholar
McConnell, J. R. & Barton, M. K. (1998). Leaf polarity and meristem formation in Arabidopsis. Development, 125: 29352942.10.1242/dev.125.15.2935CrossRefGoogle ScholarPubMed
McConnell, J. R., Emery, J., Eshed, Y. et al. (2001). Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 411: 709713.10.1038/35079635CrossRefGoogle ScholarPubMed
McCouch, S. R. (2008). Gene nomenclature system for rice. Rice, 1: 7284.10.1007/s12284-008-9004-9CrossRefGoogle Scholar
McDill, J., Repplinger, M., Simpson, B. B. & Kadereit, J. W. (2009). The phylogeny of Linum and Linaceae subfamily Linoideae, with implications for their systematics, biogeography, and evolution of heterostyly. Systematic Botany, 34: 386405.10.1600/036364409788606244CrossRefGoogle Scholar
McHale, N. A. & Koning, R. E. (2004). PHANTASTICA regulates development of the adaxial mesophyll in Nicotiana leaves. Plant Cell, 16: 12511262.10.1105/tpc.019307CrossRefGoogle ScholarPubMed
McIntosh, R. A. (1988). A catalogue of gene symbols for wheat. In Proceedings of the 7th International Wheat Genetics Symposium, eds. Miller, T. E. & Koebner, R. M. D.. Cambridge: IPSR, pp. 12251324.Google Scholar
McIntyre, G. I. & Best, K. F. (1975). Studies on the flowering of Thlaspi arvense L. II. A comparative study of early- and late-flowering strains. Botanical Gazette, 136: 151158.Google Scholar
McIntyre, G. I. & Best, K. F. (1978). Studies on the flowering of Thlaspi arvense L. IV. Genetic and ecological differences between early- and late-flowering strains. Botanical Gazette, 139: 190195.Google Scholar
McKone, M. J. & Tonkyn, D. W. (1986). Intrapopulation gender variation in common ragweed (Asteracae: Ambrosia artemisiifolia L.), a monecious, annual herb. Oecologia, 70: 6367.10.1007/BF00377111CrossRefGoogle Scholar
McNamara, K. J. (1986). A guide to the nomenclature of heterochrony. Journal of Paleontology, 60: 413.10.1017/S0022336000021454CrossRefGoogle Scholar
McNeill, J., Barrie, F. R., Buck, W. R. et al. (eds.) (2012). International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code) Adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Ruggell: Gantner.Google Scholar
M’Cosh, J. (1851). Some remarks on the plant morphologically considered. Transactions of the Botanical Society, 4: 127132.Google Scholar
M’Cosh, J. & Dickie, G. (1856). Typical Forms and Special Ends in Creation. New York, NY: Carter.Google Scholar
Meeuse, A. D. J. (1972). Sixty-five years of theories of the multiaxial flower. Acta Biotheoretica, 21: 167202.10.1007/BF01557178CrossRefGoogle Scholar
Meijer, M. & Murray, J. A. (2001). Cell cycle controls and the development of plant form. Current Opinion in Plant Biology, 4: 4449.10.1016/S1369-5266(00)00134-5CrossRefGoogle ScholarPubMed
Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D. & Koornneef, M. (1998). Arabidopsis thaliana: a model plant for genome analysis. Science, 282: 662682.10.1126/science.282.5389.662CrossRefGoogle Scholar
Melville, R. (1960). A new theory of the angiosperm flower. Nature, 118: 1418.10.1038/188014a0CrossRefGoogle Scholar
Melzer, R. & Theißen, G. (2016). The significance of developmental robustness for species diversity. Annals of Botany, 117: 725732.10.1093/aob/mcw018CrossRefGoogle ScholarPubMed
Melzer, R., Verelst, W. & Theißen, G. (2009). The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucleic Acids Research, 37: 144157.10.1093/nar/gkn900CrossRefGoogle Scholar
Melzer, R., Wang, Y. Q. & Theißen, G. (2010). The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Seminars in Cell and Developmental Biology, 21: 118128.10.1016/j.semcdb.2009.11.015CrossRefGoogle ScholarPubMed
Mena, M., Ambrose, B. A., Meeley, R. B. et al. (1996). Diversification of C-function activity in maize flower development. Science, 274: 15371540.10.1126/science.274.5292.1537CrossRefGoogle ScholarPubMed
Meng, A., Zhang, Z., Li, J., Ronse De Craene, L. & Wang, H. (2012). Floral development of Stephania (Menispermaceae): impact of organ reduction on symmetry. International Journal of Plant Sciences, 173: 861874.10.1086/667235CrossRefGoogle Scholar
Merckx, V. (2013). Mycoheterotrophy: The Biology of Plants Living on Fungi. Berlin: Springer.10.1007/978-1-4614-5209-6CrossRefGoogle Scholar
Merrill, E. K. (1979). Comparison of ontogeny of three types of leaf architecture in Sorbus L. (Rosaceae). Botanical Gazette, 140: 328337.10.1086/337095CrossRefGoogle Scholar
Mestek Boukhibar, L. & Barkoulas, M. (2016). The developmental genetics of biological robustness. Annals of Botany, 117: 699707.10.1093/aob/mcv128CrossRefGoogle ScholarPubMed
Metzger, R. J. & Krasnow, M. A. (1999). Genetic control of branching morphogenesis. Science, 284: 16351639.10.1126/science.284.5420.1635CrossRefGoogle ScholarPubMed
Meyen, S. V. (1973). Plant morphology in its nomothetical aspects. Botanical Review, 39: 205260.10.1007/BF02860118CrossRefGoogle Scholar
Meyerowitz, E. M. (1994). The genetics of flower development. Scientific American, 271: 4047.10.1038/scientificamerican1194-56CrossRefGoogle Scholar
Meyerowitz, E. M. (1997). Control of cell division patterns in developing shoots and flowers of Arabidopsis thaliana. Cold Spring Harbor Symposia on Quantitative Biology, 62: 369375.Google ScholarPubMed
Michaels, S. D. & Amasino, R. M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11: 949956.10.1105/tpc.11.5.949CrossRefGoogle ScholarPubMed
Miller, A. P. (1995). Leaf-mining insects and fluctuating asymmetry in elm Ulmus glabra leaves. Journal of Animal Ecology, 64: 697707.10.2307/5849CrossRefGoogle Scholar
Minelli, A. (2000). Limbs and tail as evolutionarily diverging duplicates of the main body axis. Evolution and Development, 2: 157165.10.1046/j.1525-142x.2000.00054.xCrossRefGoogle ScholarPubMed
Minelli, A. (2003). The Development of Animal Form: Ontogeny, Morphology, and Evolution. Cambridge: Cambridge University Press.10.1017/CBO9780511541476CrossRefGoogle Scholar
Minelli, A. (2009a). Forms of Becoming: The Evolutionary Biology of Development. Princeton, NJ: Princeton University Press.10.1515/9781400833054CrossRefGoogle Scholar
Minelli, A. (2009b). Perspectives in Animal Phylogeny and Evolution. Oxford: Oxford University Press.Google Scholar
Minelli, A. (2011). A principle of developmental inertia. In Epigenetics: Linking Genotype and Phenotype in Development and Evolution, eds. Hallgrímsson, B. & Hall, B. K.. San Francisco, CA: University of California Press, pp. 116133.Google Scholar
Minelli, A. (2014). Developmental disparity. In Towards a Theory of Development, eds. Minelli, A. & Pradeu, T.. Oxford: Oxford University Press, pp. 227245.10.1093/acprof:oso/9780199671427.003.0015CrossRefGoogle Scholar
Minelli, A. (2015a). Biological systematics in the evo-devo era. European Journal of Taxonomy, 125: 123.Google Scholar
Minelli, A. (2015b). Evo devo and its significance for animal evolution and phylogeny. In Evolutionary Developmental Biology of Invertebrates. 1. Introduction, Non-Bilateria, Acoelomorpha, Xenoturbellida, Chaetognatha, ed. Wanninger, A.. Wien: Springer, pp. 123.Google Scholar
Minelli, A. (2015c). Grand challenges in evolutionary developmental biology. Frontiers in Ecology and Evolution, 2: 85.10.3389/fevo.2014.00085CrossRefGoogle Scholar
Minelli, A. (2015d). Constraints on animal (and plant) form in nature and art. Art and Perception, 3: 265281.10.1163/22134913-00002038CrossRefGoogle Scholar
Minelli, A. (2016a). Scaffolded biology. Theory in Biosciences, 135: 163173.10.1007/s12064-016-0230-1CrossRefGoogle ScholarPubMed
Minelli, A. (2016b). Tracing homologies in an ever-changing world. Rivista di estetica, n.s., 56: 4055.10.4000/estetica.1174CrossRefGoogle Scholar
Minelli, A. (2016c). Species diversity vs. morphological disparity in the light of evolutionary developmental biology. Annals of Botany, 117: 781794.10.1093/aob/mcv134CrossRefGoogle ScholarPubMed
Minelli, A. (2017). Evolvability and its evolvability. In Challenging the Modern Synthesis: Adaptation, Development, and Inheritance, eds. Huneman, P. & Walsh, D.. Oxford: Oxford University Press, pp. 211238.Google Scholar
Minelli, A. & Fusco, G. (2005). Conserved vs. innovative features in animal body organization. Journal of Experimental Zoology (Molecular and Developmental Evolution), 304B: 520525.10.1002/jez.b.21044CrossRefGoogle Scholar
Minelli, A. & Fusco, G. (2012). On the evolutionary developmental biology of speciation. Evolutionary Biology, 39: 242254.10.1007/s11692-012-9175-6CrossRefGoogle Scholar
Minelli, A. & Fusco, G. (2013). Homology. In The Philosophy of Biology: A Companion for Educators, History, Philosophy and Theory of the Life Sciences, ed. Kampourakis, K.. Dordrecht: Springer, pp. 289322.10.1007/978-94-007-6537-5_15CrossRefGoogle Scholar
Minelli, A., Negrisolo, E. & Fusco, G. (2006). Reconstructing animal phylogeny in the light of evolutionary developmental biology. In Reconstructing the Tree of Life: Taxonomy and Systematics of Species Rich Taxa, eds. Hodkinson, T. R., Parnell, J. A. N. & Waldren, S.. Boca Raton, FL: Taylor & Francis/CRC Press, pp. 177190.10.1201/9781420009538.ch12CrossRefGoogle Scholar
Minelli, A. & Pradeu, T. (eds.) (2014). Towards a Theory of Development. Oxford: Oxford University Press.10.1093/acprof:oso/9780199671427.001.0001CrossRefGoogle Scholar
Minter, T. C. & Lord, E. M. (1983). A comparison of cleistogamous and chasmogamous floral development in Collomia grandiflora Dougl. Ex Lindl. (Polemoniaceae). American Journal of Botany, 70: 14991508.10.1002/j.1537-2197.1983.tb10853.xCrossRefGoogle Scholar
Mirabet, V., Das, P., Boudaoud, A. & Hamant, O. (2011). The role of mechanical forces in plant morphogenesis. Annual Review of Plant Biology, 62: 365385.10.1146/annurev-arplant-042110-103852CrossRefGoogle ScholarPubMed
Mitchell, C. H. & Diggle, P. K. (2005). The evolution of unisexual flowers: morphological and functional convergence results from diverse developmental transitions. American Journal of Botany, 92: 10681076.10.3732/ajb.92.7.1068CrossRefGoogle ScholarPubMed
Mitchell-Olds, T. (2001). Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends in Ecology and Evolution, 16: 693700.10.1016/S0169-5347(01)02291-1CrossRefGoogle Scholar
Mitchell-Olds, T., Al-Shehbaz, I. A., Koch, M. & Sharbel, T. F. (2005). Crucifer evolution in the post-genomic era. In Plant Diversity and Evolution: Genotypic and Phenotypic Variation in Higher Plants, ed. Henry, R. J.. Cambridge, MA: CAB International, pp. 119137.10.1079/9780851999043.0119CrossRefGoogle Scholar
Mitsuda, N. & Ohme-Takagi, M. (2009). Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiology, 50: 12321248.10.1093/pcp/pcp075CrossRefGoogle ScholarPubMed
Miwa, H., Kinoshita, A., Fukuda, H. & Sawa, S. (2009). Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. Journal of Plant Research, 122: 3139.10.1007/s10265-008-0207-3CrossRefGoogle ScholarPubMed
Mizukami, Y. & Fischer, R. L. (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences of the United States of America, 97: 942947.10.1073/pnas.97.2.942CrossRefGoogle ScholarPubMed
Moczek, A. P. (2008). On the origins of novelty in development and evolution. BioEssays, 30: 432447.10.1002/bies.20754CrossRefGoogle ScholarPubMed
Moczek, A. P. (2010). Phenotypic plasticity and diversity in insects. Philosophical Transactions of the Royal Society B, 365: 593603.10.1098/rstb.2009.0263CrossRefGoogle ScholarPubMed
Molinero-Rosales, N., Jamilena, M., Zurita, S. et al. (1999). FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. The Plant Journal, 20: 685693.10.1046/j.1365-313X.1999.00641.xCrossRefGoogle ScholarPubMed
Möller, M., Pfosser, M., Jang, C. G. et al. (2009). A preliminary phylogeny of the ‘didymocarpoid Gesneriaceae’ based on three molecular data sets: incongruence with available tribal classifications. American Journal of Botany, 96: 9891010.10.3732/ajb.0800291CrossRefGoogle ScholarPubMed
Mondragón-Palomino, M., Hiese, L., Harter, A., Koch, M. A. & Theißen, G. (2009). Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses. BMC Evolutionary Biology, 9: 81.10.1186/1471-2148-9-81CrossRefGoogle Scholar
Mondragón-Palomino, M. & Theißen, G. (2008). MADS about the evolution of orchid flowers. Trends in Plant Science, 13: 5159.10.1016/j.tplants.2007.11.007CrossRefGoogle ScholarPubMed
Mondragón-Palomino, M. & Theißen, G. (2009). Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Annals of Botany, 104: 583594.10.1093/aob/mcn258CrossRefGoogle ScholarPubMed
Mondragón-Palomino, M. & Theißen, G. (2011). Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the ‘orchid code’. The Plant Journal, 66: 10081019.10.1111/j.1365-313X.2011.04560.xCrossRefGoogle ScholarPubMed
Mondragón-Palomino, M. & Trontin, C. (2011). High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots. Annals of Botany, 107: 15331544.10.1093/aob/mcr059CrossRefGoogle ScholarPubMed
Monniaux, M., Pieper, B. & Hay, A. (2016). Stochastic variation in Cardamine hirsuta petal number. Annals of Botany, 117: 881887.10.1093/aob/mcv131CrossRefGoogle ScholarPubMed
Moody, A., Diggle, P. K. & Steingraeber, D. A. (1999). Developmental analysis of the evolutionary origin of vegetative propagules in Mimulus gemmiparus (Scrophulariaceae). American Journal of Botany, 86: 15121522.10.2307/2656789CrossRefGoogle ScholarPubMed
Mordhorst, A. P., Toonen, M. A. J., de Vries, S. C. & Meinke, D. (1997). Plant embryogenesis. Critical Reviews in Plant Sciences, 16: 535576.10.1080/07352689709701959CrossRefGoogle Scholar
Moreno-Risueno, M. A., Busch, W. & Benfey, P. N. (2010). Omics meet networks: using systems approaches to-infer regulatory networks in plants. Current Opinion in Plant Biology, 13: 126131.10.1016/j.pbi.2009.11.005CrossRefGoogle ScholarPubMed
Moreno-Risueno, M. A., Van Norman, J. M. & Benfey, P. N. (2012). Transcriptional switches direct plant organ formation and patterning. Current Topics in Developmental Biology, 98: 229257.10.1016/B978-0-12-386499-4.00009-4CrossRefGoogle ScholarPubMed
Mouradov, A., Glassick, T., Hamdorf, B. et al. (1998). NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proceedings of the National Academy of Sciences of the United States of America, 95: 65376542.10.1073/pnas.95.11.6537CrossRefGoogle ScholarPubMed
Mower, J. P., Stefanovic, S., Young, G. J. & Palmer, J. D. (2004). Gene transfer from parasitic to host plants. Nature, 432: 165166.10.1038/432165bCrossRefGoogle ScholarPubMed
Moyroud, E., Kusters, E., Monniaux, M., Koes, R. & Parcy, F. (2010). LEAFY blossoms. Trends in Plant Science, 15: 346352.10.1016/j.tplants.2010.03.007CrossRefGoogle ScholarPubMed
Mueller, A.L., Solow, T. H., Taylor, N. et al. (2005). The SOL Genomics Network (SGN): a comparative resource for solanaceous biology and beyond. Plant Physiology, 138: 13101317.10.1104/pp.105.060707CrossRefGoogle Scholar
Mukherjee, K. & Brocchieri, L. (2010). Evolution of plant homeobox genes. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Mukherjee, K., Brocchieri, L. & Burglin, T. R. (2009). A comprehensive classification and evolutionary analysis of plant homeobox genes. Molecular Biology and Evolution, 26: 27752794.10.1093/molbev/msp201CrossRefGoogle ScholarPubMed
Müller, M. & Cronk, Q. C. B. (2001). Evolution of morphological novelty: a phylogenetic analysis of growth patterns in Streptocarpus (Gesneriaceae). Evolution, 55: 918929.10.1554/0014-3820(2001)055[0918:EOMNAP]2.0.CO;2CrossRefGoogle Scholar
Mummenhoff, K., Al-Shehbaz, I. A., Bakker, F. T., Linder, H. P. & Mühlhausen, A. (2005). Phylogeny, morphological evolution, and speciation of endemic Brassicaceae genera in the Cape flora of southern Africa. Annals of the Missouri Botanical Garden, 92: 400424.Google Scholar
Mummenhoff, K., Brüggemann, H. & Bowman, J. L. (2001). Chloroplast DNA phylogeny and biogeography of Lepidium (Brassicaceae). American Journal of Botany, 88: 20512063.10.2307/3558431CrossRefGoogle ScholarPubMed
Mummenhoff, K., Polster, A., Mühlhausen, A. & Theißen, G. (2009). Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. Journal of Experimental Botany, 60: 15031513.10.1093/jxb/ern304CrossRefGoogle Scholar
Mungall, C., Gkoutos, G. V., Smith, C., Haendel, M. & Ashburner, M. (2010). Integrating phenotype ontologies across multiple species. Genome Biology, 11: R2.10.1186/gb-2010-11-1-r2CrossRefGoogle ScholarPubMed
Munné-Bosch, S. (2008). Do perennials really senesce? Trends in Plant Science, 13: 216220.10.1016/j.tplants.2008.02.002CrossRefGoogle ScholarPubMed
Münster, T., Pahnke, J., Di Rosa, A et al. (1997). Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proceedings of the National Academy of Sciences of the United States of America, 94: 24152420.10.1073/pnas.94.6.2415CrossRefGoogle ScholarPubMed
Münster, T., Wingen, L. U., Faigl, W. et al. (2001). Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene, 262: 113.10.1016/S0378-1119(00)00556-4CrossRefGoogle ScholarPubMed
Müntzing, A. (1936). The evolutionary significance of autopolyploidy. Hereditas, 21: 263378.Google Scholar
Murai, K., Miyamae, M., Kato, H., Takumi, S. & Ogihara, Y. (2003). WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant and Cell Physiology, 44: 12551265.10.1093/pcp/pcg171CrossRefGoogle Scholar
Murray, N. A. & Johnson, D. M. (1987). Synchronous dichogamy in a Mexican anonillo Rollinia jimenezi var. nelsonii. Contributions from the University of Michigan Herbarium, 16: 173178.Google Scholar
Nagasawa, N., Miyoshi, M., Sano, Y. et al. (2003). SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 130: 705718.10.1242/dev.00294CrossRefGoogle ScholarPubMed
Nah, G. & Chen, J. (2010). Tandem duplication of the FLC locus and the origin of a new gene in Arabidopsis related species and their functional implications in allopolyploids. New Phytologist, 186: 228238.10.1111/j.1469-8137.2009.03164.xCrossRefGoogle ScholarPubMed
Naiki, A. (2012). Heterostyly and the possibility of its breakdown by polyploidization. Plant Species Biology, 27: 329.10.1111/j.1442-1984.2011.00363.xCrossRefGoogle Scholar
Nakada, M., Komatsu, M., Ochiai, T. et al. (2006). Isolation of MaDEF from Muscari armeniacum and analysis of its expression using laser microdissection. Plant Science, 170: 143150.10.1016/j.plantsci.2005.08.021CrossRefGoogle Scholar
Nakamura, T., Fukuda, T., Nakano, M. et al. (2005). The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Plant Molecular Biology, 58: 435445.10.1007/s11103-005-5218-zCrossRefGoogle ScholarPubMed
Nakano, T., Kimbara, J., Fujisawa, M., Kitagawa, M. et al. (2012). MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiology, 158: 439450.10.1104/pp.111.183731CrossRefGoogle ScholarPubMed
Nakata, M., Matsumoto, N., Tsugeki, R. et al. (2012). Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell, 24: 519535.10.1105/tpc.111.092858CrossRefGoogle ScholarPubMed
Nakayama, H., Nakayama, N., Seiki, S. et al. (2014). Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American lake cress. Plant Cell, 26: 47334748.10.1105/tpc.114.130229CrossRefGoogle ScholarPubMed
Nakayama, H., Yamaguchi, T. & Tsukaya, H. (2012). Acquisition and diversification of cladodes: leaf-like organs in the genus Asparagus. Plant Cell, 24: 929940.10.1105/tpc.111.092924CrossRefGoogle ScholarPubMed
Nardmann, J. & Werr, W. (2006). The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Molecular Biology and Evolution, 23: 24922504.10.1093/molbev/msl125CrossRefGoogle ScholarPubMed
Nath, U., Crawford, B. C., Carpenter, R. & Coen, E. (2003). Genetic control of surface curvature. Science, 299: 14041407.10.1126/science.1079354CrossRefGoogle ScholarPubMed
Nickrent, D. L., Blarer, A., Qiu, Y. L., Vidal-Russell, R. & Anderson, F. E. (2004). Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. BMC Evolutionary Biology, 4: 40.10.1186/1471-2148-4-40CrossRefGoogle ScholarPubMed
Nicolas, M. & Cubas, P. (2016). The role of TCP transcription factors in shaping flower structure, leaf morphology, and plant architecture. In Plant Transcription Factors: Evolutionary, Structural and Functional Aspects, ed. Gonzalez, D. H.. Amsterdam: Elsevier, pp. 249267.10.1016/B978-0-12-800854-6.00016-6CrossRefGoogle Scholar
Niklas, K. J. (2016). Plant Evolution: An Introduction to the History of Life. Chicago, IL: University of Chicago Press.10.7208/chicago/9780226342283.001.0001CrossRefGoogle Scholar
Nikolov, L. A., Staedler, Y. M., Manickam, S. et al. (2014). Floral structure and development in Rafflesiaceae with emphasis on their exceptional gynoecia. American Journal of Botany, 101: 225243.10.3732/ajb.1400009CrossRefGoogle ScholarPubMed
Nikovics, K., Blein, T., Peaucelle, A. et al. (2006). The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell, 18: 29292945.10.1105/tpc.106.045617CrossRefGoogle ScholarPubMed
Nishiyama, T., Fujita, T., Shin-I, T. et al. (2003). Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 100: 80078012.10.1073/pnas.0932694100CrossRefGoogle ScholarPubMed
Nodine, M. D. & Bartel, D. P. (2012). Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature, 482: 9497.10.1038/nature10756CrossRefGoogle Scholar
Nowak, M. D., Russo, G., Schlapbach, R. et al. (2015). The draft genome of Primula veris yields insights into the molecular basis of heterostyly. Genome Biology, 16: 12.10.1186/s13059-014-0567-zCrossRefGoogle ScholarPubMed
Nuraliev, M. S., Degtajareva, G. V., Sokoloff, D. D. et al. (2014). Flower morphology and relationships of Schefflera subintegra (Araliaceae, Apiales): an evolutionary step towards extreme floral polymery. Botanical Journal of the Linnean Society, 175: 553597.10.1111/boj.12188CrossRefGoogle Scholar
Nürnberger, T. & Brunner, F. (2002). Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Current Opinion in Plant Biology, 5: 318324.10.1016/S1369-5266(02)00265-0CrossRefGoogle ScholarPubMed
Nutt, P., Ziermann, J., Hintz, M., Neuffer, B. & Theißen, G. (2006). Capsella as a model system to study the evolutionary relevance of floral homeotic mutants. Plant Systematics and Evolution, 259: 217235.10.1007/s00606-006-0420-2CrossRefGoogle Scholar
Ocarez, N. & Mejía, N. (2016). Suppression of the D-class MADS-box AGL11 gene triggers seedlessness in fleshy fruits. Plant Cell Reports, 35: 239254.10.1007/s00299-015-1882-xCrossRefGoogle ScholarPubMed
Ochando, I., Jover-Gil, S., Ripoll, J. J. et al. (2006). Mutations in the microRNA complementarity site of the INCURVATA4 gene perturb meristem function and adaxialize lateral organs in Arabidopsis. Plant Physiology, 141: 607619.10.1104/pp.106.077149CrossRefGoogle ScholarPubMed
Ochiai, T., Nakamura, T., Mashiko, Y. et al. (2004). The differentiation of sepal and petal morphologies in Commelinaceae. Gene, 343: 253262.10.1016/j.gene.2004.08.032CrossRefGoogle ScholarPubMed
Ogura, T. & Busch, W. (2016). Genotypes, networks, phenotypes: moving toward plant systems genetics. Annual Review of Cell and Developmental Biology, 32: 103126.10.1146/annurev-cellbio-111315-124922CrossRefGoogle ScholarPubMed
Ohmori, S., Kimizu, M., Sugita, M. et al. (2009). MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell, 21: 30083025.10.1105/tpc.109.068742CrossRefGoogle ScholarPubMed
Okada, K., Komaki, M. K. & Shimura, Y. (1989). Mutational analysis of pistil structure and development of Arabidopsis thaliana. Cell Differentiation and Development, 28: 2738.10.1016/0922-3371(89)90020-8CrossRefGoogle ScholarPubMed
Olmstead, R. G., Bohs, L., Migid, H. A. et al. (2008). A molecular phylogeny of the Solanaceae. Taxon, 57: 11591181.10.1002/tax.574010CrossRefGoogle Scholar
Olmstead, R. G., Michaels, H. J., Scott, K. M. & Palmer, J. D. (1992). Monophyly of the Asteridae sensu lato and identification of their major lineages inferred from DNA sequences of rbcL. Annals of the Missouri Botanical Garden, 79: 249265.10.2307/2399768CrossRefGoogle Scholar
Olmstead, R. G. & Palmer, J. D. (1992). A chloroplast DNA phylogeny of the Solanaceae: subfamilial relationships and character evolution. Annals of the Missouri Botanical Garden, 79: 346360.10.2307/2399773CrossRefGoogle Scholar
Olmstead, R. G. & Reeves, P. A. (1995). Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequences. Annals of the Missouri Botanical Garden, 82: 176193.10.2307/2399876CrossRefGoogle Scholar
Olson, M. E. (2003). Ontogenetic origins of floral bilateral symmetry in Moringaceae (Brassicales). American Journal of Botany, 90: 4971.10.3732/ajb.90.1.49CrossRefGoogle ScholarPubMed
Orkwiszewski, J. A. & Poethig, R. S. (2000). Phase identity of the maize leaf is determined after leaf initiation. Proceedings of the National Academy of Sciences of the United States of America, 97: 1063110636.10.1073/pnas.180301597CrossRefGoogle ScholarPubMed
Otsuga, D., DeGuzman, B., Prigge, M. J., Drews, G. N. & Clark, S. E. (2001). REVOLUTA regulates meristem initiation at lateral positions. The Plant Journal, 25: 223236.10.1111/j.1365-313X.2001.00959.xCrossRefGoogle ScholarPubMed
Owen, R. (1843). Lectures on the Comparative Anatomy and Physiology of the Invertebrate Animals, Delivered at the Royal College of Surgeons. London: Longman, Brown, Green and Longmans.Google Scholar
Oyama, S. (2000). The Ontogeny of Information, 2nd edn. Durham, NC: Duke University Press.Google Scholar
Ozerova, L. V. & Timonin, A. C. (2009). On the evidence of subunifacial and unifacial leaves: developmental studies in leaf-succulent Senecio L. species (Asteraceae). Wulfenia, 16: 6177.Google Scholar
Pabón-Mora, N. & González, F. (2012). Leaf development, metamorphic heteroblasty and heterophylly in Berberis s.l. (Berberidaceae). Botanical Review, 74: 463489.10.1007/s12229-012-9107-2CrossRefGoogle Scholar
Palauqui, J. C. & Laufs, P. (2011). Phyllotaxis: in search of the golden angle. Current Biology,: 21: R502-R504.10.1016/j.cub.2011.05.054CrossRefGoogle ScholarPubMed
Pallakies, H. & Simon, R. (2010). Positional information in plant development. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Panero, J. L. & Funk, V. A. (2008). The value of sampling anomalous taxa in phylogenetic studies: major clade of the Asteraceae revealed. Molecular Phylogenetics and Evolution, 47: 757782.10.1016/j.ympev.2008.02.011CrossRefGoogle ScholarPubMed
Pang, H.-B., Sun, Q.-W., He, S.-Z. & Wang, Y.-Z. (2010). Expression pattern of CYC-like genes relating to a dorsalized actinomorphic flower in Tengia (Gesneriaceae). Journal of Systematics and Evolution, 48: 309317.10.1111/j.1759-6831.2010.00091.xCrossRefGoogle Scholar
Parcy, F. (2005). Flowering: a time for integration. International Journal of Developmental Biology, 49: 585593.10.1387/ijdb.041930fpCrossRefGoogle ScholarPubMed
Parcy, F., Nilsson, O., Busch, M. A., Lee, I. & Weigel, D. (1998). A genetic framework for floral patterning. Nature, 395: 561566.10.1038/26903CrossRefGoogle ScholarPubMed
Park, J.-H., Ishikawa, Y., Ochiai, T., Kanno, A. & Kameya, T. (2004). Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiology, 45: 325332.10.1093/pcp/pch040CrossRefGoogle ScholarPubMed
Park, J.-H., Ishikawa, Y., Yoshida, R., Kanno, A. & Kameya, T. (2003). Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Molecular Biology, 51: 867875.10.1023/A:1023097202885CrossRefGoogle ScholarPubMed
Paterson, A. H., Bowers, J. E. & Chapman, B. A. (2004). Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proceedings of the National Academy of Sciences of the United States of America, 101: 99039908.10.1073/pnas.0307901101CrossRefGoogle ScholarPubMed
Pauw, A. (2005). Inversostyly: a new stylar polymorphism in an oil-secreting plant, Hemimeris racemosa (Scrophulariaceae). American Journal of Botany, 92: 18781886.10.3732/ajb.92.11.1878CrossRefGoogle Scholar
Pavlicev, M. & Hansen, T. H. (2011). Genotype-phenotype maps maximizing evolvability: modularity revisited. Evolutionary Biology, 38: 371389.10.1007/s11692-011-9136-5CrossRefGoogle Scholar
Peaucelle, A., Louvet, R., Johansen, J. N. et al. (2008). Arabidopsis phyllotaxis is controlled by the methylesterification status of cell-wall pectins. Current Biology, 18: 19431948.10.1016/j.cub.2008.10.065CrossRefGoogle ScholarPubMed
Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E. & Yanofsky, M. F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405: 200203.10.1038/35012103CrossRefGoogle Scholar
Pelaz, S., Gustafson-Brown, C., Kohalmi, S. E., Crosby, W. L. & Yanofsky, M. F. (2001a). APETALA1 and SEPALLATA3 interact to promote flower development. The Plant Journal, 26: 385394.10.1046/j.1365-313X.2001.2641042.xCrossRefGoogle ScholarPubMed
Pelaz, S., Tapia-Lopez, R., Alvarez-Buylla, E. R. & Yanofsky, M. F. (2001b). Conversion of leaves into petals in Arabidopsis. Current Biology, 11: 182184.10.1016/S0960-9822(01)00024-0CrossRefGoogle ScholarPubMed
Pellicer, J., Fay, M. F. & Leitch, I. J. (2010). The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society, 164: 1015.10.1111/j.1095-8339.2010.01072.xCrossRefGoogle Scholar
Pennington, R. T., Klitgaard, B. B., Ireland, H. & Lavin, M. (2000). New insights into floral evolution of basal Papilionoideae from molecular phylogenies. In Advances in Legume Systematics, 9, eds. Herendeen, P. S. & Bruneau, A.. Kew: Royal Botanic Gardens, pp. 233248.Google Scholar
Perez-Rodriguez, P., Riano-Pachon, D. M., Correa, L. G. G. et al. (2010). PInTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Research, 38: D822D827.10.1093/nar/gkp805CrossRefGoogle ScholarPubMed
Peris, C. I., Rademacher, E. H. & Weijers, D. (2010). Green beginnings: pattern formation in the early plant embryo. Current Topics in Developmental Biology, 91: 127.10.1016/S0070-2153(10)91001-6CrossRefGoogle ScholarPubMed
Peterson, R. L. (1992). Adaptations of root structure in relation to biotic and abiotic factors. Canadian Journal of Botany, 70: 661675.10.1139/b92-087CrossRefGoogle Scholar
Petricka, J. J., Winter, C. M. & Benfey, P. N. (2012). Control of Arabidopsis root development. Annual Review of Plant Biology, 63: 563590.10.1146/annurev-arplant-042811-105501CrossRefGoogle ScholarPubMed
Pham, T. & Sinha, N. (2003). Role of KNOX genes in shoot development of Welwitschia mirabilis. International Journal of Plant Sciences, 164: 333343.10.1086/374189CrossRefGoogle Scholar
Piazza, P., Bailey, C. D., Cartolano, M. et al. (2010). Arabidopsis thaliana leaf form evolved via loss of KNOX expression in leaves in association with a selective sweep. Current Biology, 20: 22232228.10.1016/j.cub.2010.11.037CrossRefGoogle ScholarPubMed
Pigliucci, M. (2001). Phenotypic Plasticity: Beyond Nature and Nurture. Baltimore, MD: Johns Hopkins University Press.10.56021/9780801867880CrossRefGoogle Scholar
Pigliucci, M. (2008). Is evolvability evolvable? Nature Reviews Genetics, 9: 7582.10.1038/nrg2278CrossRefGoogle ScholarPubMed
Pigliucci, M. & Müller, G. (eds.) (2010). Evolution: The Extended Synthesis. Cambridge, MA: MIT Press.10.7551/mitpress/9780262513678.001.0001CrossRefGoogle Scholar
Pigliucci, M. & Murren, C. (2003). Genetic assimilation and a possible evolutionary paradox: can macroevolution sometimes be so fast as to pass us by? Evolution, 57: 14551464.Google Scholar
Pigliucci, M., Murren, C. J. & Schlichting, C. D. (2006). Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 209: 23622367.10.1242/jeb.02070CrossRefGoogle ScholarPubMed
Piñeyro-Nelson, A., Almeida, A. M. R., Sass, C., Iles, W. J. D. & Specht, C. D. (2017). Change of fate and staminodial laminarity as potential agents of floral diversification in the Zingiberales. Journal of Experimental Zoology (Molecular and Developmental Evolution), 328: 4154.10.1002/jez.b.22724CrossRefGoogle ScholarPubMed
Pires, N. D. & Dolan, L. (2012). Morphological evolution in land plants: new designs with old genes. Philosophical Transactions of the Royal Society B, 367: 508518.10.1098/rstb.2011.0252CrossRefGoogle ScholarPubMed
Poethig, R. S. (1988). Heterochronic mutations affecting shoot development in maize. Genetics, 119: 959973.10.1093/genetics/119.4.959CrossRefGoogle ScholarPubMed
Poethig, R. S. (2009). Small RNAs and developmental timing in plants. Current Opinion in Genetics and Development, 19: 374378.10.1016/j.gde.2009.06.001CrossRefGoogle ScholarPubMed
Poethig, R. S. & Sussex, I. M. (1985). The developmental morphology and growth dynamics of the tobacco leaf. Planta, 165: 158169.10.1007/BF00395038CrossRefGoogle ScholarPubMed
Porras, R. & Muñoz, J. M. (2000). Cleistogamous capitulum in Centaurea melitensis (Asteraceae): heterochronic origin. American Journal of Botany, 87: 925933.10.2307/2656991CrossRefGoogle ScholarPubMed
Posé, D., Yant, L. & Schmid, M. (2012). The end of innocence: flowering networks explode in complexity. Current Opinion in Plant Biology, 15: 4550.10.1016/j.pbi.2011.09.002CrossRefGoogle ScholarPubMed
Povilus, R. A., Losada, J. M. & Friedman, W. E. (2015). Floral biology and ovule and seed ontogeny of Nymphaea thermarum, a water lily at the brink of extinction with potential as a model system for basal angiosperms. Annals of Botany, 115: 211226.10.1093/aob/mcu235CrossRefGoogle Scholar
Powell, A. E. & Lenhard, M. (2012). Control of organ size in plants. Current Biology, 22: R360R367.10.1016/j.cub.2012.02.010CrossRefGoogle ScholarPubMed
Powell, R. (2007). Is convergence more than an analogy? Homoplasy and its implications for macroevolutionary predictability. Biology and Philosophy, 22: 565578.10.1007/s10539-006-9057-3CrossRefGoogle Scholar
Pradeu, T. (2012). The Limits of the Self: Immunology and Biological Identity. Oxford: Oxford University Press.Google Scholar
Pradeu, T. (2016). Organisms or biological individuals? Combining physiological and evolutionary individuality. Biology and Philosophy, 31: 797817.10.1007/s10539-016-9551-1CrossRefGoogle Scholar
Pradeu, T., Laplane, L., Prévot, K. et al. (2016). Defining ‘development’. Current Topics in Developmental Biology, 117: 171183.10.1016/bs.ctdb.2015.10.012CrossRefGoogle ScholarPubMed
Prenner, G. (2004). Floral development in Polygala myrtifolia (Polygalaceae) and its similarities with Leguminosae. Plant Systematics and Evolution, 249: 6776.10.1007/s00606-004-0198-zCrossRefGoogle Scholar
Prenner, G. (2014). Floral ontogeny in Passiflora lobata (Malpighiales, Passifloraceae) reveals a rare pattern in petal formation and provides new evidence for interpretation of the tendril and corona. Plant Systematics and Evolution, 300: 12851297.10.1007/s00606-013-0961-0CrossRefGoogle Scholar
Prenner, G. & Klitgaard, B. B. (2008). Towards unlocking the deep nodes of Leguminosae: floral development and morphology of the enigmatic Duparquetia orchidacea (Leguminosae, Caesalpinioideae). American Journal of Botany, 95: 13491365.10.3732/ajb.0800199CrossRefGoogle Scholar
Prenner, G. & Rudall, P. J. (2007). Comparative ontogeny of the cyathium in Euphorbia and its allies: exploring the organ-flower-inflorescence boundaries. American Journal of Botany, 94: 16121629.10.3732/ajb.94.10.1612CrossRefGoogle Scholar
Preston, J. C. & Hileman, L. C. (2009). Developmental genetics of floral symmetry evolution. Trends in Plant Science, 14: 147154.10.1016/j.tplants.2008.12.005CrossRefGoogle ScholarPubMed
Preston, J. C. & Hileman, L. C. (2010). SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes. The Plant Journal, 62: 704712.10.1111/j.1365-313X.2010.04184.xCrossRefGoogle ScholarPubMed
Preston, J. C. & Hileman, L. C. (2012). Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. Evo Devo, 3: 6.Google ScholarPubMed
Preston, J. C., Hileman, L. C. & Cubas, P. (2011a). Reduce, reuse, and recycle: developmental evolution of trait diversification. American Journal of Botany, 98: 397403.10.3732/ajb.1000279CrossRefGoogle ScholarPubMed
Preston, J. C. & Kellogg, E. A. (2006). Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics, 174: 421437.10.1534/genetics.106.057125CrossRefGoogle ScholarPubMed
Preston, J. C. & Kellogg, E. A. (2007). Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses. The Plant Journal, 52: 6981.10.1111/j.1365-313X.2007.03209.xCrossRefGoogle ScholarPubMed
Preston, J. C. & Kellogg, E. A. (2008). Discrete developmental roles for temperate cereal grass VERNALIZATION1/FRUITFULL-like genes in flowering competency and the transition to flowering. Plant Physiology, 146: 265276.10.1104/pp.107.109561CrossRefGoogle ScholarPubMed
Preston, J. C., Kost, M. A. & Hileman, L. C. (2009). Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies. New Phytologist, 182: 751762.10.1111/j.1469-8137.2009.02794.xCrossRefGoogle ScholarPubMed
Preston, J. C., Martinez, C. C. & Hileman, L. C. (2011b). Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome. Proceedings of the National Academy of Sciences of the United States of America, 108: 23432348.10.1073/pnas.1011361108CrossRefGoogle ScholarPubMed
Prigge, M. J., Otsuga, D., Alonso, J. M. et al. (2005). Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell, 17: 6176.10.1105/tpc.104.026161CrossRefGoogle ScholarPubMed
Primack, R. B. (1985). Longevity of individual flowers. Annual Reviews of Ecology and Systematics, 16: 1537.10.1146/annurev.es.16.110185.000311CrossRefGoogle Scholar
Pruitt, R. E., Vielle-Calzada, J. P., Ploense, S. E., Grossniklaus, U. & Lolle, S. J. (2000). FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proceedings of the National Academy of Sciences of the United States of America, 97: 13111316.10.1073/pnas.97.3.1311CrossRefGoogle ScholarPubMed
Prusinkiewicz, P. (2004). Modeling plant growth and development. Current Opinion in Plant Biology, 7: 7984.10.1016/j.pbi.2003.11.007CrossRefGoogle ScholarPubMed
Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, J. D. & Coen, E. (2007). Evolution and development of inflorescence architectures. Science, 316: 14521456.10.1126/science.1140429CrossRefGoogle ScholarPubMed
Prusinkiewicz, P. & Lindenmayer, A. (1990). The Algorithmic Beauty of Plants. Berlin: Springer.10.1007/978-1-4613-8476-2CrossRefGoogle Scholar
Quint, M., Drost, H.-G., Gabel, A. et al. (2012). A transcriptomic hourglass in plant embryogenesis. Nature, 490: 98101.10.1038/nature11394CrossRefGoogle ScholarPubMed
Quodt, V., Faigl, W., Saedler, H. & Münster, T. (2007). The MADS-domain protein PPM2 preferentially occurs in gametangia and sporophytes of the moss Physcomitrella patens. Gene, 400: 2534.10.1016/j.gene.2007.05.016CrossRefGoogle ScholarPubMed
Raff, R. A. & Kaufman, T. C. (1983). Embryos, Genes, and Evolution. New York, NY: Macmillan.Google Scholar
Rao, N. N., Prasad, K., Kumar, P. R. & Vijayraghavan, U. (2008). Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proceedings of the National Academy of Sciences of the United States of America, 105: 36463651.10.1073/pnas.0709059105CrossRefGoogle ScholarPubMed
Rasmussen, D. A., Kramer, E. M. & Zimmer, E. A. (2009). One size fits all? Molecular evidence for a commonly inherited petal identity program in Ranunculales. American Journal of Botany, 96: 96109.10.3732/ajb.0800038CrossRefGoogle ScholarPubMed
Rast, M. I. & Simon, R. (2008). The meristem-to-organ boundary: more than an extremity of anything. Current Opinion in Genetics and Development, 18: 287294.10.1016/j.gde.2008.05.005CrossRefGoogle ScholarPubMed
Raven, J. A. & Edwards, D. (2001). Roots: evolutionary origins and biogeochemical significance. Journal of Experimental Botany, 52: 381401.10.1093/jxb/52.suppl_1.381CrossRefGoogle ScholarPubMed
Ravi, M. & Chan, S. W. (2010). Haploid plants produced by centromere-mediated genome elimination. Nature, 464: 615618.10.1038/nature08842CrossRefGoogle ScholarPubMed
Reardon, W., Fitzpatrick, D. A., Fares, M. A. & Nugent, J. M. (2009). Evolution of flower shape in Plantago lanceolata. Plant Molecular Biology, 71: 241250.10.1007/s11103-009-9520-zCrossRefGoogle ScholarPubMed
Rebocho, A. B., Bliek, M., Kusters, E. et al. (2008). Role of EVERGREEN in the development of the cymose petunia inflorescence. Developmental Cell, 15: 437447.10.1016/j.devcel.2008.08.007CrossRefGoogle ScholarPubMed
Ree, R. H. & Donoghue, M. J. (1999). Inferring rates of change in flower symmetry in asterid angiosperms. Systematic Botany, 48: 633641.Google Scholar
Reeves, P. A., He, Y., Schmitz, R. J. et al. (2007). Evolutionary conservation of the FLOWERING LOCUS C mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics, 176: 295307.10.1534/genetics.106.069336CrossRefGoogle ScholarPubMed
Reeves, P. A. & Olmstead, R. G. (1998). Evolution of novel morphological and reproductive traits in a clade containing Antirrhinum majus (Scrophulariaceae). American Journal of Botany, 85: 10471056.10.2307/2446338CrossRefGoogle Scholar
Reilly, S. M. (1997). An integrative approach to heterochrony: the distinction between interspecific and intraspecific phenomena. Biological Journal of the Linnean Society, 60: 119143.10.1111/j.1095-8312.1997.tb01487.xCrossRefGoogle Scholar
Reinhardt, D., Mandel, T. & Kuhlemeier, C. (2000). Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 12: 507518.10.1105/tpc.12.4.507CrossRefGoogle ScholarPubMed
Reinhardt, D., Pesce, E. R., Stieger, P. et al. (2003). Regulation of phyllotaxis by polar auxin transport. Nature, 426: 255260.10.1038/nature02081CrossRefGoogle ScholarPubMed
Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. (2002). MicroRNAs in plants. Genes and Development, 16: 16161626.10.1101/gad.1004402CrossRefGoogle ScholarPubMed
Reiser, L., Sanchez-Baracaldo, P. & Kake, S. (2000). Knots in the family tree: evolutionary relationships and functions of knox homeobox genes. Plant Molecular Biology, 42: 151166.10.1023/A:1006384122567CrossRefGoogle ScholarPubMed
Remizowa, M. V., Sokoloff, D. D. & Rudall, P. J. (2010). Evolutionary history of the monocot flower. Annals of the Missouri Botanical Garden, 97: 617645.10.3417/2009142CrossRefGoogle Scholar
Ren, J.-B. & Guo, Y.-P. (2015). Behind the diversity: ontogenies of radiate, disciform, and discoid capitula of Chrysanthemum and its allies. Journal of Systematics and Evolution, 53: 520528.10.1111/jse.12154CrossRefGoogle Scholar
Ren, Y., Chang, H.-L. & Endress, P. K. (2010). Floral development in Anemoneae (Ranunculaceae). Botanical Journal of the Linnean Society, 162: 77100.10.1111/j.1095-8339.2009.01017.xCrossRefGoogle Scholar
Reski, R. (2003). Physcomitrella patens as a novel tool for plant functional genomics. In Plant Biotechnology 2002 and Beyond, ed. Vasil, I. K.. Dodrecht: Kluwer, pp. 205209.10.1007/978-94-017-2679-5_39CrossRefGoogle Scholar
Reski, R. & Cove, D. J. (2004). Quick guide: Physcomitrella patens. Current Biology, 14: R261R262.10.1016/j.cub.2004.03.016CrossRefGoogle Scholar
Reut, M. S. & Fineran, B. A. (2000). Ecology and vegetative morphology of the carnivorous plant Utricularia dichotoma (Lentibulariaceae) in New Zealand. New Zealand Journal of Botany, 38: 433450.10.1080/0028825X.2000.9512695CrossRefGoogle Scholar
Rhoades, M. W., Reinhart, B. J., Lim, L. P. et al. (2002). Prediction of plant microRNA targets. Cell, 110: 513520.10.1016/S0092-8674(02)00863-2CrossRefGoogle ScholarPubMed
Rice, D. W., Alverson, A. J., Richardson, A. O. et al. (2013). Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science, 342: 14681473.10.1126/science.1246275CrossRefGoogle ScholarPubMed
Richards, A. J. (1997). Plant Breeding Systems, 2nd edn. London: Chapman & Hall.10.1007/978-1-4899-3043-9CrossRefGoogle Scholar
Richardson, A. O. & Palmer, J. D. (2007). Horizontal gene transfer in plants. Journal of Experimental Botany, 58: 19.10.1093/jxb/erl148CrossRefGoogle ScholarPubMed
Rigato, E. & Minelli, A. (2013). The great chain of being is still here. Evolution: Education and Outreach, 6: 18.Google Scholar
Rijpkema, A. S., Royaert, S., Zethof, J. et al. (2006). Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell, 18: 18191832.10.1105/tpc.106.042937CrossRefGoogle ScholarPubMed
Rijpkema, A. S., Vandenbussche, M., Koes, R., Heijmans, K. & Gerats, T. (2010). Variations on a theme: changes in the floral ABCs in angiosperms. Seminars in Cell and Developmental Biology, 21: 100107.10.1016/j.semcdb.2009.11.002CrossRefGoogle ScholarPubMed
Rijpkema, A. S., Zethof, J., Gerats, T. & Vandenbussche, M. (2009). The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. The Plant Journal, 60: 19.10.1111/j.1365-313X.2009.03917.xCrossRefGoogle Scholar
Roberts, J. A., Elliott, K. A. & González-Carranza, Z. H. (2002). Abscission, dehiscence, and other cell separation processes. Annual Review of Plant Biology, 53: 131158.10.1146/annurev.arplant.53.092701.180236CrossRefGoogle ScholarPubMed
Roberts, J. A. & González-Carranza, Z. H. (2013). Abscission. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Robinson, B. W. & Dukas, R. (1999). The influence of phenotypic modifications on evolution: the Baldwin effect and modern perspectives. Oikos, 85: 528589.10.2307/3546709CrossRefGoogle Scholar
Roeder, A. H. K. (2010). Sepals. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Roeder, A. H. K., Ferrándiz, C. & Yanofsky, M. F. (2003). The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Current Biology, 13: 16301635.10.1016/j.cub.2003.08.027CrossRefGoogle ScholarPubMed
Roeder, A. H. K. & Yanofsky, M. F. (2006). Fruit development in Arabidopsis. In The Arabidopsis Book. Rockville, MD: American Society of Plant Biologists, 4: e0075.Google Scholar
Rohde, A. & Bhalerao, R. P. (2007). Plant dormancy in the perennial context. Trends in Plant Science, 12: 217223.10.1016/j.tplants.2007.03.012CrossRefGoogle ScholarPubMed
Rolland-Lagan, A.-G., Bangham, J. A. & Coen, E. (2003). Growth dynamics underlying petal shape and asymmetry. Nature, 422: 161163.10.1038/nature01443CrossRefGoogle ScholarPubMed
Ronse De Craene, L. P. (2003). The evolutionary significance of homeosis in flowers: a morphological perspective. International Journal of Plant Sciences, 164: S225S235.10.1086/376878CrossRefGoogle Scholar
Ronse De Craene, L. P. (2004). Floral development of Berberidopsis corallina: a crucial link in the evolution of flowers in the core eudicots. Annals of Botany, 94: 111.10.1093/aob/mch199CrossRefGoogle ScholarPubMed
Ronse De Craene, L. P. (2007). Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Annals of Botany, 100: 621630.10.1093/aob/mcm076CrossRefGoogle ScholarPubMed
Ronse De Craene, L. P. (2008). Homology and evolution of petals in the core eudicots. Systematic Botany, 33: 301325.10.1600/036364408784571680CrossRefGoogle Scholar
Ronse De Craene, L. P. (2010). Floral Diagrams: An Aid to Understanding Flower Morphology and Evolution. Cambridge: Cambridge University Press.10.1017/CBO9780511806711CrossRefGoogle Scholar
Ronse De Craene, L. P. (2011) Floral development of Napoleonaea (Lecythidaceae), a deceptively complex flower. In Flowers on the Tree of Life, ed. Wanntorp, L. & Ronse De Craene, L. P.. Cambridge: Cambridge University Press, pp. 279295.10.1017/CBO9781139013321.012CrossRefGoogle Scholar
Ronse De Craene, L. P. (2013). Reevaluation of the perianth and androecium in Caryophyllales: implications for flower evolution. Plant Systematics and Evolution, 299: 15991636.10.1007/s00606-013-0910-yCrossRefGoogle Scholar
Ronse De Craene, L. P. (2016). Meristic changes in flowering plants: how flowers play with numbers. Flora, 221: 2237.10.1016/j.flora.2015.08.005CrossRefGoogle Scholar
Ronse De Craene, L. P. (2017). Floral development of Berberidopsis beckleri – can an additional species of the Berberidopsidaceae add evidence to floral evolution in the core eudicots? Annals of Botany, 119: 599610.Google ScholarPubMed
Ronse De Craene, L. P. & Brockington, S. F. (2013). Origin and evolution of petals in angiosperms. Plant Ecology and Evolution, 146: 525.10.5091/plecevo.2013.738CrossRefGoogle Scholar
Ronse De Craene, L. P., Linder, H. P. & Smets, E. F. (2002). Ontogeny and evolution of the flower of South African Restionaceae with special emphasis on the gynoecium. Plant Systematics and Evolution, 231: 225258.Google Scholar
Ronse De Craene, L. P. & Smets, E. F. (1990). The floral development of Popowia whitei (Annonaceae). Nordic Journal of Botany, 10: 411420. (Correction: Nordic Journal of Botany, 11: 420 (1991)).Google Scholar
Ronse De Craene, L. P. & Smets, E. F. (1994). Merosity in flowers: definition, origin, and taxonomic significance. Plant Systematics and Evolution, 191: 83104.10.1007/BF00985344CrossRefGoogle Scholar
Ronse De Craene, L. P. & Smets, E. F. (1995). Evolution of the androecium in the Ranunculiflorae. Plant Systematics and Evolution, Supplement, 9: 6370.Google Scholar
Ronse De Craene, L. P. & Smets, E. F. (1998). Meristic changes in gynoecium morphology, exemplified by floral ontogeny and anatomy. In Reproductive Biology in Systematics, Conservation and Economic Botany, eds. Owens, S. J. & Rudall, P. J.. Kew: Royal Botanic Gardens, pp. 85112.Google Scholar
Ronse De Craene, L. P. & Smets, E. F. (2000). Floral development of Galopina tomentosa with a discussion of sympetaly and placentation in the Rubiaceae. Systematics and Geography of Plants, 70: 155170.Google Scholar
Ronse De Craene, L. P. & Smets, E. F. (2001). Staminodes: their morphological and evolutionary significance. Botanical Review, 67: 351402.Google Scholar
Ronse De Craene, L. P., Soltis, P. S. & Soltis, D. E. (2003). Evolution of floral structure in basal angiosperms. International Journal of Plant Sciences, 164: S329S363.10.1086/377063CrossRefGoogle Scholar
Ronse De Craene, L. P. & Wanntorp, L. (2008). Morphology and anatomy of the flower of Meliosma (Sabiaceae): implications for pollination biology. Plant Systematics and Evolution, 271: 7991.10.1007/s00606-007-0618-yCrossRefGoogle Scholar
Roquet, C., Coissac, E., Cruaud, C. et al. (2016). Understanding the evolution of holoparasitic plants: the complete plastid genome of the holoparasite Cytinus hypocistis (Cytinaceae). Annals of Botany, 118: 885896.10.1093/aob/mcw135CrossRefGoogle ScholarPubMed
Rosin, F. M. & Kramer, E. M. (2009). Old dogs, new tricks: regulatory evolution in conserved genetic modules leads to novel morphologies in plants. Developmental Biology, 332: 2535.10.1016/j.ydbio.2009.05.542CrossRefGoogle ScholarPubMed
Rudall, P. J. (2008). Fascicles and filamentous structures: comparative ontogeny of morphological novelties in the mycoheterotrophic family Triuridaceae. International Journal of Plant Sciences, 169: 10231037.10.1086/590476CrossRefGoogle Scholar
Rudall, P. J. (2010). All in a spin: centrifugal organ formation and floral patterning. Current Opinion in Plant Biology, 13: 108114.10.1016/j.pbi.2009.09.019CrossRefGoogle Scholar
Rudall, P. J. (2013). Identifying key features in the origin and early diversification of angiosperms. Annual Plant Reviews, 45: 163188.10.1002/9781118305881.ch6CrossRefGoogle Scholar
Rudall, P. J., Alves, M. & das Graças Sajo, M. (2016). Inside-out flowers of Lacandonia brasiliana (Triuridaceae) provide new insights into fundamental aspects of floral patterning. PeerJ, 4: e1653.10.7717/peerj.1653CrossRefGoogle ScholarPubMed
Rudall, P. J. & Bateman, R. M. (2002). Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biology Reviews, 77: 403441.10.1017/S1464793102005936CrossRefGoogle ScholarPubMed
Rudall, P. J. & Bateman, R. M. (2003). Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata. Trends in Plant Science, 8: 7682.10.1016/S1360-1385(02)00026-2CrossRefGoogle ScholarPubMed
Rudall, P. J. & Bateman, R. M. (2004). Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. New Phytologist, 162: 2544.10.1111/j.1469-8137.2004.01032.xCrossRefGoogle Scholar
Rudall, P. J. & Bateman, R. M. (2006). Morphological phylogenetic analysis of Pandanales: testing contrasting hypotheses of floral evolution. Systematic Botany, 31: 223238.10.1600/036364406777585766CrossRefGoogle Scholar
Rudall, P. J. & Bateman, R. M. (2010). Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili. Philosophical Transactions of the Royal Society B, 365: 397409.10.1098/rstb.2009.0234CrossRefGoogle ScholarPubMed
Rudall, P. J. & Buzgo, M. (2002). Evolutionary history of the monocot leaf. In Developmental Genetics and Plant Evolution, eds. Cronk, Q. C. B., Bateman, R. M. & Hawkins, J. A.. London: Taylor & Francis, pp. 431458.10.1201/9781420024982.ch23CrossRefGoogle Scholar
Rudall, P. J., Cunniff, J., Wilkin, P. & Caddick, L. R. (2005a). Evolution of dimery, pentamery and the monocarpellary condition in the monocot family Stemonaceae (Pandanales). Taxon, 54: 701711.10.2307/25065427CrossRefGoogle Scholar
Rudall, P. J., Remizowa, M. V., Prenner, G. et al. (2009). Non-flowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae, and its bearing on the origin of the flower. American Journal of Botany, 96: 6782.10.3732/ajb.0800027CrossRefGoogle ScholarPubMed
Rudall, P. J., Sokoloff, D. D., Remizowa, M. V. et al. (2007). Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage. American Journal of Botany, 94: 10731092.10.3732/ajb.94.7.1073CrossRefGoogle Scholar
Rudall, P. J., Stuppy, W., Cunniff, J., Kellogg, E. A. & Briggs, B. G. (2005b). Evolution of reproductive structures in grasses (Poaceae) inferred by sister-group comparison with their putative closest living relatives, Ecdeiocoleaceae. American Journal of Botany, 92: 14321443.10.3732/ajb.92.9.1432CrossRefGoogle ScholarPubMed
Ruiz de Clavijo, E. (1994). Heterocarpy and seed polymorphism in Ceratocapnos heterocarpa (Fumariaceae). International Journal of Plant Sciences, 155: 196202.10.1086/297159CrossRefGoogle Scholar
Ruiz-Sanchez, E. & Sosa, V. (2015). Origin and evolution of fleshy fruit in woody bamboos. Molecular Phylogenetics and Evolution, 91: 123134.10.1016/j.ympev.2015.05.020CrossRefGoogle ScholarPubMed
Ruskin, J. (1900). Modern Painters. New York, NY: The Kelmscott Society.Google Scholar
Rutishauser, R. (1981). Blattstellung und Sprossentwicklung bei Blütenpflanzen unter besonderer Berücksichtigung der Nelkengewächse (Caryophyllaceen s.l.). Dissertationes Botanicae, 62: 1165.Google Scholar
Rutishauser, R. (1984). Blattquirle, Stipeln und Kolleteren bei den Rubieae (Rubiaceae) im Vergleich mit anderen Angiospermen. Beiträge zur Biologie der Pflanzen, 59: 375424.Google Scholar
Rutishauser, R. (1995). Developmental patterns of leaves in Podostemonaceae as compared to more typical flowering plants: saltational evolution and fuzzy morphology. Canadian Journal of Botany, 73: 13051317.10.1139/b95-142CrossRefGoogle Scholar
Rutishauser, R. (1997). Structural and developmental diversity in Podostemaceae (river-weeds). Aquatic Botany, 57: 2970.10.1016/S0304-3770(96)01120-5CrossRefGoogle Scholar
Rutishauser, R. (1998). Plastochrone ratio and leaf arc as parameters of a quantitative phyllotaxis analysis in vascular plants. In Symmetry in Plants, eds. Jean, R.V. & Barabé, D.. Singapore: World Scientific, pp. 171212.10.1142/9789814261074_0008CrossRefGoogle Scholar
Rutishauser, R. (1999). Polymerous leaf whorls in vascular plants: developmental morphology and fuzziness of organ identity. International Journal of Plant Sciences, 160: S81S103.10.1086/314221CrossRefGoogle Scholar
Rutishauser, R. (2016a). Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds): a pictorial report at the interface of developmental biology and morphological diversification. Annals of Botany, 117: 811832.10.1093/aob/mcv172CrossRefGoogle ScholarPubMed
Rutishauser, R. (2016b). Acacia (wattle) and Cananga (ylang-ylang): from spiral to whorled and irregular (chaotic) phyllotactic patterns – a pictorial report. Acta Societatis Botanicorum Poloniae, 85 (4): 3531.10.5586/asbp.3531CrossRefGoogle Scholar
Rutishauser, R., Grob, V. & Pfeifer, E. (2008). Plants are used to having identity crises. In Evolving Pathways. Key Themes in Evolutionary Developmental Biology, eds. Minelli, A. & Fusco, G.. Cambridge: Cambridge University Press, pp. 194213.10.1017/CBO9780511541582.015CrossRefGoogle Scholar
Rutishauser, R. & Grubert, M. (1999). The architecture of Mourera fluviatilis (Podostemaceae). Developmental morphology of inflorescences, flowers, and seedlings. American Journal of Botany, 86: 907922.10.2307/2656607CrossRefGoogle ScholarPubMed
Rutishauser, R. & Huber, K. A. (1991). The developmental morphology of Indotristicha ramosissima (Podostemaceae, Tristichoideae). Plant Systematics and Evolution, 178: 195223.10.1007/BF00937964CrossRefGoogle Scholar
Rutishauser, R. & Isler, B. (2001). Developmental genetics and morphological evolution of flowering plants, especially bladderworts (Utricularia): fuzzy Arberian morphology complements classical morphology. Annals of Botany, 88: 11731202.10.1006/anbo.2001.1498CrossRefGoogle Scholar
Rutishauser, R. & Moline, P. (2005). Evo-devo and the search for homology (‘sameness’) in biological systems. Theory in Biosciences, 124: 213241.10.1007/BF02814485CrossRefGoogle ScholarPubMed
Rutishauser, R., Pfeifer, E., Moline, P. & Philbrick, C. T. (2003). Developmental morphology of roots and shoots of Podostemum ceratophyllum (Podostemaceae-Podostemoideae). Rhodora, 105: 337353.Google Scholar
Rutishauser, R., Ronse De Craene, L. P., Smets, E. & Mendoza-Heuer, I. (1998). Theligonum cynocrambe: developmental morphology of a peculiar rubaceous herb. Plant Systematics and Evolution, 210: 124.10.1007/BF00984724CrossRefGoogle Scholar
Rutishauser, R. & Sattler, R. (1986). Architecture and development of the phyllode–stipule whorls in Acacia longipedunculata: controversial interpretations and continuum approach. Canadian Journal of Botany, 64: 19872019.10.1139/b86-263CrossRefGoogle Scholar
Rutishauser, R. & Sattler, R. (1997). Expression of shoot processes in leaf development of Polemonium caeruleum as compared to other dicotyledons. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 119: 563582.Google Scholar
Saddic, L. A., Huvermann, B., Bezhani, S. et al. (2006). The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development, 133: 16731682.10.1242/dev.02331CrossRefGoogle ScholarPubMed
Sajo, M. G., Mello-Silva, R. & Rudall, P. J. (2010). Homologies of floral structures in Velloziaceae, with particular reference to the corona. International Journal of Plant Sciences, 171: 595606.10.1086/653132CrossRefGoogle Scholar
Sakai, H., Medrano, L. J. & Meyerowitz, E. M. (1995). Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature, 378: 199203.10.1038/378199a0CrossRefGoogle ScholarPubMed
Sakakibara, K., Ando, S., Yip, H. K. et al. (2013). KNOX2 genes regulate the haploid-to-diploid morphological transition in land plants. Science, 339: 10671070.10.1126/science.1230082CrossRefGoogle ScholarPubMed
Salomé, P. A., Bomblies, K., Laitinen, R. A. et al. (2011). Genetic architecture of flowering-time variation in Arabidopsis thaliana. Genetics, 188: 421433.10.1534/genetics.111.126607CrossRefGoogle ScholarPubMed
Sander, K. (1983). The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In Development and Evolution: the Sixth Symposium of the British Society for Developmental Biology, eds. Goodwin, B. C., Holder, N. & Wylie, C. C.. Cambridge: Cambridge University Press, pp. 137160.Google Scholar
Sarojam, R., Sappl, P. G., Goldshmidt, A. et al. (2010). Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell, 22: 21132130.10.1105/tpc.110.075853CrossRefGoogle ScholarPubMed
Sato, S., Nakamura, Y., Kaneko, T. et al. (2008). Genome structure of the legume, Lotus japonicus. DNA Research, 15: 227239.10.1093/dnares/dsn008CrossRefGoogle ScholarPubMed
Sattler, R. (1972). Centrifugal primordial inception in floral development. Advances in Plant Morphology, 1972: 170178.Google Scholar
Sattler, R. (1992). Process morphology: structural dynamics in development and evolution. Canadian Journal of Botany, 70: 708714.10.1139/b92-091CrossRefGoogle Scholar
Sattler, R. (1994). Homology, homeosis, and process morphology in plants. In Homology: The Hierarchical Basis of Comparative Biology, ed. Hall, B. K.. London: Academic Press, pp. 423475.Google Scholar
Sattler, R. (1996). Classical morphology and continuum morphology: opposition and continuum. Annals of Botany, 78: 577581.10.1006/anbo.1996.0163CrossRefGoogle Scholar
Sattler, R. & Jeune, B. (1992). Multivariate analysis confirms the continuum view of plant form. Annals of Botany, 69: 249262.10.1093/oxfordjournals.aob.a088338CrossRefGoogle Scholar
Sattler, R. & Rutishauser, R. (1990). Structural and dynamic descriptions of the development of Utricularia foliosa and U. australis. Canadian Journal of Botany, 68: 19892003.10.1139/b90-261CrossRefGoogle Scholar
Sattler, R. & Rutishauser, R. (1992). Partial homology of pinnate leaves and shoots: orientation of leaflet inception. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 114: 6179.Google Scholar
Sattler, R. & Rutishauser, R. (1997). The fundamental relevance of morphology and morphogenesis to plant research. Annals of Botany, 80: 571582.10.1006/anbo.1997.0474CrossRefGoogle Scholar
Saunders, R. M. K. (2010). Floral evolution in the Annonaceae: hypotheses of homeotic mutations and functional convergence. Biological Reviews, 85: 571591.10.1111/j.1469-185X.2009.00116.xCrossRefGoogle ScholarPubMed
Savage, A. J. P. & Ashton, P. S. (1983). The population structure of the double coconut and some other Seychelles palms. Biotropica, 15: 1525.10.2307/2387992CrossRefGoogle Scholar
Sawa, S., Ito, T., Shimura, Y. & Okada, K. (1999b). FILAMENTOUS FLOWER controls the formation and development of Arabidopsis inflorescences and floral meristems. Plant Cell, 11: 6986.10.1105/tpc.11.1.69CrossRefGoogle ScholarPubMed
Sawa, S., Watanabe, K., Goto, K. et al. (1999a). FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes and Development, 13: 10791088.10.1101/gad.13.9.1079CrossRefGoogle Scholar
Scanlon, M. J. (2000). Developmental complexities of simple leaves. Current Opinion in Plant Biology, 3: 3136.10.1016/S1369-5266(99)00040-0CrossRefGoogle ScholarPubMed
Scarpella, E., Barkoulas, M. & Tsiantis, M. (2010). Control of leaf and vein development by auxin. Cold Spring Harbor Perspectives in Biology, 2: a001511.10.1101/cshperspect.a001511CrossRefGoogle ScholarPubMed
Scarpella, E., Marcos, D., Friml, J. & Berleth, T. (2006). Control of leaf vascular patterning by polar auxin transport. Genes and Development, 20: 10151027.10.1101/gad.1402406CrossRefGoogle ScholarPubMed
Schäferhoff, B., Fleischmann, A., Fischer, E. et al. (2010). Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences. BMC Evolutionary Biology, 10: 352.10.1186/1471-2148-10-352CrossRefGoogle ScholarPubMed
Scheres, B., Wolkenfelt, H., Willemsen, V. et al. (1994). Embryonic origin of the Arabidopsis primary root and root meristem initials. Development, 120: 24752487.10.1242/dev.120.9.2475CrossRefGoogle Scholar
Schlichting, C. D. & Murren, C. J. (2004). Evolvability and the raw materials for adaptation. In Plant Adaptation: Molecular Genetics and Ecology, eds. Cronk, Q. C. B., Whitton, J., Ree, R. H. & Taylor, I. E. P.. Ottawa: NRC Research Press, pp. 1829.Google Scholar
Schlichting, C. D. & Pigliucci, M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, MA: Sinauer Associates.Google Scholar
Schlichting, C. D. & Wund, M. A. (2014). Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution, 68: 656672.10.1111/evo.12348CrossRefGoogle ScholarPubMed
Schmid, M., Davison, T. S., Henz, S. R. et al. (2005). A gene expression map of Arabidopsis thaliana development. Nature Genetics, 37: 501506.10.1038/ng1543CrossRefGoogle ScholarPubMed
Schmuths, H., Meister, A., Horres, R. & Bachmann, K. (2004). Genome size variation among accessions of Arabidopsis thaliana. Annals of Botany, 93: 317321.10.1093/aob/mch037CrossRefGoogle ScholarPubMed
Schneider, H., Pryer, K. M., Cranfill, R., Smith, A. R. & Wolf, P. G. (2002). Evolution of vascular plant body plans: a phylogenetic perspective. In Developmental Genetics and Plant Evolution, eds. Cronk, Q. C. B., Bateman, R. M. & Hawkins, J. A.. London: Taylor & Francis, pp. 114.Google Scholar
Schneitz, K. & Balasubramanian, S. (2009). Floral meristems. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Schoen, D. J., Johnston, M. O., L’Heureux, A. M. & Marsolais, J. V. (1997). Evolutionary history of the mating system in Amsinckia (Boraginaceae). Evolution, 51: 10901099.10.2307/2411038CrossRefGoogle ScholarPubMed
Schönenberger, J., Anderberg, A. A. & Sytsma, K. J. (2005). Molecular phylogenetics and patterns of floral evolution in the Ericales. International Journal of Plant Sciences, 166: 265288.10.1086/427198CrossRefGoogle Scholar
Schoof, H., Lenhard, M., Haeker, A. et al. (2000). The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 100: 635644.10.1016/S0092-8674(00)80700-XCrossRefGoogle ScholarPubMed
Schranz, M. E., Quijada, P., Sung, S. B. et al. (2002). Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics, 162: 14571468.10.1093/genetics/162.3.1457CrossRefGoogle ScholarPubMed
Schultz, E. A. & Haughn, G. W. (1993). Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development, 119: 745765.10.1242/dev.119.3.745CrossRefGoogle Scholar
Schumacher, K., Schmitt, T., Rossberg, M., Schmitz, C. & Theres, K. (1999). The lateral suppressor (ls) gene of tomato encodes a new member of the vhiid protein family. Proceedings of the National Academy of Sciences of the United States of America, 96: 290295.10.1073/pnas.96.1.290CrossRefGoogle ScholarPubMed
Schwander, T. & Leimar, O. (2011). Genes as leaders and followers in evolution. Trends in Ecology and Evolution, 26: 143151.10.1016/j.tree.2010.12.010CrossRefGoogle ScholarPubMed
Schwarz, S., Grande, A. V., Bujdoso, N., Saedler, H. & Huijser, P. (2008). The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Molecular Biology, 67: 183195.10.1007/s11103-008-9310-zCrossRefGoogle ScholarPubMed
Schwarz-Sommer, Z., Davies, B. & Hudson, A., (2003). An everlasting pioneer: the story of Antirrhinum research. Nature Reviews Genetics, 4: 657666.10.1038/nrg1127CrossRefGoogle ScholarPubMed
Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H. & Sommer, H. (1990). Genetic control of flower development by homeotic genes in Antirrhinum majus. Science, 250: 931936.10.1126/science.250.4983.931CrossRefGoogle ScholarPubMed
Scofield, S. & Murray, J. A. (2006). KNOX gene function in plant stem cell niches. Plant Molecular Biology, 60: 929946.10.1007/s11103-005-4478-yCrossRefGoogle ScholarPubMed
Scribailo, R. W. & Tomlinson, P. B. (1992). Shoot and floral development in Calla palustris (Araceae-Calloideae). International Journal of Plant Sciences, 153: 113.10.1086/297001CrossRefGoogle Scholar
Searle, I., He, Y., Turck, F. et al. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes and Development, 20: 898912.10.1101/gad.373506CrossRefGoogle ScholarPubMed
Seifriz, W. (1950). Gregarious flowering of Chusquea. Nature, 165: 635636.CrossRefGoogle ScholarPubMed
Semiarti, E., Ueno, Y., Tsukaya, H. et al. (2001). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development, 128: 17711783.10.1242/dev.128.10.1771CrossRefGoogle ScholarPubMed
Sentoku, N., Sato, Y., Kurata, N. et al. (1999). Regional expression of the rice KN1-type homeobox gene family during embryo, shoot, and flower development. Plant Cell, 11: 16511663.10.1105/tpc.11.9.1651CrossRefGoogle ScholarPubMed
Seymour, G. B., Østergaard, L., Chapman, N. H., Knapp, S. & Martin, C. (2013). Fruit development and ripening. Annual Review of Plant Biology, 64: 219241.10.1146/annurev-arplant-050312-120057CrossRefGoogle ScholarPubMed
Seymour, G. B., Ryder, C. D., Cevik, V. et al. (2011). A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria × ananassa Duch.) fruit, a non-climacteric tissue. Journal of Experimental Botany, 62: 11791188.10.1093/jxb/erq360CrossRefGoogle Scholar
Shah, J. J. & Dave, Y. S. (1970). Tendrils of Passiflora foetida: histogenesis and morphology. American Journal of Botany, 57: 786793.10.1002/j.1537-2197.1970.tb09873.xCrossRefGoogle Scholar
Shan, H., Su, K., Lu, W. et al. (2006). Conservation and divergence of candidate class B genes in Akebia trifoliata (Lardizabalaceae). Development Genes and Evolution, 216: 785795.10.1007/s00427-006-0107-2CrossRefGoogle Scholar
Shannon, S. & Meeks-Wagner, D. R. (1991). A mutation in the Arabidopsis Tfl1 gene affects inflorescence meristem development. Plant Cell, 3: 877892.10.2307/3869152CrossRefGoogle ScholarPubMed
Sharma, P. P., Clouse, R. M. & Wheeler, W. C. (2017). Hennig’s semaphoront concept and the use of ontogenetic stages in phylogenetic reconstruction. Cladistics, 33: 93108.10.1111/cla.12156CrossRefGoogle Scholar
Sheffield, E. & Bell, P. R. (1987). Current studies of the pteridophyte life cycle. Botanical Reviews, 53: 442490.10.1007/BF02858324CrossRefGoogle Scholar
Sheldon, C. C., Burn, J. E., Perez, P. P. et al. (1999). The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 11: 445458.10.1105/tpc.11.3.445CrossRefGoogle ScholarPubMed
Shepard, K. A. & Purugganan, M. D. (2002). The genetics of plant morphological evolution. Current Opinion in Plant Biology, 5: 4955.CrossRefGoogle ScholarPubMed
Shitsukawa, N., Ikari, C., Shimada, S. et al. (2007). The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes and Genetic Systems, 82: 167170.10.1266/ggs.82.167CrossRefGoogle ScholarPubMed
Siddall, M. E. & Borda, E. (2003). Phylogeny and revision of the leech genus Helobdella (Glossiphoniidae) based on mitochondrial gene sequences and morphological data and a special consideration of the triserialis complex. Zoologica Scripta, 32: 2333.10.1046/j.1463-6409.2003.00098.xCrossRefGoogle Scholar
Sieber, P., Wellmer, F., Gheyselinck, J., Riechmann, J. L. & Meyerowitz, E. M. (2007). Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development, 134: 10511060.10.1242/dev.02817CrossRefGoogle ScholarPubMed
Siegfried, K. R., Eshed, Y., Baum, S. F. et al. (1999). Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development, 126: 41174128.10.1242/dev.126.18.4117CrossRefGoogle ScholarPubMed
Simon, R., Carpenter, R., Doyle, S. & Coen, E. (1994). Fimbriata controls flower development by mediating between meristem and organ identity genes. Cell, 78: 99107.10.1016/0092-8674(94)90576-2CrossRefGoogle ScholarPubMed
Singer, S. D., Krogan, N. T. & Ashton, N. W. (2007). Clues about the ancestral roles of plant MADS-box genes from a functional analysis of moss homologues. Plant Cell Reports, 26: 11551169.10.1007/s00299-007-0312-0CrossRefGoogle ScholarPubMed
Sinha, N. (1999). Leaf development in angiosperms. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 419446.10.1146/annurev.arplant.50.1.419CrossRefGoogle ScholarPubMed
Skippington, E., Barkman, T. J., Rice, D. W. & Palmer, J. D. (2015). Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proceedings of the National Academy of Sciences of the United States of America, 112: E3515E3524.Google ScholarPubMed
Slotte, T., Hazzouri, K. M., Agren, J. A. et al. (2013). The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nature Genetics, 45: 831835.10.1038/ng.2669CrossRefGoogle ScholarPubMed
Smaczniak, C., Immink, R. G. H., Angenent, G. C. & Kaufmann, K. (2012). Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development, 139: 30813098.10.1242/dev.074674CrossRefGoogle ScholarPubMed
Smith, J. F., Brown, K. D., Carroll, C. L. & Denton, D. S. (1997). Familial placement of Cyrtandromoea, Titanotrichum and Sanango, three problematic genera of the Lamiales. Taxon, 46: 6574.10.2307/1224292CrossRefGoogle Scholar
Smith, J. F., Hileman, L. C., Powell, M. P. & Baum, D. A. (2004). Evolution of GCYC, a Gesneriaceae homolog of CYCLOIDEA, within Gesnerioideae (Gesneriaceae). Molecular Phylogenetics and Evolution, 31: 765779.10.1016/j.ympev.2003.09.012CrossRefGoogle ScholarPubMed
Smith, K. K. (2001). Heterochrony revisited: the evolution of developmental sequences. Biological Journal of the Linnean Society, 73: 169186.10.1111/j.1095-8312.2001.tb01355.xCrossRefGoogle Scholar
Smith, R.S., Guyomarc’h, S., Mandel, T. et al. (2006). A plausible model of phyllotaxis. Proceedings of the National Academy of Sciences of the United States of America, 103: 13011306.10.1073/pnas.0510457103CrossRefGoogle ScholarPubMed
Smith, Z. R. & Long, J. A. (2010). Control of Arabidopsis apical–basal embryo polarity by antagonistic transcription factors. Nature, 464: 423426.10.1038/nature08843CrossRefGoogle ScholarPubMed
Smýkal, P., Aubert, G., Burstin, J. et al. (2012). Pea (Pisum sativum L.) in the genomic era. Agronomy, 2: 74115.10.3390/agronomy2020074CrossRefGoogle Scholar
Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. (1990). Early flower development in Arabidopsis. Plant Cell, 2: 755768.Google ScholarPubMed
Sokoloff, D. D., Rudall, P. J. & Remizowa, M. (2006). Flower-like terminal structures in racemose inflorescences: a tool in morphogenetic and evolutionary research. Journal of Experimental Botany, 57: 35173530.10.1093/jxb/erl126CrossRefGoogle ScholarPubMed
Sokoloff, D. D., Sokolski, A. A., Remizowa, M. V. & Nuraliev, M. S. (2007). Flower structure and development in Tupidanthus calyptratus (Araliaceae): an extreme case of polymery among asterids. Plant Systematics and Evolution, 268: 209234.10.1007/s00606-007-0559-5CrossRefGoogle Scholar
Soltis, D. E. (2007). Saxifragaceae. In The Families and Genera of Vascular Plants, Vol. 9, ed. Kubitzki, K.. Berlin: Springer, pp. 418435.Google Scholar
Soltis, D. E., Albert, V. A., Leebens-Mack, J. et al. (2009). Polyploidy and angiosperm diversification. American Journal of Botany, 96: 336348.10.3732/ajb.0800079CrossRefGoogle ScholarPubMed
Soltis, D. E., Ma, H., Frohlich, M. W. et al. (2007). The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression. Trends in Plant Science, 12: 358367.10.1016/j.tplants.2007.06.012CrossRefGoogle ScholarPubMed
Soltis, D. E., Senters, A. E., Zanis, M. J. et al. (2003). Gunnerales are sister to other core eudicots: implications for the evolution of pentamery. American Journal of Botany, 90: 461470.10.3732/ajb.90.3.461CrossRefGoogle ScholarPubMed
Soltis, D. E., Soltis, P. S., Endress, P. K. & Chase, M. W. (2005). Phylogeny and Evolution of Angiosperms. Sunderland, MA: Sinauer.Google Scholar
Soltis, P. S., Soltis, D. E., Kim, S., Chanderbali, A. & Buzgo, M. (2006). Expression of floral regulators in basal angiosperms and the origin and evolution of ABC function. In Developmental Genetics of the Flower, eds. Soltis, D. E., Leebens-Mack, J. H. & Soltis, P. S.. San Diego, CA: Elsevier, pp. 483506.10.1016/S0065-2296(06)44012-XCrossRefGoogle Scholar
Somerville, C. R. & Meyerowitz, E. M. (eds.) (2002–) The Arabidopsis Book. Rockville, MD: American Society of Plant Biologists.Google Scholar
Song, Y. H., Ito, S. & Imaizumi, T. (2013). Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends in Plant Science, 18: 575583.10.1016/j.tplants.2013.05.003CrossRefGoogle ScholarPubMed
Souer, E., Rebocho, A. B., Bliek, M. et al. (2008). Patterning of inflorescences and flowers by the F-box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER in Petunia. Plant Cell, 20: 20332048.10.1105/tpc.108.060871CrossRefGoogle ScholarPubMed
Souer, E., van der Krol, A., Kloos, D. et al. (1998). Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development, 125: 733742.10.1242/dev.125.4.733CrossRefGoogle ScholarPubMed
Sousa-Baena, M. S., Lohmann, L. G., Rossi, M. & Sinha, N. R. (2014a). Acquisition and diversification of tendrilled leaves in Bignonieae (Bignoniaceae) involved changes in expression patterns of SHOOTMERISTEMLESS (STM), LEAFY/FLORICAULA (LFY/FLO), and PHANTASTICA (PHAN). New Phytologist, 201: 9931008.10.1111/nph.12582CrossRefGoogle ScholarPubMed
Sousa-Baena, M. S., Sinha, N. R. & Lohmann, L. G. (2014b). Evolution and development of tendrils in Bignonieae (Lamiales, Bignoniaceae). Annals of the Missouri Botanical Garden, 99: 323347.10.3417/2011018CrossRefGoogle Scholar
Specht, C. D. & Bartlett, M. E. (2009). Flower evolution: the origin and subsequent diversification of the angiosperm flower. Annual Reviews in Ecology, Evolution and Systematics, 40: 217243.10.1146/annurev.ecolsys.110308.120203CrossRefGoogle Scholar
Specht, C. D., Yockteng, R., Almeida, A. M., Kirchoff, B. K. & Kress, W. J. (2012). Homoplasy, pollination, and emerging complexity during the evolution of floral development in the tropical gingers (Zingiberales). Botanical Review, 78: 440462.10.1007/s12229-012-9111-6CrossRefGoogle Scholar
Stahle, M. I., Kuehlich, J., Staron, L., von Arnim, A. G. & Golz, J. F. (2009). YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis. Plant Cell, 21: 31053118.10.1105/tpc.109.070458CrossRefGoogle ScholarPubMed
Stebbins, G. L. (1974). Flowering Plants. Evolution Above the Species Level. Cambridge, MA: Belknap Press.10.4159/harvard.9780674864856CrossRefGoogle Scholar
Steeves, T. A. & Sussex, I. M. (1989). Patterns in Plant Development, 2nd edn. Cambridge: Cambridge University Press.10.1017/CBO9780511626227CrossRefGoogle Scholar
Steingraeber, D. A. & Fisher, J. B. (1986). Indeterminate growth of leaves in Guarea (Meliaceae): a twig analogue. American Journal of Botany, 73: 852862.10.1002/j.1537-2197.1986.tb12123.xCrossRefGoogle Scholar
Stevens, P. F. (1975). Review of Chisocheton (Meliaceae) in Papuasia. Contributions from Herbarium Australiense, 11: 155.Google Scholar
Strable, J. & Scanlon, M. J. (2009). Maize (Zea mays): a model organism for basic and applied research in plant biology. Cold Spring Harbor Protocols, 2009 (10): pdb.emo132.10.1101/pdb.emo132CrossRefGoogle Scholar
Stuessy, T. F. & Urtubey, E. (2006). Phylogenetic implications of corolla morphology in subfamily Barnadesioideae (Asteraceae). Flora, 201: 340352.10.1016/j.flora.2005.07.009CrossRefGoogle Scholar
Suárez-Baron, H., Pérez-Mesa, P., Ambrose, B. A., González, F. & Pabón-Mora, N. (2017). Deep into the aristolochia flower: expression of C, D, and E-class genes in Aristolochia fimbriata (Aristolochiaceae). Journal of Experimental Zoology (Molecular and Developmental Evolution), 328B: 5571.10.1002/jez.b.22686CrossRefGoogle Scholar
Sulman, J. D., Drew, B. T., Drummond, C., Hayasaka, E. & Sytsma, K. J. (2013). Systematics, biogeography, and character evolution of Sparganium (Typhaceae): diversification of a widespread, aquatic lineage. American Journal of Botany, 100: 20232039.10.3732/ajb.1300048CrossRefGoogle ScholarPubMed
Sun, G., Dilcher, D. L., Zheng, S. & Zhou, Z. (1998). In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science, 282: 16921695.CrossRefGoogle Scholar
Sun, G., Ji, Q., Dilcher, D. L. et al. (2002). Archaefructaceae, a new basal angiosperm family. Science, 296: 899904.10.1126/science.1069439CrossRefGoogle ScholarPubMed
Szymkowiak, E. J. & Sussex, I. M. (1996). What chimeras can tell us about plant development. Annual Review of Plant Physiology and Plant Molecular Biology, 47: 351376.10.1146/annurev.arplant.47.1.351CrossRefGoogle ScholarPubMed
Tadege, M., Sheldon, C. C., Helliwell, C. A. et al. (2001). Control of flowering time by FLC orthologues in Brassica napus. The Plant Journal, 28: 545553.10.1046/j.1365-313X.2001.01182.xCrossRefGoogle ScholarPubMed
Takada, S., Hibara, K., Ishida, T. & Tasaka, M. (2001). The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development, 128: 11271135.10.1242/dev.128.7.1127CrossRefGoogle ScholarPubMed
Takhtajan, A. (1969). Flowering Plants: Origin and Dispersal. Edinburgh: Oliver & Boyd.Google Scholar
Takhtajan, A. (1991). Evolutionary Trends in Flowering Plants. New York, NY: Columbia University Press.Google Scholar
Tamura, M. (1995). Ranunculaceae. In Die natürlichen Pflanzenfamilien, 17a, Part IV, eds. Engler, A. & Prantl, K.. Berlin: Ducker & Humblot.Google Scholar
Tanabe, Y., Hasebe, M., Sekimoto, H. et al. (2005). Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes. Proceedings of the National Academy of Sciences of the United States of America, 102: 24362441.10.1073/pnas.0409860102CrossRefGoogle ScholarPubMed
Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. (2003). A biochemical framework for RNA silencing in plants. Genes and Development, 17: 4963.10.1101/gad.1048103CrossRefGoogle ScholarPubMed
Tank, D. C. & Olmstead, R. G. (2008). From annuals to perennials: phylogeny of subtribe Castillejinae (Orobanchaceae). American Journal of Botany, 95: 608625.10.3732/ajb.2007346CrossRefGoogle ScholarPubMed
Tattersall, A. D., Turner, L., Knox, M. R. et al. (2005). The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development. Plant Cell, 17: 10461060.10.1105/tpc.104.029447CrossRefGoogle ScholarPubMed
Taylor, D. W. & Hickey, L. J. (1996). Evidence for and implications of an herbaceous origin of angiosperms. In Flowering Plant Origin, Evolution and Phylogeny, eds. Taylor, D. W. & Hickey, L. J.. New York, NY: Chapman & Hall, pp. 232266.10.1007/978-0-585-23095-5_9CrossRefGoogle Scholar
Taylor, P. (1989). The Genus Utricularia: A Taxonomic Monograph. London: HMSO.Google Scholar
Taylor, S., Hofer, J. & Murfet, I. (2001). Stamina pistilloida, the pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves. Plant Cell, 13: 3146.10.1105/tpc.13.1.31CrossRefGoogle ScholarPubMed
Taylor, S. A., Hofer, J. M., Murfet, I. C. et al. (2002). PROLIFERATING INFLORESCENCE MERISTEM, a MADS-box gene that regulates floral meristem identity in pea. Plant Physiology, 129: 11501159.10.1104/pp.001677CrossRefGoogle ScholarPubMed
Teeri, T. H., Elomaa, P., Kotilainen, M. & Albert, V. A. (2006a). Mining plant diversity: Gerbera as a model system for plant developmental and biosynthetic research. BioEssays, 28: 756767.CrossRefGoogle Scholar
Teeri, T. H., Uimari, A., Kotilainen, M. et al. (2006b). Reproductive meristem fates in Gerbera. Journal of Experimental Botany, 57: 34453455.10.1093/jxb/erl181CrossRefGoogle ScholarPubMed
Telfer, A. & Poethig, R. S. (1998) HASTY, a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development, 125: 18891898.10.1242/dev.125.10.1889CrossRefGoogle Scholar
Terpstra, I. & Heidstra, R. (2009). Stem cells: the root of all cells. Seminars in Cell and Developmental Biology, 20: 10891096.10.1016/j.semcdb.2009.09.012CrossRefGoogle ScholarPubMed
Theißen, G. (2000). Evolutionary developmental genetics of floral symmetry: the revealing power of Linnaeus’ monstrous flower. Bioessays, 22: 209213.10.1002/(SICI)1521-1878(200003)22:3<209::AID-BIES1>3.0.CO;2-J3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Theißen, G. (2006). The proper place of hopeful monsters in evolutionary biology. Theory in Biosciences, 124: 349369.10.1016/j.thbio.2005.11.002CrossRefGoogle ScholarPubMed
Theißen, G. (2009). Saltational evolution: hopeful monsters are here to stay. Theory in Biosciences, 128: 4351.10.1007/s12064-009-0058-zCrossRefGoogle ScholarPubMed
Theißen, G., Becker, A., Winter, K.-U. et al. (2002). How the land plants learned their floral ABCs: the role of MADS box genes in the evolutionary origin of flowers. In Developmental Genetics and Plant Evolution, eds. Cronk, Q. C. B., Bateman, R. M. & Hawkins, J. A.. London: Taylor & Francis, pp. 173206.Google Scholar
Theißen, G., Kim, J. T. & Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of Molecular Evolution, 43: 484516.10.1007/BF02337521CrossRefGoogle ScholarPubMed
Theissen, G. & Melzer, R. (2007). Molecular mechanisms underlying origin and diversification of the angiosperm flower. Annals of Botany, 100: 603619.10.1093/aob/mcm143CrossRefGoogle ScholarPubMed
Theißen, G. & Melzer, R. (2016). Robust views on plasticity and biodiversity. Annals of Botany, 117: 693697.10.1093/aob/mcw066CrossRefGoogle Scholar
Theißen, G. & Saedler, H. (2001). Floral quartets. Nature, 409: 469471.10.1038/35054172CrossRefGoogle ScholarPubMed
Thien, L. B. (1980). Patterns of pollination in the primitive angiosperms. Biotropica, 12: 113.CrossRefGoogle Scholar
Thomas, H. (2003). Do green plants age, and if so, how? Topics in Current Genetics, 3: 145171.10.1007/978-3-540-37005-5_6CrossRefGoogle Scholar
Thomas, M. M., Rudall, P. J., Ellis, A. G., Savolainen, V. & Glover, B. J. (2009). Development of a complex floral trait: the pollinator-attracting petal spots of the beetle daisy, Gorteria diffusa (Asteraceae). American Journal of Botany, 96: 21842196.10.3732/ajb.0900079CrossRefGoogle ScholarPubMed
Thompson, B. E., Bartling, L., Whipple, C. et al. (2009). bearded-ear encodes a MADS box transcription factor critical for maize floral development. Plant Cell, 21: 25782590.CrossRefGoogle ScholarPubMed
Thorpe, T. A. (2007). History of plant tissue culture. Molecular Biotechnology, 37: 169180.10.1007/s12033-007-0031-3CrossRefGoogle ScholarPubMed
Timmermans, M. C. P., Hudson, A., Becraft, P. W. & Nelson, T. (1999). Rough sheath2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science, 284: 151153.Google ScholarPubMed
Tomescu, A. M. F. (2009). Megaphylls, microphylls and the evolution of leaf development. Trends in Plant Science, 14: 512.10.1016/j.tplants.2008.10.008CrossRefGoogle ScholarPubMed
Tomlinson, P. B. (1990). The Structural Biology of Palms. Oxford: Clarendon Press.10.1093/oso/9780198545729.001.0001CrossRefGoogle Scholar
Tomlinson, P. B. & Huggett, B. A. (2012). Cell longevity and sustained primary growth in palm stems. American Journal of Botany, 99: 18911902.10.3732/ajb.1200089CrossRefGoogle ScholarPubMed
Tooke, F., Ordidge, M., Chiurugwi, T. & Battey, N. (2005). Mechanisms and function of flower and inflorescence reversion. Journal of Experimental Botany, 56: 25872599.10.1093/jxb/eri254CrossRefGoogle ScholarPubMed
Toriba, T., Harada, K., Takamura, A. et al. (2007). Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Molecular Genetics and Genomics, 277: 457468.10.1007/s00438-006-0202-0CrossRefGoogle ScholarPubMed
Townsley, B. T. & Sinha, N. R. (2012). A new development: evolving concepts in leaf ontogeny. Annual Review of Plant Biology, 63: 535562.CrossRefGoogle ScholarPubMed
Trevaskis, B., Bagnall, D. J., Ellis, M. H., Peacock, W. J. & Dennis, E. S. (2003). MADS box genes control vernalization-induced flowering in cereals. Proceedings of the National Academy of Sciences of the United States of America, 100: 1309913104.10.1073/pnas.1635053100CrossRefGoogle ScholarPubMed
Tröbner, W., Ramirez, L., Motte, P. et al. (1992). GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO Journal, 11: 46934704.10.1002/j.1460-2075.1992.tb05574.xCrossRefGoogle ScholarPubMed
Troll, W. (1937, 1939, 1943). Vergleichende Morphologie der höheren Pflanzen. Berlin: Borntraeger.Google Scholar
Troll, W. (1964, 1969). Die Infloreszenzen. Jena: Fischer.Google Scholar
True, J. R. & Haag, E. S. (2001). Developmental system drift and flexibility in evolutionary trajectories. Evolution and Development, 3: 109119.10.1046/j.1525-142x.2001.003002109.xCrossRefGoogle ScholarPubMed
Tsai, W. C., Chuang, M. H., Kuoh, C. S., Chen, W. H. & Chen, H. H. (2004). Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant and Cell Physiology, 45: 831844.10.1093/pcp/pch095CrossRefGoogle ScholarPubMed
Tsai, W. C., Pan, Z. J., Hsiao, Y. Y., Chen, L. J. & Liu, Z. J. (2014). Evolution and function of MADS-box genes involved in orchid floral development. Journal of Systematics and Evolution, 52: 397410.CrossRefGoogle Scholar
Tsiantis, M., Brown, M. I. N., Skibinski, G. & Langdale, J. A. (1999). Disruption of auxin transport is associated with aberrant leaf development in maize. Plant Physiology, 121: 11631168.10.1104/pp.121.4.1163CrossRefGoogle ScholarPubMed
Tsuda, K. & Katagiri, F. (2010). Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology, 13: 459465.10.1016/j.pbi.2010.04.006CrossRefGoogle ScholarPubMed
Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J. & Katagiri, F. (2009). Network properties of robust immunity in plants. PLoS Genetics, 5: e1000772.10.1371/journal.pgen.1000772CrossRefGoogle ScholarPubMed
Tsukaya, H. (1995). Developmental genetics of leaf morphogenesis in dicotyledonous plants. Journal of Plant Research, 108: 407416.10.1007/BF02344229CrossRefGoogle Scholar
Tsukaya, H. (1997). Determination of the unequal fate of cotyledons of a one-leaf plant, Monophyllaea. Development, 124: 12751280.10.1242/dev.124.7.1275CrossRefGoogle ScholarPubMed
Tsukaya, H. (2000). The role of meristematic activities in the formation of leaf blades. Journal of Plant Research, 113: 119126.10.1007/PL00013921CrossRefGoogle Scholar
Tsukaya, H. (2002). Interpretation of mutants in leaf morphology: genetic evidence for a compensatory system in leaf morphogenesis that provides a new link between cell and organismal theory. International Review of Cytology, 217: 13910.1016/S0074-7696(02)17011-2CrossRefGoogle Scholar
Tsukaya, H. (2003). Organ shape and size: a lesson from studies of leaf morphogenesis. Current Opinion in Plant Biology, 6: 5762.10.1016/S1369526602000055CrossRefGoogle Scholar
Tsukaya, H. (2006). Mechanism of leaf-shape determination. Annual Review of Plant Biology, 57: 477496.10.1146/annurev.arplant.57.032905.105320CrossRefGoogle ScholarPubMed
Tsukaya, H. (2008). Controlling size in multicellular organs: focus on the leaf. PLoS Biology, 6: 13731376.10.1371/journal.pbio.0060174CrossRefGoogle ScholarPubMed
Tsukaya, H. (2013). Leaf development. In The Arabidopsis Book. Rockville, MD: American Society of Plant Biologists, 11: e0163.Google Scholar
Tsukaya, H. (2014). Comparative leaf development in angiosperms. Current Opinion in Plant Biology, 17: 103109.10.1016/j.pbi.2013.11.012CrossRefGoogle ScholarPubMed
Tsukaya, H., Inaba-Higano, K. & Komeda, Y. (1995). Phenotypic and molecular mapping of an acaulis2 mutant of Arabidopsis thaliana with flower stalks of much reduced length. Plant Cell Physiology, 36: 239246.10.1093/oxfordjournals.pcp.a078755CrossRefGoogle Scholar
Tucker, S. C. (1984a). Origin of symmetry in flowers. In Contemporary Problems in Plant Anatomy, eds. White, R. A. & Dickison, W. C.. New York, NY: Academic Press, pp. 351395.10.1016/B978-0-12-746620-0.50014-0CrossRefGoogle Scholar
Tucker, S. C. (1984b). Unidirectional organ initiation in leguminous flowers. American Journal of Botany, 71: 11391148.10.1002/j.1537-2197.1984.tb11967.xCrossRefGoogle Scholar
Tucker, S. C. (1987). Floral initiation and development in legumes. In Advances in Legume Systematics, 3, ed. Stirton, C. H.. Kew: Royal Botanic Gardens, pp. 183239.Google Scholar
Tucker, S. C. (1991). Helical floral organogenesis in Gleditsia, a primitive caesalpinioid legume. American Journal of Botany, 78: 11301149.10.1002/j.1537-2197.1991.tb14520.xCrossRefGoogle Scholar
Tucker, S. C. (1996). Trends in evolution of floral ontogeny in Cassia sensu stricto, Senna. and Chamaecrista (Leguminosae: Caesalpinoideae: Cassieae: Cassiinae): a study in convergence. American Journal of Botany, 83: 687711.10.1002/j.1537-2197.1996.tb12758.xCrossRefGoogle Scholar
Tucker, S. C. (1999). Evolutionary lability of symmetry in early floral development. International Journal of Plant Sciences, 160: S25S39.10.1086/314212CrossRefGoogle ScholarPubMed
Tucker, S. C. (2000). Floral development in tribe Detarieae (Leguminosae: Caesalpinioideae): Amherstia, Brownea, and Tamarindus. American Journal of Botany, 87: 13851407.10.2307/2656867CrossRefGoogle ScholarPubMed
Tucker, S. C. (2001). Floral development in Schotia and Cynometra (Leguminosae: Caesalpinioideae: Detarieae). American Journal of Botany, 88: 11641180.10.2307/3558327CrossRefGoogle ScholarPubMed
Tucker, S. C. (2002). Floral ontogeny in Sophoreae (Leguminosae: Papilionoideae). III. Cadia purpurea with radial symmetry and random petal aestivation. American Journal of Botany, 89: 748757.10.3732/ajb.89.5.748CrossRefGoogle ScholarPubMed
Tucker, S. C. (2003). Floral development in legumes. Plant Physiology, 131: 911926.10.1104/pp.102.017459CrossRefGoogle ScholarPubMed
Tucker, S. C. & Douglas, A. W. (1996). Floral structure, development, and relationships of paleoherbs: Saruma, Cabomba, Lactoris, and selected Piperales. In Flowering Plant Origin, Evolution, and Phylogeny, eds. Taylor, D. W. & Hickey, L. J.. New York, NY: Chapman & Hall, pp. 141175.10.1007/978-0-585-23095-5_7CrossRefGoogle Scholar
Tuskan, G. A., Difazio, S., Jansson, S. et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313: 15961604.CrossRefGoogle ScholarPubMed
Tzeng, T.-Y., Chen, H.-Y. & Yang, C.-H. (2002). Ectopic expression of carpel-specific MADS box genes from lily and Lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiology, 130: 18271836.10.1104/pp.007948CrossRefGoogle ScholarPubMed
Tzeng, T.-Y. & Yang, C.-H. (2001). A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiology, 42: 11561168.10.1093/pcp/pce151CrossRefGoogle ScholarPubMed
Überlacker, B., Klinge, B. & Werr, W. (1996). Ectopic expression of the maize homeobox genes ZmHox1a or ZmHox1b causes pleiotropic alterations in the vegetative and floral development of transgenic tobacco. Plant Cell, 8: 349362.Google ScholarPubMed
Uhl, N. W. & Dransfield, J. (1987). Genera Palmarum. Lawrence, KS: Allen Press.Google Scholar
Uimari, A., Kotilainen, M., Elomaa, P. et al. (2004). Integration of reproductive meristem fates by a SEPALLATA-like MADS box gene. Proceedings of the National Academy of Sciences of the United States of America, 101: 1581715822.10.1073/pnas.0406844101CrossRefGoogle ScholarPubMed
Uittien, H. (1928). Uber den Zusammenhang zwischen Blattnervatur und Sprossverzweigung. Recueil des Travaux Botaniques Neerlandais, 25: 390412.Google Scholar
Uller, T. & Helanterä, H. (2011). When are genes ‘leaders’ or ‘followers’ in evolution? Trends in Ecology and Evolution, 26: 435436.10.1016/j.tree.2011.05.013CrossRefGoogle ScholarPubMed
Usami, T., Horiguchi, G., Yano, S. & Tsukaya, H. (2009). The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development, 136: 955964.10.1242/dev.028613CrossRefGoogle ScholarPubMed
Uyttewaal, M., Burian, A., Alim, K. et al. (2012). Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell, 149: 439451.10.1016/j.cell.2012.02.048CrossRefGoogle ScholarPubMed
Vallejo-Marín, M., Manson, J. S., Thomson, J. D. & Barrett, S. C. H. (2009). Division of labour within flowers: heteranthery, a floral strategy to reconcile contrasting pollen fates. Journal of Evolutionary Biology, 22: 828839.10.1111/j.1420-9101.2009.01693.xCrossRefGoogle ScholarPubMed
Vallius, E. (2000). Position-dependent reproductive success of flowers in Dactylorhiza maculata (Orchidaceae). Functional Ecology, 14: 573579.10.1046/j.1365-2435.2000.t01-1-00450.xCrossRefGoogle Scholar
Van de Peer, Y., Fawcett, J. A., Proost, S., Sterck, L. & Vandepoele, K. (2009). The flowering world: a tale of duplications. Trends in Plant Science, 14: 680688.10.1016/j.tplants.2009.09.001CrossRefGoogle ScholarPubMed
van der Graaff, E., Dulk-Ras, A. D., Hooykaas, P. J. J. & Keller, B. (2000). Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development, 127: 49714980.10.1242/dev.127.22.4971CrossRefGoogle ScholarPubMed
van der Maesen, L. J. G. (1970). Primitiae Africanae VIII. A revision of the genus Cadia Forskål (Caes.) and some remarks regarding Dicraeopetalum Harms (Pap.) and Platycelyphium (Harms) (Pap.). Acta Botanica Neerlandica, 19: 227248.10.1111/j.1438-8677.1970.tb00645.xCrossRefGoogle Scholar
van Doorn, W. G. & Stead, A. D. (1997). Abscission of flowers and floral parts. Journal of Experimental Botany, 48: 821837.CrossRefGoogle Scholar
Van Dyken, J. & Wade, M. J. (2010). The genetic signature of conditional expression. Genetics, 84: 557570.10.1534/genetics.109.110163CrossRefGoogle Scholar
Vandenbussche, M., Horstman, A., Zethof, J. et al. (2009). Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis. Plant Cell, 21: 22692283.10.1105/tpc.109.065862CrossRefGoogle ScholarPubMed
Vandenbussche, M., Zethof, J., Royaert, S., Weterings, K. & Gerats, T. (2004). The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell, 16: 741754.10.1105/tpc.019166CrossRefGoogle ScholarPubMed
Vandenbussche, M., Zethof, J., Souer, E. et al. (2003). Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell, 15: 26802693.10.1105/tpc.017376CrossRefGoogle Scholar
Vazquez, F. (2009). Small RNAs in plants. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Vázquez-Lobo, A., Carlsbecker, A., Vergara-Silva, F. et al. (2007). Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus: implications for current evo-devo hypotheses for gymnosperms. Evolution and Development, 9: 446459.10.1111/j.1525-142X.2007.00182.xCrossRefGoogle ScholarPubMed
Vekemans, D., Proost, S., Vanneste, K. et al. (2012a). Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification. Molecular Biology and Evolution, 29: 37933806.10.1093/molbev/mss183CrossRefGoogle ScholarPubMed
Vekemans, D., Viaene, T., Caris, P. & Geuten, K. (2012b). Transference of function shapes organ identity in the dove tree inflorescence. New Phytologist, 193: 216228.10.1111/j.1469-8137.2011.03915.xCrossRefGoogle ScholarPubMed
Velhagen, W. A. (1997). Analyzing developmental sequences using sequence units. Systematic Biology, 46: 204210.10.1093/sysbio/46.1.204CrossRefGoogle ScholarPubMed
Viaene, T., Vekemans, D., Irish, V. F. et al. (2009). Pistillata: duplications as a mode for floral diversification in (basal) asterids. Molecular Biology and Evolution, 26: 26272645.10.1093/molbev/msp181CrossRefGoogle ScholarPubMed
Vialette-Guiraud, A. C. M., Adam, H., Finet, C. et al. (2011). Insights from ANA-grade angiosperms into the early evolution of CUP-SHAPED COTYLEDON genes. Annals of Botany, 107: 15111519.10.1093/aob/mcr024CrossRefGoogle ScholarPubMed
Vialette-Guiraud, A. C. M. & Scutt, C. P. (2009). Carpel evolution. Annual Plant Reviews, 38: 134.Google Scholar
Vijayraghavan, U., Prasad, K. & Meyerowitz, E. (2005). Specification and maintenance of the floral meristem: interactions between positively acting promoters of flowering and negative regulators. Current Science, 89: 18351843.Google Scholar
Vlad, D., Kierzkowski, D., Rast, M. I. et al. (2014). Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science, 343: 780783.10.1126/science.1248384CrossRefGoogle ScholarPubMed
Vollbrecht, E., Veit, B., Sinha, N. & Hake, S. (1991). The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature, 350: 241243.CrossRefGoogle ScholarPubMed
von Baer, K. E. (1828). Über Entwicklungsgeschichte der Thiere: Beobachtung und Reflexion, Vol. 1. Königsberg: Bornträger.Google Scholar
von Balthazar, M. & Endress, P. K. (2002). Development of inflorescences and flowers in Buxaceae and the problem of perianth interpretation. International Journal of Plant Sciences, 163: 847876.10.1086/342714CrossRefGoogle Scholar
von Hagen, K. B. & Kadereit, J. W. (2002). Phylogeny and flower evolution of the Swertiinae (Gentianaceae-Gentianeae): homoplasy and the principle of variable proportions. Systematic Botany, 27: 548572.Google Scholar
von Wangenheim, D., Fangerau, J., Schmitz, A. et al. (2016). Rules and self-organizing properties of post-embryonic plant organ cell division patterns. Current Biology, 26: 439449.10.1016/j.cub.2015.12.047CrossRefGoogle ScholarPubMed
Vrebalov, J., Pan, I. L., Arroyo, A. J. et al. (2009). Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell, 21: 30413062.10.1105/tpc.109.066936CrossRefGoogle ScholarPubMed
Vrebalov, J., Ruezinsky, D., Padmanabhan, V. et al. (2002). A MADS-box gene necessary for fruit ripening at the tomato ripeninginhibitor (rin) locus. Science, 296: 343346.10.1126/science.1068181CrossRefGoogle ScholarPubMed
Vroemen, C. W., Mordhorst, A. P., Albrecht, C., Kwaaitaal, M. A. & de Vries, S. C. (2003). The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell, 15: 15631577.10.1105/tpc.012203CrossRefGoogle ScholarPubMed
Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution, 7: 118126.CrossRefGoogle Scholar
Wagner, A. (2005). Robustness and Evolvability in Living Systems. Princeton, NJ: Princeton University Press.Google Scholar
Wagner, A. (2011). The Origins of Evolutionary Innovations: A Theory of Transformative Change in Living Systems. Oxford: Oxford University Press.10.1093/acprof:oso/9780199692590.001.0001CrossRefGoogle Scholar
Wagner, A. (2014). Arrival of the Fittest: Solving Evolution’s Greatest Puzzle. New York, NY: Penguin.Google Scholar
Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36: 3643.10.1093/icb/36.1.36CrossRefGoogle Scholar
Wagner, G. P. & Altenberg, L. (1996). Complex adaptations and evolution of evolvability. Evolution, 50: 967976.10.2307/2410639CrossRefGoogle ScholarPubMed
Wagner, G. P., Pavlicev, M. & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8: 921931.10.1038/nrg2267CrossRefGoogle ScholarPubMed
Waites, R. & Hudson, A. (1995). phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development, 121: 21432154.10.1242/dev.121.7.2143CrossRefGoogle Scholar
Waites, R. & Hudson, A. (2001). The Handlebars gene is required with Phantastica for dorsoventral asymmetry of organs and for stem cell activity in Antirrhinum. Development, 128: 19231931.10.1242/dev.128.11.1923CrossRefGoogle ScholarPubMed
Waites, R., Selvadurai, H. R. N., Oliver, I. R. & Hudson, A. (1998). The Phantastica gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell, 93: 779789.CrossRefGoogle ScholarPubMed
Wake, D. (2003). Homology and homoplasy. In Keywords and Concepts in Evolutionary Developmental Biology, eds. Hall, K. & Olson, W. M.. Cambridge, MA: Harvard University Press, pp. 191201.Google Scholar
Walbot, V. (1996). Sources and consequences of phenotypic and genotypic plasticity in flowering plants. Trends in Plant Science, 1: 2732.10.1016/S1360-1385(96)80020-3CrossRefGoogle Scholar
Walker, J. W. & Walker, A. G. (1984). Ultrastructure of lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Annals of the Missouri Botanical Garden, 71: 464521.10.2307/2399035CrossRefGoogle Scholar
Walker-Larsen, J. & Harder, L. D. (2000). The evolution of staminodes in angiosperms: patterns of stamen reduction, loss, and functional reinvention. American Journal of Botany, 87: 13671384.10.2307/2656866CrossRefGoogle ScholarPubMed
Walsh, B. & Blows, M. W. (2009). Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annual Review of Ecology, Evolution and Systematics, 40: 4159.10.1146/annurev.ecolsys.110308.120232CrossRefGoogle Scholar
Wang, J. W., Czech, B. & Weigel, D. (2009a). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 138: 738749.10.1016/j.cell.2009.06.014CrossRefGoogle ScholarPubMed
Wang, J. W., Park, M. Y., Wang, L. J. et al. (2011). MiRNA control of vegetative phase change in trees. PLoS Genetics, 7: e1002012.10.1371/journal.pgen.1002012CrossRefGoogle ScholarPubMed
Wang, R., Farrona, S., Vincent, C. et al. (2009b). PEP1 regulates perennial flowering in Arabis alpina. Nature, 459: 423428.10.1038/nature07988CrossRefGoogle ScholarPubMed
Wang, R. L., Stec, A., Hey, J., Lukens, L. & Doebley, J. (1999). The limits of selection during maize domestication. Nature, 398: 236239.10.1038/18435CrossRefGoogle ScholarPubMed
Wang, Z., Luo, Y., Li, X. et al. (2008). Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proceedings of the National Academy of Sciences of the United States of America, 105: 1041410419.CrossRefGoogle ScholarPubMed
Wanntorp, L. & Ronse De Craene, L. P. (2005). The Gunnera flower: key to eudicot diversification or response to pollination mode? International Journal of Plant Sciences, 166: 945953.10.1086/467474CrossRefGoogle Scholar
Wardlaw, C. W. (1955). Embryogenesis in Plants. London: Methuen.CrossRefGoogle Scholar
Warner, K. A., Rudall, P. J. & Frohlich, M. W. (2008). Differentiation of perianth organs in Nymphaeales. Taxon, 57: 10961109.10.1002/tax.574006CrossRefGoogle Scholar
Warner, K. A., Rudall, P. J. & Frohlich, M. W. (2009). Environmental control of sepalness and petalness in perianth organs of waterlilies: a new Mosaic Theory on the evolutionary origin of a differentiated perianth. Journal of Experimental Botany, 60: 35593574.10.1093/jxb/erp202CrossRefGoogle Scholar
Washburn, J. D., Bird, K. A., Conant, G. C. & Pires, J. C. (2016). Convergent evolution and the origin of complex phenotypes in the age of systems biology. International Journal of Plant Sciences, 177: 305318.10.1086/686009CrossRefGoogle Scholar
Watanabe, K. & Okada, K. (2003). Two discrete cis elements control the abaxial side-specific expression of the FILAMENTOUS FLOWER gene in Arabidopsis. Plant Cell, 15: 25922602.10.1105/tpc.015214CrossRefGoogle ScholarPubMed
Weber, A. (2003). What is morphology and why is it time for its renaissance in plant systematics? In Deep Morphology: Towards a Renaissance of Morphology in Plant Systematics, eds. Stuessy, T. F., Mayer, V. & Hörandl, E.. Ruggell: Gantner, pp. 332.Google Scholar
Weber, A., Clark, J. L. & Möller, M. (2013). A new formal classification of Gesneriaceae. Selbyana, 31: 6894.Google Scholar
Weberling, F. (1989). Morphology of Flowers and Inflorescences. Cambridge: Cambridge University Press.Google Scholar
Webster, M. A. & Gilmartin, P. M. (2006). Analysis of late stage flower development in Primula vulgaris reveals novel differences in cell morphology and temporal aspects of floral heteromorphy. New Phytologist, 171: 591603.10.1111/j.1469-8137.2006.01719.xCrossRefGoogle ScholarPubMed
Wei, L., Wang, Y.-Z. & Li, Z.-Y. (2011). Floral ontogeny of Ruteae (Rutaceae) and its systematic implications. Plant Biology, 14: 190197.10.1111/j.1438-8677.2011.00475.xCrossRefGoogle ScholarPubMed
Weigel, D. (2012). Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiology, 158: 222.10.1104/pp.111.189845CrossRefGoogle ScholarPubMed
Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F. & Meyerowitz, E. M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69: 843859.10.1016/0092-8674(92)90295-NCrossRefGoogle ScholarPubMed
Weiss, M. R. (1995). Floral color change: a widespread functional convergence. American Journal of Botany, 82: 167185.10.1002/j.1537-2197.1995.tb11486.xCrossRefGoogle Scholar
Wendel, J. F. (2015). The wondrous cycles of polyploidy in plants. American Journal of Botany, 102: 17531756.10.3732/ajb.1500320CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. New York, NY: Oxford University Press.10.1093/oso/9780195122343.001.0001CrossRefGoogle Scholar
Westerkamp, C. & Weber, A. (1999). Keel flowers of the Polygalaceae and Fabaceae: a functional comparison. Botanical Journal of the Linnean Society, 129: 207221.10.1111/j.1095-8339.1999.tb00501.xCrossRefGoogle Scholar
Weston, P. H. (2000). Process morphology from a cladistic perspective. In Homology and Systematics, eds. Scotland, R. & Pennington, R. T.. London: Taylor & Francis, pp. 124144.Google Scholar
Westwood, J. H., Yoder, J. I., Timko, M. P. & dePamphilis, C. W. (2010). The evolution of parasitism in plants. Trends in Plant Science, 15: 227235.10.1016/j.tplants.2010.01.004CrossRefGoogle ScholarPubMed
Whipple, C. J., Ciceri, P., Padilla, C. M. et al. (2004). Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development, 131: 60836091.10.1242/dev.01523CrossRefGoogle ScholarPubMed
Whipple, C. J., Zanis, M. J., Kellogg, E. A. & Schmidt, R. J. (2007). Conservation of B-class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. Proceedings of the National Academy of Sciences of the United States of America, 104: 10811086.10.1073/pnas.0606434104CrossRefGoogle ScholarPubMed
White, D. W. (2006). PEAPOD regulates lamina size and curvature in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 103: 1323813243.10.1073/pnas.0604349103CrossRefGoogle ScholarPubMed
Wigge, P. A., Kim, M. C., Jaeger, K. E. et al. (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 309: 10561059.10.1126/science.1114358CrossRefGoogle ScholarPubMed
Wiley, E. O. (1981). Phylogenetics: The Theory and Practice of Phylogenetic Systematics. New York, NY: Wiley.Google Scholar
Wilkinson, M., de Andrade Silva, E., Zachgo, S., Saedler, H. & Schwarz-Sommer, Z. (2000). CHORIPETALA and DESPENTEADO: general regulators during plant development and potential floral targets of FIMBRIATA-mediated degradation. Development, 127: 37253734.10.1242/dev.127.17.3725CrossRefGoogle ScholarPubMed
Williams, D. M. & Ebach, M. C. (2007). Heterology: the shadows of a shade. Cladistics, 23: 6483.10.1111/j.1096-0031.2006.00135.xCrossRefGoogle Scholar
Williston, S.W. (1914). Water Reptiles of the Past and Present. Chicago, IL: University of Chicago Press.10.5962/bhl.title.57088CrossRefGoogle Scholar
Willmann, M. R. & Poethig, R. S. (2007). Conservation and evolution of miRNA regulatory programs in plant development. Current Opinion in Plant Biology, 10: 503511.10.1016/j.pbi.2007.07.004CrossRefGoogle ScholarPubMed
Wiltshire, R. J. E., Murfet, I. C. & Reid, J. B. (1994). The genetic control of heterochrony: evidence from developmental mutants of Pisum sativum L. Journal of Evolutionary Biology, 7: 447465.10.1046/j.1420-9101.1994.7040447.xCrossRefGoogle Scholar
Wiltshire, R. J. E., Potts, B. M. & Reid, J. B. (1998). Genetic control of reproductive and vegetative phase change in the Eucalyptus risdonii–E. tenuiramis complex. Australian Journal of Botany, 46: 4563.10.1071/BT97020CrossRefGoogle Scholar
Winter, K.-U., Becker, A., Münster, T. et al. (1999). MADS-box genes reveal that gnetophytes are much more closely related to conifers than to flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 96: 73427347.10.1073/pnas.96.13.7342CrossRefGoogle Scholar
Winther, R. G. (2015). Evo-devo as a trading zone. In Conceptual Change in Biology: Scientific and Philosophical Perspectives on Evolution and Development, ed. Love, A. C.. Dordrecht: Springer, pp. 459482.10.1007/978-94-017-9412-1_21CrossRefGoogle Scholar
Wojciechowski, M. F., Lavin, M. & Sanderson, M. J. (2004). A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. American Journal of Botany, 91: 18461862.10.3732/ajb.91.11.1846CrossRefGoogle ScholarPubMed
Wolfe, J. M. & Hegna, T. A. (2014). Testing the phylogenetic position of Cambrian pancrustacean larval fossils by coding ontogenetic stages. Cladistics, 30: 366390.10.1111/cla.12051CrossRefGoogle ScholarPubMed
Woloszynska, M., Bocer, T., Mackiewicz, P. & Janska, H. (2004). A fragment of chloroplast DNA was transferred horizontally, probably from non-eudicots, to mitochondrial genome of Phaseolus. Plant Molecular Biology, 56: 811820.10.1007/s11103-004-5183-yCrossRefGoogle ScholarPubMed
Woodrick, R., Martin, P. R., Birman, I. & Pickett, F. B. (2000). The Arabidopsis embryonic shoot fate map. Development, 127: 813820.10.1242/dev.127.4.813CrossRefGoogle ScholarPubMed
Worley, A., Baker, A., Thompson, J. & Barrett, S. C. H. (2000). Floral display in Narcissus: variation in flower size and number at the species, population, and individual levels. International Journal of Plant Sciences, 161: 6979.10.1086/314225CrossRefGoogle ScholarPubMed
Wörz, A. (1996) Rubiaceae. Rötegewächse. In Die Farn und Blütenpflanzen Baden-Württembergs. Band 5, ed. Sebald, O., Seybold, S., Philippi, G. & Wörz, A.. Stuttgart: Ulmer, pp. 449484.Google Scholar
Wróblewska, M., Dołzbłasz, A. & Zagórska-Marek, B. (2016). The role of ABC genes in shaping perianth phenotype in the basal angiosperm Magnolia. Plant Biology, 18: 230238.10.1111/plb.12392CrossRefGoogle ScholarPubMed
Wu, C. A., Lowry, D. B., Cooley, A. M. et al. (2008). Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity, 100: 220230.10.1038/sj.hdy.6801018CrossRefGoogle Scholar
Wu, G., Park, M. Y., Conway, S. R. et al. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 138: 750759.10.1016/j.cell.2009.06.031CrossRefGoogle ScholarPubMed
Wu, G. & Poethig, R. S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 133: 35393547.10.1242/dev.02521CrossRefGoogle ScholarPubMed
Wund, M. A. (2012). Assessing the impacts of phenotypic plasticity on evolution. Integrative and Comparative Biology, 52: 515.10.1093/icb/ics050CrossRefGoogle ScholarPubMed
Wunderlin, R. P. (1983). Revision of the arborescent Bauhinias (Fabaceae: Caesalpinioideae: Cercideae) native to middle America. Annals of the Missouri Botanical Garden, 70: 95127.10.2307/2399009CrossRefGoogle Scholar
Xi, Z., Bradley, R. K., Wurdack, K. J. et al. (2012). Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics, 13: 227.10.1186/1471-2164-13-227CrossRefGoogle Scholar
Xi, Z., Wang, Y., Bradley, R. K. et al. (2013). Massive mitochondrial gene transfer in a parasitic flowering plant clade. PLoS Genetics, 9: e1003265.10.1371/journal.pgen.1003265CrossRefGoogle Scholar
Xiao, H., Wang, Y., Liu, D. et al. (2003). Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Molecular Biology, 52: 957966.10.1023/A:1025401611354CrossRefGoogle ScholarPubMed
Xu, L., Xu, Y., Dong, A., Sun, Y. et al. (2003). Novel as1 and as2 defects in leaf adaxial–abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development, 130: 40974107.10.1242/dev.00622CrossRefGoogle ScholarPubMed
Xu, Y., Sun, Y., Liang, W. Q. & Huang, H. (2002). The Arabidopsis AS2 gene encoding a predicted leucine-zipper protein is required for the leaf polarity formation. Acta Botanica Sinica, 44: 11941202.Google Scholar
Xu, Y., Teo, L. L., Zhou, J., Kumar, P. P. & Yu, H. (2006). Floral organ identity genes in the orchid Dendrobium crumenatum. The Plant Journal, 46: 5468.10.1111/j.1365-313X.2006.02669.xCrossRefGoogle ScholarPubMed
Yamada, T., Yokota, S., Hirayama, Y. et al. (2011). Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. The Plant Journal, 67: 2636.10.1111/j.1365-313X.2011.04570.xCrossRefGoogle ScholarPubMed
Yamaguchi, A., Wu, M. F., Yang, L. et al. (2009). The microRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Developmental Cell, 17: 268278.10.1016/j.devcel.2009.06.007CrossRefGoogle ScholarPubMed
Yamaguchi, T., Lee, D. Y., Miyao, A. et al. (2006). Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell, 18: 1528.10.1105/tpc.105.037200CrossRefGoogle ScholarPubMed
Yamaguchi, T., Yano, S. & Tsukaya, H. (2010). Genetic framework for flattened leaf blade formation in unifacial leaves of Juncus prismatocarpus. Plant Cell, 22: 21412155.10.1105/tpc.110.076927CrossRefGoogle ScholarPubMed
Yamaki, S., Nagato, Y., Kurata, N. & Nonomura, K.-I. (2011). Ovule is a lateral organ finally differentiated from the terminating floral meristem in rice. Developmental Biology, 351: 208216.10.1016/j.ydbio.2010.12.006CrossRefGoogle ScholarPubMed
Yant, L., Mathieu, J. & Schmid, M. (2009). Just say no: floral repressors help Arabidopsis bide the time. Current Opinion in Plant Biology, 12: 580586.10.1016/j.pbi.2009.07.006CrossRefGoogle ScholarPubMed
Yephremov, A., Wisman, E., Huijser, P. et al. (1999). Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell, 11: 21872201.10.1105/tpc.11.11.2187CrossRefGoogle ScholarPubMed
Yockteng, R. B., Almeida, A. M. R., Morioka, K., Alvarez-Buylla, E. R. & Specht, C. D. (2013). Molecular evolution and patterns of duplications in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification. Molecular Biology and Evolution, 30: 24012422.10.1093/molbev/mst137CrossRefGoogle ScholarPubMed
Yogeeswaran, K., Frary, A., York, T. L. et al. (2005). Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Research, 15: 505515.10.1101/gr.3436305CrossRefGoogle ScholarPubMed
Yoo, M.-J., Bell, C. D., Soltis, P. S. & Soltis, D. E. (2005). Divergence times and historical biogeography of Nymphaeales. Systematic Botany, 30: 693704.10.1600/036364405775097798CrossRefGoogle Scholar
Yoo, M.-J., Soltis, P. S. & Soltis, D. E. (2010). Expression of floral MADS-box genes in two divergent water lilies: Nymphaeales and Nelumbo. International Journal of Plant Sciences, 171: 121146.10.1086/648986CrossRefGoogle Scholar
Yoshida, S., Barbier de Reuille, P., Lane, B. et al. (2014). Genetic control of plant development by overriding a geometric division rule. Developmental Cell, 29: 7587.10.1016/j.devcel.2014.02.002CrossRefGoogle ScholarPubMed
Yoshida, S., Cui, S., Ichihashi, Y. & Shirasu, K. (2016). The haustorium, a specialized invasive organ in parasitic plants. Annual Review of Plant Biology, 67: 643667.10.1146/annurev-arplant-043015-111702CrossRefGoogle ScholarPubMed
Yu, J., Hu, S., Wang, J. et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 296: 7992.10.1126/science.1068037CrossRefGoogle Scholar
Yuan, Z., Gao, S., Xue, D. W. et al. (2009). RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiology, 149: 235244.10.1104/pp.108.128231CrossRefGoogle ScholarPubMed
Žádníkova, P. & Simon, R. (2014). How boundaries control plant development. Current Opinion in Plant Biology, 17: 116125.10.1016/j.pbi.2013.11.013CrossRefGoogle ScholarPubMed
Zagotta, M. T., Shannon, S. & Jacobs, C. (1992). Early-flowering mutants of Arabidopsis thaliana. Australian Journal of Plant Physiology, 19: 411418.Google Scholar
Zahn, L. M., Kong, H., Leebens-Mack, J. H. et al. (2005). The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics, 169: 22092223.10.1534/genetics.104.037770CrossRefGoogle Scholar
Zanis, M. J., Soltis, P. S., Qiu, Y.-L., Zimmer, E. & Soltis, D. E. (2003). Phylogenetic analyses and perianth evolution in basal angiosperms. Annals of the Missouri Botanical Garden, 90: 129150.10.2307/3298579CrossRefGoogle Scholar
Zhang, J. Z., Li, Z. M., Mei, L., Yao, J. L. & Hu, C. G. (2009). PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta, 229: 847859.10.1007/s00425-008-0885-zCrossRefGoogle ScholarPubMed
Zhang, N., Wen, J. & Zimmer, E. A. (2015). Expression patterns of AP1, FUL, FT and LEAFY orthologs in Vitaceae support the homology of tendrils and inflorescences throughout the grape family. Journal of Systematics and Evolution, 53: 469476.10.1111/jse.12138CrossRefGoogle Scholar
Zhang, R., Guo, C. C., Zhang, W. G. et al. (2013a). Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proceedings of the National Academy of Sciences of the United States of America, 110: 50745079.10.1073/pnas.1219690110CrossRefGoogle ScholarPubMed
Zhang, W., Kramer, E. M. & Davis, C. C. (2010). Floral symmetry genes and the origin and maintenance of zygomorphy in a plant pollinator mutualism. Proceedings of the National Academy of Sciences of the United States of America, 107: 63886393.10.1073/pnas.0910155107CrossRefGoogle Scholar
Zhang, W., Kramer, E. M. & Davis, C. C. (2016). Differential expression of CYC2 genes and the elaboration of floral morphologies in Hiptage, an Old World genus of Malpighiaceae. International Journal of Plant Sciences, 177: 551558.10.1086/687225CrossRefGoogle Scholar
Zhang, W., Steinmann, V. W., Nikolov, L., Kramer, E. M. & Davies, C. C. (2013b). Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors. Frontiers in Plant Science, 4: 302.10.3389/fpls.2013.00302CrossRefGoogle ScholarPubMed
Zhao, D., Yu, Q., Chen, C. & Ma, H. (2001). Genetic control of reproductive meristems. In Meristematic Tissues in Plant Growth and Development, eds. McManus, M. T. & Veit, B.. Sheffield: Sheffield Academic Press, pp. 89142.Google Scholar
Zhong, J. & Kellogg, E. A. (2015). Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales. American Journal of Botany, 102: 12601267.10.3732/ajb.1500191CrossRefGoogle ScholarPubMed
Zhong, J., Powell, S. & Preston, J. C. (2016). Organ boundary NAC-domain transcription factors are implicated in the evolution of petal fusion. Plant Biology, 18: 89390210.1111/plb.12493CrossRefGoogle ScholarPubMed
Zhong, R. & Ye, Z. H. (2004). Molecular and biochemical characterization of three WD-repeat-domain-containing inositol polyphosphate 5-phosphatases in Arabidopsis thaliana. Plant Cell Physiology, 45: 17201728.10.1093/pcp/pch187CrossRefGoogle ScholarPubMed
Zhou, Q., Wang, Y. & Xiaobai, J. (2002). Ontogeny of floral organs and morphology of floral apex in Phellodendron amurense (Rutaceae). Australian Journal of Botany, 50: 633644.10.1071/BT02015CrossRefGoogle Scholar
Zhou, X.-R., Wang, Y.-Z., Smith, J. F. & Chen, R. (2008). Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Phytologist, 178: 532543.10.1111/j.1469-8137.2008.02384.xCrossRefGoogle Scholar
Zimmerman, R. H., Hackett, W. P. & Pharis, R. P. (1985). Hormonal aspects of phase change and precocious flowering. Encyclopaedia of Plant Physiology, 11: 79115.Google Scholar
Zluvova, J., Nicolas, M., Berger, A. et al. (2006). Premature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia. Proceedings of the National Academy of Sciences of the United States of America, 103: 1885418859.10.1073/pnas.0606622103CrossRefGoogle ScholarPubMed
Zobell, O., Faigl, W., Saedler, H. & Münster, T. (2010). MIKC MADS-box proteins: conserved regulators of the gametophytic generation of land plants. Molecular Biology and Evolution, 27: 12011211.10.1093/molbev/msq005CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alessandro Minelli, Università degli Studi di Padova, Italy
  • Book: Plant Evolutionary Developmental Biology
  • Online publication: 09 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781139542364.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alessandro Minelli, Università degli Studi di Padova, Italy
  • Book: Plant Evolutionary Developmental Biology
  • Online publication: 09 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781139542364.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alessandro Minelli, Università degli Studi di Padova, Italy
  • Book: Plant Evolutionary Developmental Biology
  • Online publication: 09 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781139542364.013
Available formats
×