Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-fnvtc Total loading time: 0 Render date: 2026-01-09T10:49:04.168Z Has data issue: false hasContentIssue false

Section 6 - Other Pathologic Processes

Published online by Cambridge University Press:  03 September 2018

Raymond W. Redline
Affiliation:
Case Western Reserve University, Ohio
Theonia K. Boyd
Affiliation:
Harvard Medical School, Boston
Drucilla J. Roberts
Affiliation:
Harvard Medical School, Boston
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Fried, AM. Distribution of the bulk of the normal placenta. Review and classification of 800 cases by ultrasonography. Am J Obstet Gynecol. 1978;132:675–80.CrossRefGoogle ScholarPubMed
Pathak, S, Hook, E, Hackett, G, et al. Cord coiling, umbilical cord insertion and placental shape in an unselected cohort delivering at term: relationship with common obstetric outcomes. Placenta. 2010;31:963–8.10.1016/j.placenta.2010.08.004CrossRefGoogle Scholar
Salafia, CM, Misra, DP, Yampolsky, M, et al. Allometric metabolic scaling and fetal and placental weight. Placenta. 2009;30:355–60.Google ScholarPubMed
Salafia, CM, Zhang, J, Miller, RK, et al. Placental growth patterns affect birth weight for given placental weight. Birth Defects Res A Clin Mol Teratol. 2007;79:281–8.CrossRefGoogle ScholarPubMed
Salafia, CM, Zhang, J, Charles, AK, et al. Placental characteristics and birthweight. Paediatr Perinat Epidemiol. 2008;22:229–39.CrossRefGoogle ScholarPubMed
Salafia, CM, Yampolsky, M, Shlakhter, A, et al. Variety in placental shape: when does it originate? Placenta. 2012;33:164–70.10.1016/j.placenta.2011.12.002CrossRefGoogle ScholarPubMed
Redline, RW, Patterson, P. Patterns of placental injury: correlations with gestational age, placental weight, and clinical diagnosis. Arch Pathol Lab Med. 1994;118:698701.Google Scholar
Naeye, RL. Do Placental Weights Have Clinical Significance? Hum Pathol. 1987;18:387–91.10.1016/S0046-8177(87)80170-3CrossRefGoogle ScholarPubMed
Yong, PJ, von Dadelszen, P, McFadden, DE, et al. Placental weight in pregnancies with trisomy confined to the placenta. J Obstet Gynaecol Can. 2009;31:605–10.10.1016/S1701-2163(16)34239-6CrossRefGoogle ScholarPubMed
Sawady, J, Mercer, BM, Wapner, RJ, et al. The National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network Beneficial Effects of Antenatal Repeated Steroids study: impact of repeated doses of antenatal corticosteroids on placental growth and histologic findings. Am J Obstet Gynecol. 2007;197:281 e18.10.1016/j.ajog.2007.06.041CrossRefGoogle ScholarPubMed
McNamara, H, Hutcheon, JA, Platt, RW, et al. Risk factors for high and low placental weight. Paediatr Perinat Epidemiol. 2014;28:97105.10.1111/ppe.12104CrossRefGoogle ScholarPubMed
Williams, LA, Evans, SF, Newnham, JP. Prospective cohort study of factors influencing the relative weights of the placenta and the newborn infant. BMJ. 1997;314:1864–8.CrossRefGoogle ScholarPubMed
Wallace, JM, Horgan, GW, Bhattacharya, S. Placental weight and efficiency in relation to maternal body mass index and the risk of pregnancy complications in women delivering singleton babies. Placenta. 2012;33:611–8.10.1016/j.placenta.2012.05.006CrossRefGoogle ScholarPubMed
McCowan, LM, Becroft, DM. Beckwith-Wiedemann syndrome, placental abnormalities, and gestational proteinuric hypertension. Obstet Gynecol. 1994;83:813–7.Google ScholarPubMed
Leon-Garcia, SM, Roeder, HA, Nelson, KK, et al. Maternal obesity and sex-specific differences in placental pathology. Placenta. 2016;38:3340.10.1016/j.placenta.2015.12.006CrossRefGoogle ScholarPubMed
Eskild, A, Romundstad, PR, Vatten, LJ. Placental weight and birthweight: does the association differ between pregnancies with and without preeclampsia? Am J Obstet Gynecol. 2009;201:595 e15.CrossRefGoogle ScholarPubMed
Salafia, C. Why placental shape and vasculature matter. ObGyn News. 2016;51:67.Google Scholar
Misra, DP, Salafia, CM, Miller, RK, et al. Non-linear and gender-specific relationships among placental growth measures and the fetoplacental weight ratio. Placenta. 2009;30:1052–7.10.1016/j.placenta.2009.09.008CrossRefGoogle ScholarPubMed
Lao, TT, Wong, WM. Implications of a high placental ratio in pregnancies with appropriate-for-gestational age neonates. Gynecol Obstet Invest. 2001;52:34–7.10.1159/000052937CrossRefGoogle ScholarPubMed
Macdonald, EM, Natale, R, Regnault, TR, et al. Obstetric conditions and the placental weight ratio. Placenta. 2014;35:582–6.10.1016/j.placenta.2014.04.019CrossRefGoogle ScholarPubMed
Redline, RW, Boyd, T, Campbell, V, et al. Maternal vascular underperfusion: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2004;7:237–49.Google ScholarPubMed
Hiden, U, Glitzner, E, Hartmann, M, et al. Insulin and the IGF system in the human placenta of normal and diabetic pregnancies. J Anat. 2009;215:60–8.10.1111/j.1469-7580.2008.01035.xCrossRefGoogle ScholarPubMed
Roberts, DJ, Ampola, MG, Lage, JM. Diagnosis of unsuspected fetal metabolic storage disease by routine placental examination. Pediatr Pathol. 1991;11:647–56.10.3109/15513819109064796CrossRefGoogle ScholarPubMed
Zalel, Y, Lehavi, O, Schiff, E, et al. Shortened fetal long bones: a possible in utero manifestation of placental function. Prenat Diagn. 2002;22:553–7.10.1002/pd.364CrossRefGoogle Scholar
Hutcheon, JA, McNamara, H, Platt, RW, et al. Placental weight for gestational age and adverse perinatal outcomes. Obstet Gynecol. 2012;119:1251–8.10.1097/AOG.0b013e318253d3dfCrossRefGoogle ScholarPubMed
Shehata, F, Levin, I, Shrim, A, et al. Placenta/birthweight ratio and perinatal outcome: a retrospective cohort analysis. BJOG. 2011;118:741–7.10.1111/j.1471-0528.2011.02892.xCrossRefGoogle ScholarPubMed
Straughen, J, Divine, G, Perez-Avilan, G, et al. Placental predictors of childhood body size. Placenta. 2016;45:111.10.1016/j.placenta.2016.06.174CrossRefGoogle Scholar
Barker, DJ, Bull, AR, Osmond, C, et al. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990;301:259–62.Google ScholarPubMed
Wen, X, Triche, EW, Hogan, JW, et al. Association between placental morphology and childhood systolic blood pressure. Hypertension. 2011;57:4855.10.1161/HYPERTENSIONAHA.110.162792CrossRefGoogle ScholarPubMed
Risnes, KR, Romundstad, PR, Nilsen, TI, et al. Placental weight relative to birth weight and long-term cardiovascular mortality: findings from a cohort of 31,307 men and women. Am J Epidemiol. 2009;170:622–31.10.1093/aje/kwp182CrossRefGoogle Scholar
Kraus, FT, Redline, R, Gersell, DJ, et al. Placental Pathology. Washington, D.C.: American Registry of Pathology; 2004.10.55418/1881041891CrossRefGoogle Scholar
Proctor, LK, Toal, M, Keating, S, et al. Placental size and the prediction of severe early-onset intrauterine growth restriction in women with low pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol. 2009;34:274–82.CrossRefGoogle ScholarPubMed
Kajantie, E, Thornburg, KL, Eriksson, JG, et al. In preeclampsia, the placenta grows slowly along its minor axis. Int J Dev Biol. 2009;54:469–73.Google Scholar
Endler, M, Saltvedt, S, Papadogiannakis, N. Macroscopic and histological characteristics of retained placenta: A prospectively collected case-control study. Placenta. 2016;41:3944.10.1016/j.placenta.2016.02.013CrossRefGoogle ScholarPubMed
Costantini, D, Walker, M, Milligan, N, et al. Pathologic basis of improving the screening utility of 2-dimensional placental morphology ultrasound. Placenta. 2012;33:845–9.10.1016/j.placenta.2012.07.010CrossRefGoogle ScholarPubMed
Jauniaux, E, Hempstock, J, Greenwold, N, et al. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol. 2003;162:115–25.CrossRefGoogle ScholarPubMed
Alwasel, SH, Abotalib, Z, Aljarallah, JS, et al. The breadth of the placental surface but not the length is associated with body size at birth. Placenta. 2012;33:619–22.10.1016/j.placenta.2012.04.015CrossRefGoogle Scholar
Yampolsky, M, Salafia, CM, Misra, DP, et al. Is the placental disk really an ellipse? Placenta. 2013;34:391–3.10.1016/j.placenta.2012.12.002CrossRefGoogle Scholar
Eriksson, JG, Kajantie, E, Thornburg, KL, et al. Mother’s body size and placental size predict coronary heart disease in men. Eur Heart J. 2011;32:2297–303.10.1093/eurheartj/ehr147CrossRefGoogle ScholarPubMed
Eriksson, JG, Kajantie, E, Osmond, C, et al. Boys live dangerously in the womb. Am J Hum Biol. 2010;22:330–5.CrossRefGoogle ScholarPubMed
Jauniaux, E, Ramsay, B, Campbell, S. Ultrasonographic investigation of placental morphologic characteristics and size during the second trimester of pregnancy. Am J Obstet Gynecol. 1994;170:130–7.10.1016/S0002-9378(13)70293-XCrossRefGoogle ScholarPubMed
Eriksson, JG, Gelow, J, Thornburg, KL, et al. Long-term effects of placental growth on overweight and body composition. Int J Pediatr. 2012;2012:324185.CrossRefGoogle ScholarPubMed
van Abeelen, AF, de Rooij, SR, Osmond, C, et al. The sex-specific effects of famine on the association between placental size and later hypertension. Placenta. 2011;32:694–8.10.1016/j.placenta.2011.06.012CrossRefGoogle ScholarPubMed
Barker, DJ, Osmond, C, Thornburg, KL, et al. The lifespan of men and the shape of their placental surface at birth. Placenta. 2011;32:783–7.10.1016/j.placenta.2011.07.031CrossRefGoogle ScholarPubMed
Fitzgerald, B, Kingdom, J, Keating, S. Distal villous hypoplasia. Diagn Histopathol. 2012;18 (5):195200.10.1016/j.mpdhp.2012.02.005CrossRefGoogle Scholar
Porat, S, Fitzgerald, B, Wright, E, et al. Placental hyperinflation and the risk of adverse perinatal outcome. Ultrasound Obstet Gynecol. 2013;42:315–21.10.1002/uog.12386CrossRefGoogle ScholarPubMed
Raio, L, Ghezzi, F, Cromi, A, et al. The thick heterogeneous (jellylike) placenta: a strong predictor of adverse pregnancy outcome. Prenat Diagn. 2004;24:182–8.10.1002/pd.828CrossRefGoogle Scholar
Blackburn, W, Cooley, NR. The Umbilical Cord. In: Stevenson, RE, Hall, JG, Goodman, RM, editors. Human Malformations and Related Anomalies. New York, NY: Oxford University Press; 1993.Google Scholar
Fox, H. Pathology of the Placenta. 2nd ed. London, UK: W. B. Saunders; 1997.Google Scholar
Catanzarite, V, Cousins, L, Daneshmand, S, et al. Prenatally Diagnosed Vasa Previa: A Single-Institution Series of 96 Cases. Obstet Gynecol. 2016;128:1153–61.10.1097/AOG.0000000000001680CrossRefGoogle ScholarPubMed
Hertig, A. Human Trophoblast. Springfield, IL: C. C. Thomas; 1968.Google Scholar
Benirschke, K, Burton, G, Baergen, RN, editors. Pathology of the Human Placenta. 6th ed. New York, NY: Springer; 2012.CrossRefGoogle Scholar
Schwartz, N, Mandel, D, Shlakhter, O, et al. Placental morphologic features and chorionic surface vasculature at term are highly correlated with 3-dimensional sonographic measurements at 11 to 14 weeks. J Ultrasound Med. 2011;30:1171–8.CrossRefGoogle ScholarPubMed
Yampolsky, M, Salafia, CM, Shlakhter, O, et al. Modeling the variability of shapes of a human placenta. Placenta. 2008;29:790–7.10.1016/j.placenta.2008.06.005CrossRefGoogle ScholarPubMed
Ahmed, A, Gilbert-Barness, E. Placenta membranacea: a developmental anomaly with diverse clinical presentation. Pediatr Dev Pathol. 2003;6:201–2.10.1007/s10024-002-0007-zCrossRefGoogle ScholarPubMed
Greenberg, JA, Sorem, KA, Shifren, JL, et al. Placenta membranacea with placenta increta: a case report and literature review. Obstet Gynecol. 1991;78:512–4.Google ScholarPubMed
Heras, JL, Harding, PG, Haust, MD. Recurrent bleeding associated with placenta membranacea partialis: report of a case. Am J Obstet Gynecol. 1982;144:480–2.Google ScholarPubMed
Luo, G, Redline, RW. Peripheral insertion of umbilical cord. Pediatr Dev Pathol. 2013;16:399404.10.2350/13-05-1337-OA.1CrossRefGoogle ScholarPubMed
Raisanen, S, Georgiadis, L, Harju, M, et al. Risk factors and adverse pregnancy outcomes among births affected by velamentous umbilical cord insertion: a retrospective population-based register study. Eur J Obstet Gynecol Reprod Biol. 2012;165:231–4.CrossRefGoogle ScholarPubMed
Heinonen, S, Ryynanen, M, Kirkinen, P, et al. Elevated midtrimester maternal serum hCG in chromosomally normal pregnancies is associated with preeclampsia and velamentous umbilical cord insertion. Am J Perinatol. 1996;13:437–41.10.1055/s-2007-994384CrossRefGoogle ScholarPubMed
Heinonen, S, Ryynanen, M, Kirkinen, P, et al. Velamentous umbilical cord insertion may be suspected from maternal serum alpha-fetoprotein and hCG. Br J Obstet Gynaecol. 1996;103:209–13.10.1111/j.1471-0528.1996.tb09707.xCrossRefGoogle ScholarPubMed
Heinonen, S, Ryynanen, M, Kirkinen, P, et al. Perinatal diagnostic evaluation of velamentous umbilical cord insertion: clinical, Doppler, and ultrasonic findings. Obstet Gynecol. 1996;87:112–7.10.1016/0029-7844(95)00339-8CrossRefGoogle ScholarPubMed
Redline, R, Shah, D, Sakar, H, et al. Placental lesions associated with abnormal growth in twins. Pediat and Devel Pathol. 2001;4:473–81.Google ScholarPubMed
Costa-Castro, T, Zhao, DP, Lipa, M, et al. Velamentous cord insertion in dichorionic and monochorionic twin pregnancies – Does it make a difference? Placenta. 2016;42:8792.10.1016/j.placenta.2016.04.007CrossRefGoogle Scholar
Robinson, LK, Jones, KL, Benirschke, K. The nature of structural defects associated with velamentous and marginal insertion of the umbilical cord. Am J Obstet Gynecol. 1983;146:191–3.10.1016/0002-9378(83)91052-9CrossRefGoogle ScholarPubMed
Gordon, Z, Eytan, O, Jaffa, AJ, et al. Fetal blood flow in branching models of the chorionic arterial vasculature. Ann N Y Acad Sci. 2007;1101:250–65.10.1196/annals.1389.037CrossRefGoogle ScholarPubMed
Nordenvall, M, Sandstedt, B, Ulmsten, U. Relationship between placental shape, cord insertion, lobes and gestational outcome. Acta Obstet Gynecol Scand. 1988;67:611–6.CrossRefGoogle ScholarPubMed
Hasegawa, J, Matsuoka, R, Ichizuka, K, et al. Cord insertion into the lower third of the uterus in the first trimester is associated with placental and umbilical cord abnormalities. Ultrasound Obstet Gynecol. 2006;28:183–6.10.1002/uog.2839CrossRefGoogle ScholarPubMed
Proctor, LK, Fitzgerald, B, Whittle, WL, et al. Umbilical cord diameter percentile curves and their correlation to birth weight and placental pathology. Placenta. 2013;34:62–6.10.1016/j.placenta.2012.10.015CrossRefGoogle ScholarPubMed
Redline, RW. Clinical and pathological umbilical cord abnormalities in fetal thrombotic vasculopathy. Hum Pathol. 2004;35:1494–8.10.1016/j.humpath.2004.08.003CrossRefGoogle ScholarPubMed
Swank, ML, Garite, TJ, Maurel, K, et al. Vasa previa: diagnosis and management. Am J Obstet Gynecol. 2016;215:223 e16.10.1016/j.ajog.2016.02.044CrossRefGoogle ScholarPubMed
Baergen, RN, Malicki, D, Behling, C, et al. Morbidity, mortality, and placental pathology in excessively long umbilical cords: retrospective study. Pediatr Dev Pathol. 2001;4:144–53.10.1007/s100240010135CrossRefGoogle ScholarPubMed
Rayburn, WF, Beynen, A, Brinkman, DL. Umbilical cord-length and intrapartum complications. Obstet Gynecol. 1981;57:450–2.Google ScholarPubMed
Miller, ME, Higginbottom, M, Smith, DW. Short umbilical cord: its origin and relevance. Pediatrics. 1981;67:618–21.10.1542/peds.67.5.618CrossRefGoogle ScholarPubMed
LaMonica, GE, Wilson, ML, Fullilove, AM, et al. Minimum cord length that allows spontaneous vaginal delivery. J Reprod Med. 2008;53:217–9.Google ScholarPubMed
Raio, L, Ghezzi, F, Di Naro, E, et al. Prenatal diagnosis of a lean umbilical cord: a simple marker for the fetus at risk of being small for gestational age at birth. Ultrasound Obstet Gynecol. 1999;13:176–80.10.1046/j.1469-0705.1999.13030176.xCrossRefGoogle ScholarPubMed
Raio, L, Ghezzi, F, Di Naro, E, et al. Altered sonographic umbilical cord morphometry in early-onset preeclampsia. Obstet Gynecol. 2002;100:311–6.Google ScholarPubMed
Roche, N, Skurnick, J, Brown, K, et al. Do stillborns with no identifiable pathology have leaner cords than liveborns? J Reprod Med. 2008;53:283–6.Google ScholarPubMed
Casola, G, Scheible, W, Leopold, GR. Large umbilical cord: a normal finding in some fetuses. Radiology. 1985;156:181–2.CrossRefGoogle ScholarPubMed
Moessinger, AC, Blanc, WA, Merone, PA, et al. Umbilical cord length as an index of fetal activity: experimental study and clinical implications. Pediatr Res. 1982;16:109–12.10.1203/00006450-198202000-00006CrossRefGoogle Scholar
Georgiadis, L, Keski-Nisula, L, Harju, M, et al. Umbilical cord length in singleton gestations: a Finnish population-based retrospective register study. Placenta. 2014;35:275–80.10.1016/j.placenta.2014.02.001CrossRefGoogle ScholarPubMed
Cardoso, LE, Erlich, RB, Rudge, MC, et al. A comparative analysis of glycosaminoglycans from human umbilical arteries in normal subjects and in pathological conditions affecting pregnancy. Lab Invest. 1992;67:588–95.Google ScholarPubMed
Mills, JL, Harley, EE, Moessinger, AC. Standards for measuring umbilical cord length. Placenta. 1983;4:423–6.10.1016/S0143-4004(83)80045-9CrossRefGoogle ScholarPubMed
Downey, A, Hore, K, McAuliffe, FM, et al. Umbilical cord shortening: quantification postdelivery and postfixation. Pediatr Dev Pathol. 2014;17:327–9.10.2350/14-02-1437-OA.1CrossRefGoogle ScholarPubMed
Chang, KT, Keating, S, Costa, S, et al. Third-trimester stillbirths: correlative neuropathology and placental pathology. Pediatr Dev Pathol. 2011;14:345–52.CrossRefGoogle ScholarPubMed
Strong, TH Jr., Jarles, DL, Vega, JS, et al. The umbilical coiling index. Am J Obstet Gynecol. 1994;170:2932.10.1016/S0002-9378(13)70274-6CrossRefGoogle ScholarPubMed
Peng, HQ, Levitin-Smith, M, Rochelson, B, et al. Umbilical cord stricture and overcoiling are common causes of fetal demise. Pediatr Dev Pathol. 2006;9:14–9.10.2350/05-05-0051.1CrossRefGoogle ScholarPubMed
Machin, GA, Ackerman, J, Gilbert-Barness, E. Abnormal umbilical cord coiling is associated with adverse perinatal outcomes. Pediatr Dev Pathol. 2000;3:462–71.10.1007/s100240010103CrossRefGoogle ScholarPubMed
de Laat, MW, Franx, A, Bots, ML, et al. Umbilical coiling index in normal and complicated pregnancies. Obstet Gynecol. 2006;107:1049–55.10.1097/01.AOG.0000209197.84185.15CrossRefGoogle ScholarPubMed
Ernst, LM, Minturn, L, Huang, MH, et al. Gross patterns of umbilical cord coiling: Correlations with placental histology and stillbirth. Placenta. 2013;34:583–8.10.1016/j.placenta.2013.04.002CrossRefGoogle ScholarPubMed
Lacro, RV, Jones, KL, Benirschke, K. The umbilical cord twist: origin, direction, and relevance. Am J Obstet Gynecol. 1987;157:833–8.CrossRefGoogle ScholarPubMed
Rana, J, Ebert, GA, Kappy, KA. Adverse perinatal outcome in patients with an abnormal umbilical coiling index. Obstet Gynecol. 1995;85:573–7.10.1016/0029-7844(94)00435-GCrossRefGoogle ScholarPubMed
Degani, S, Lewinsky, RM, Berger, H, et al. Sonographic estimation of umbilical coiling index and correlation with Doppler flow characteristics. Obstet Gynecol. 1995;86:990–3.10.1016/0029-7844(95)00307-DCrossRefGoogle ScholarPubMed
Cromi, A, Ghezzi, F, Durig, P, et al. Sonographic umbilical cord morphometry and coiling patterns in twin-twin transfusion syndrome. Prenat Diagn. 2005;25:851–5.10.1002/pd.1273CrossRefGoogle ScholarPubMed
Sun, Y, Arbuckle, S, Hocking, G, et al. Umbilical cord stricture and intrauterine fetal death. Pediatr Pathol Lab Med. 1995;15:723–32.10.3109/15513819509027008CrossRefGoogle ScholarPubMed
French, AE, Gregg, VH, Newberry, Y, et al. Umbilical cord stricture: a cause of recurrent fetal death. Obstet Gynecol. 2005;105:1235–9.10.1097/01.AOG.0000159041.55845.f7CrossRefGoogle ScholarPubMed
Rodriguez, JI, Marino-Enriquez, A, Suarez-Aguado, J, et al. Umbilical cord stricture is not a genetic anomaly: a study in twins. Pediatr Dev Pathol. 2008;11:363–9.10.2350/07-08-0329.1CrossRefGoogle Scholar
de Laat, MW, Nikkels, PG, Franx, A, et al. The Roach muscle bundle and umbilical cord coiling. Early Hum Dev. 2007;83:571–4.10.1016/j.earlhumdev.2006.12.003CrossRefGoogle ScholarPubMed
Georgiou, HM, Rice, GE, Walker, SP, et al. The effect of vascular coiling on venous perfusion during experimental umbilical cord encirclement. Am J Obstet Gynecol. 2001;184:673–8.10.1067/mob.2001.110295CrossRefGoogle ScholarPubMed
Skulstad, SM, Kiserud, T, Rasmussen, S. Degree of fetal umbilical venous constriction at the abdominal wall in a low-risk population at 20–40 weeks of gestation. Prenat Diagn. 2002;22:1022–7.CrossRefGoogle Scholar
Blickstein, I, Varon, Y, Varon, E. Implications of differences in coiling indices at different segments of the umbilical cord. Gynecol Obstet Invest. 2001;52:203–6.10.1159/000052974CrossRefGoogle ScholarPubMed
de Laat, MW, van der Meij, JJ, Visser, GH, et al. Hypercoiling of the umbilical cord and placental maturation defect: associated pathology? Pediatr Dev Pathol. 2007;10:293–9.10.2350/06-01-0015.1CrossRefGoogle ScholarPubMed
Redline, RW. Cerebral palsy in term infants: a clinicopathologic analysis of 158 medicolegal case reviews. Pediatr Dev Pathol. 2008;11:456–64.10.2350/08-05-0468.1CrossRefGoogle ScholarPubMed
Weber, MA, Sau, A, Maxwell, DJ, et al. Third trimester intrauterine fetal death caused by arterial aneurysm of the umbilical cord. Pediatr Dev Pathol. 2007;10:305–8.10.2350/06-07-0136.1CrossRefGoogle ScholarPubMed
Bendon, RW, Tyson, RW, Baldwin, VJ, et al. Umbilical cord ulceration and intestinal atresia: a new association? Am J Obstet Gynecol. 1991;164:582–6.10.1016/S0002-9378(11)80026-8CrossRefGoogle ScholarPubMed
Ichinose, M, Takemura, T, Andoh, K, et al. Pathological analysis of umbilical cord ulceration associated with fetal duodenal and jejunal atresia. Placenta. 2010;31:1015–8.10.1016/j.placenta.2010.08.005CrossRefGoogle ScholarPubMed
Qureshi, F, Jacques, SM. Marked segmental thinning of the umbilical cord vessels. Arch Pathol Lab Med. 1994;118:826–30.Google ScholarPubMed
Labarrere, C, Sebastiani, M, Siminovich, M, et al. Absence of Wharton’s jelly around the umbilical arteries: an unusual cause of perinatal mortality. Placenta. 1985;6:555–9.10.1016/S0143-4004(85)80010-2CrossRefGoogle ScholarPubMed
Collins, JH, Collins, CL, Collins, CC. Umbilical Cord Accidents 2010. pregnancyinst.com/UmbilicalCordAccidents2.pdfGoogle Scholar
Sentilhes, L, Vivet-Lefebure, A, Patrier, S, et al. Umbilical artery aneurysm in a severe growth-restricted fetus with normal karyotype. Prenat Diagn. 2007;27:1059–61.10.1002/pd.1817CrossRefGoogle Scholar
Wang, G, Bove, KE, Stanek, J. Pathological evidence of prolonged umbilical cord encirclement as a cause of fetal death. Am J Perinatol. 1998;15:585–8.10.1055/s-2007-994065CrossRefGoogle ScholarPubMed
King, EL, Redline, RW, Smith, SD, et al. Myocytes of chorionic vessels from placentas with meconium associated vascular necrosis exhibit apoptotic markers. Hum Pathol. 2004;35:412–7.10.1016/j.humpath.2003.12.002CrossRefGoogle ScholarPubMed
Froehlich, LA, Fujikura, T. Significance of a single umbilical artery. Report from the collaborative study of cerebral palsy. Am J Obstet Gynecol. 1966;94:274–9.10.1016/0002-9378(66)90476-5CrossRefGoogle Scholar
Khong, TY, George, K. Chromosomal abnormalities associated with a single umbilical artery. Prenat Diagn. 1992;12:965–8.10.1002/pd.1970121118CrossRefGoogle ScholarPubMed
Murphy-Kaulbeck, L, Dodds, L, Joseph, KS, et al. Single umbilical artery risk factors and pregnancy outcomes. Obstet Gynecol. 2010;116:843–50.10.1097/AOG.0b013e3181f0bc08CrossRefGoogle ScholarPubMed
Martinez-Frias, ML, Bermejo, E, Rodriguez-Pinilla, E, et al. Does single umbilical artery (SUA) predict any type of congenital defect? Clinical-epidemiological analysis of a large consecutive series of malformed infants. Am J Med Genet A. 2008;146A:1525.10.1002/ajmg.a.31911CrossRefGoogle ScholarPubMed
Battarbee, AN, Palatnik, A, Ernst, LM, et al. Association of Isolated Single Umbilical Artery With Small for Gestational Age and Preterm Birth. Obstet Gynecol. 2015;126:760–4.CrossRefGoogle ScholarPubMed
Dolkart, LA, Reimers, FT, Kuonen, CA. Discordant umbilical arteries: ultrasonographic and Doppler analysis. Obstet Gynecol. 1992;79:5963.Google ScholarPubMed
Raio, L, Ghezzi, F, di Naro, E, et al. In-utero characterization of the blood flow in the Hyrtl anastomosis. Placenta. 2001;22:597601.10.1053/plac.2001.0685CrossRefGoogle ScholarPubMed
Gamzu, R, Zalel, Y, Jacobson, JM, et al. Type II single umbilical artery (persistent vitelline artery) in an otherwise normal fetus. Prenat Diagn. 2002;22:1040–3.10.1002/pd.463CrossRefGoogle Scholar
Bourke, WG, Clarke, TA, Mathews, TG, et al. Isolated single umbilical artery–the case for routine renal screening. Arch Dis Child. 1993;68:600–1.10.1136/adc.68.5_Spec_No.600CrossRefGoogle ScholarPubMed
Fortune, DW, Ostor, AG. Angiomyxomas of the umbilical cord. Obstet Gynecol. 1980;55:375–8.10.1097/00006250-198003000-00022CrossRefGoogle ScholarPubMed
Kilicdag, EB, Kilicdag, H, Bagis, T, et al. Large pseudocyst of the umbilical cord associated with patent urachus. J Obstet Gynaecol Res. 2004;30:444–7.10.1111/j.1447-0756.2004.00228.xCrossRefGoogle ScholarPubMed
Schaefer, IM, Manner, J, Faber, R, et al. Giant umbilical cord edema caused by retrograde micturition through an open patent urachus. Pediatr Dev Pathol. 2010;13:404–7.10.2350/09-10-0731-CR.1CrossRefGoogle ScholarPubMed
Sepulveda, W, Gutierrez, J, Sanchez, J, et al. Pseudocyst of the umbilical cord: prenatal sonographic appearance and clinical significance. Obstet Gynecol. 1999;93:377–81.Google ScholarPubMed
Yavner, DL, Redline, RW. Angiomyxoma of the umbilical cord with massive cystic degeneration of Wharton’s jelly. Arch Pathol Lab Med. 1989;113:935–7.Google ScholarPubMed
Jauniaux, E, De Munter, C, Vanesse, M, et al. Embryonic remnants of the umbilical cord: morphologic and clinical aspects. Hum Pathol. 1989;20:458–62.10.1016/0046-8177(89)90011-7CrossRefGoogle ScholarPubMed
Vougiouklakis, T, Mitselou, A, Zikopoulos, K, et al. Ruptured hemangioma of the umbilical cord and intrauterine fetal death, with review data. Pathol Res Pract. 2006;202:537–40.10.1016/j.prp.2006.02.008CrossRefGoogle ScholarPubMed
Daniel-Spiegel, E, Weiner, E, Gimburg, G, et al. The association of umbilical cord hemangioma with fetal vascular birthmarks. Prenat Diagn. 2005;25:300–3.10.1002/pd.1109CrossRefGoogle ScholarPubMed

References

Frank, HG, Malekzadeh, F, Kertschanska, S, et al. Immunohistochemistry of two different types of placental fibrinoid. Acta anatomica 1994;150:5568.10.1159/000147602CrossRefGoogle ScholarPubMed
Vernof, KK, Benirschke, K, Kephart, GM, Wasmoen, TL, Gleich, GJ. Maternal floor infarction: relationship to X cells, major basic protein, and adverse perinatal outcome. Am J Obstet Gynecol 1992;167:1355–63.10.1016/S0002-9378(11)91716-5CrossRefGoogle Scholar
Benirschke, K, Driscoll, SG. Maternal Floor Infarction. In: Benirschke, K, Driscoll, SG, eds. Pathology of the Human Placenta. New York: Springer-Verlag; 1967:328–30.10.1007/978-1-4612-9809-0CrossRefGoogle Scholar
Naeye, RL. Maternal floor infarction. Hum Pathol 1985;16:823–8.10.1016/S0046-8177(85)80254-9CrossRefGoogle ScholarPubMed
Katzman, PJ, Genest, DR. Maternal floor infarction and massive perivillous fibrin deposition: histological definitions, association with intrauterine fetal growth restriction, and risk of recurrence. Pediatr Dev Pathol 2002;5:159–64.10.1007/s10024001-0195-yCrossRefGoogle ScholarPubMed
Faye-Petersen, OM, Ernst, LM. Maternal Floor Infarction and Massive Perivillous Fibrin Deposition. Surgical pathology clinics 2013;6:101–14.10.1016/j.path.2012.10.002CrossRefGoogle ScholarPubMed
Fox, H, Sebire, N. Pathology of the Placenta. 3 ed: Saunders Elsevier; 2007.Google Scholar
Andres, RL, Kuyper, W, Resnik, R, Piacquadio, KM, Benirschke, K. The association of maternal floor infarction of the placenta with adverse perinatal outcome. Am J Obstet Gynecol 1990;163:935–8.10.1016/0002-9378(90)91100-QCrossRefGoogle ScholarPubMed
Redline, RW, Jiang, JG, Shah, D. Discordancy for maternal floor infarction in dizygotic twin placentas. Hum Pathol 2003;34:822–4.10.1016/S0046-8177(03)00288-0CrossRefGoogle ScholarPubMed
Waters, BL, Ashikaga, T. Significance of perivillous fibrin/oid deposition in uterine evacuation specimens. Am J Surg Pathol 2006;30:760–5.10.1097/00000478-200606000-00014CrossRefGoogle ScholarPubMed
Gogia, N, Machin, GA. Maternal thrombophilias are associated with specific placental lesions. Pediatr Dev Pathol 2008;11:424–9.10.2350/07-09-0345.1CrossRefGoogle ScholarPubMed
Griffin, AC, Strauss, AW, Bennett, MJ, Ernst, LM. Mutations in long-chain 3-hydroxyacyl coenzyme a dehydrogenase are associated with placental maternal floor infarction/massive perivillous fibrin deposition. Pediatr Dev Pathol 2012;15:368–74.10.2350/12-05-1198-OA.1CrossRefGoogle ScholarPubMed
Mayhew, TM, Brotherton, L, Holliday, E, Orme, G, Bush, PG. Fibrin-type fibrinoid in placentae from pregnancies associated with maternal smoking: association with villous trophoblast and impact on intervillous porosity. Placenta 2003;24:501–9.10.1053/plac.2002.0943CrossRefGoogle ScholarPubMed
Uxa, R, Baczyk, D, Kingdom, JC, Viero, S, Casper, R, Keating, S. Genetic polymorphisms in the fibrinolytic system of placentas with massive perivillous fibrin deposition. Placenta 2010;31:499505.10.1016/j.placenta.2010.03.013CrossRefGoogle ScholarPubMed
Linn, RL, Kiley, J, Minturn, L, et al. Recurrent massive perivillous fibrin deposition in the placenta associated with fetal renal tubular dysgenesis: case report and literature review. Pediatr Dev Pathol 2013;16:378–86.10.2350/13-06-1351-CR.1CrossRefGoogle ScholarPubMed
Taweevisit, M, Thorner, PS. Maternal floor infarction associated with oligohydramnios and cystic renal dysplasia: report of 2 cases. Pediatr Dev Pathol 2010;13:116–20.10.2350/09-06-0669-CR.1CrossRefGoogle ScholarPubMed
Mandsager, NT, Bendon, R, Mostello, D, Rosenn, B, Miodovnik, M, Siddiqi, TA. Maternal floor infarction of the placenta: prenatal diagnosis and clinical significance. Obstet Gynecol 1994;83:750–4.Google ScholarPubMed
Taweevisit, M, Thorner, PS. Maternal Floor Infarction/Massive Perivillous Fibrin Deposition Associated with Hypercoiling of a Single-Artery Umbilical Cord: A Case Report. Pediatr Dev Pathol 2016;19:6973.10.2350/15-07-1673-CR.1CrossRefGoogle ScholarPubMed
Batcup, G, Holt, P, Hambling, MH, Gerlis, LM, Glass, MR. Placental and fetal pathology in Coxsackie virus A9 infection: a case report. Histopathology 1985;9:1227–35.CrossRefGoogle ScholarPubMed
Heller, D, Tellier, R, Pabbaraju, K, et al. Placental Massive Perivillous Fibrinoid Deposition associated with Coxsackievirus A16-report of a case, and review of the literature. Pediatr Dev Pathol. 2016;19:421–3.10.2350/15-10-1726-CR.1CrossRefGoogle ScholarPubMed
Salafia, CM, Cowchock, FS. Placental pathology and antiphospholipid antibodies: a descriptive study. Am J Perinatol 1997;14:435–41.10.1055/s-2007-994176CrossRefGoogle ScholarPubMed
Sebire, NJ, Backos, M, Goldin, RD, Regan, L. Placental massive perivillous fibrin deposition associated with antiphospholipid antibody syndrome. BJOG 2002;109:570–3.10.1111/j.1471-0528.2002.00077.xCrossRefGoogle ScholarPubMed
Redline, RW. Thrombophilia and placental pathology. Clin Obstet Gynecol 2006;49:885–94.10.1097/01.grf.0000211957.68745.6bCrossRefGoogle ScholarPubMed
Roberts, D, Schwartz, RS. Clotting and hemorrhage in the placenta–a delicate balance. N Engl J Med 2002;347:57–9.10.1056/NEJMe020061CrossRefGoogle ScholarPubMed
Rakheja, D, Bennett, MJ, Rogers, BB. Long-chain L-3-hydroxyacyl-coenzyme a dehydrogenase deficiency: a molecular and biochemical review. Lab Invest 2002;82:815–24.10.1097/01.LAB.0000021175.50201.46CrossRefGoogle ScholarPubMed
Whitten, AE, Romero, R, Korzeniewski, SJ, et al. Evidence of an imbalance of angiogenic/antiangiogenic factors in massive perivillous fibrin deposition (maternal floor infarction): a placental lesion associated with recurrent miscarriage and fetal death. Am J Obstet Gynecol 2013;208:310 e1e11.10.1016/j.ajog.2013.01.017CrossRefGoogle ScholarPubMed
Romero, R, Whitten, A, Korzeniewski, SJ, et al. Maternal floor infarction/massive perivillous fibrin deposition: a manifestation of maternal antifetal rejection? Am J Reprod Immunol 2013;70:285–98.10.1111/aji.12143CrossRefGoogle ScholarPubMed
Hung, NA, Jackson, C, Nicholson, M, Highton, J. Pregnancy-related polymyositis and massive perivillous fibrin deposition in the placenta: are they pathogenetically related? Arthritis and rheumatism 2006;55:154–6.10.1002/art.21710CrossRefGoogle ScholarPubMed
Bendon, RW, Hommel, AB. Maternal floor infarction in autoimmune disease: two cases. Pediatr Pathol Lab Med 1996;16:293–7.10.1080/15513819609169291CrossRefGoogle ScholarPubMed
Redline, R. Maternal floor infarction and massive perivillous fibrin deposition: clinicopathological entities in flux. Adv Anat Pathol 2002;9:372–3.10.1097/00125480-200211000-00010CrossRefGoogle Scholar
Andres, RL, Kuyper, W, Resnik, R, Piacquadio, KM, Benirschke, K. The association of maternal floor infarction of the placenta with adverse perinatal outcome. Am J Obstet Gynecol 1990;163:935–8.10.1016/0002-9378(90)91100-QCrossRefGoogle ScholarPubMed
Adams-Chapman, I, Vaucher, YE, Bejar, RF, Benirschke, K, Baergen, RN, Moore, TR. Maternal floor infarction of the placenta: association with central nervous system injury and adverse neurodevelopmental outcome. J Perinatol 2002;22:236–41.10.1038/sj.jp.7210685CrossRefGoogle ScholarPubMed
Heerema-McKenney, A, Popek, EJ, De Paepe, ME. Diagnostic Pathology: Placenta. Philadelphia, PA: Elsevier; 2015.Google Scholar
Katz, VL, Bowes, WA Jr., Sierkh, AE. Maternal floor infarction of the placenta associated with elevated second trimester serum alpha-fetoprotein. Am J Perinatol 1987;4:225–8.10.1055/s-2007-999778CrossRefGoogle ScholarPubMed
Chaiworapongsa, T, Romero, R, Korzeniewski, SJ, et al. Pravastatin to prevent recurrent fetal death in massive perivillous fibrin deposition of the placenta (MPFD). J Matern Fetal Neonatal Med 2016;29:855–62.10.3109/14767058.2015.1022864CrossRefGoogle ScholarPubMed
Al-Sahan, N, Grynspan, D, von Dadelszen, P, Gruslin, A. Maternal floor infarction: management of an underrecognized pathology. J Obstet Gynaecol Res 2014;40:293–6.10.1111/jog.12159CrossRefGoogle ScholarPubMed
Redline, RW, Patterson, P. Patterns of placental injury. Correlations with gestational age, placental weight, and clinical diagnoses. Arch Pathol Lab Med 1994;118:698701.Google ScholarPubMed
Fox, H. Perivillous fibrin deposition in the human placenta. Am J Obstet Gynecol 1967;98:245–51.10.1016/S0002-9378(16)34594-XCrossRefGoogle ScholarPubMed
Pereira, L, Petitt, M, Fong, A, et al. Intrauterine growth restriction caused by underlying congenital cytomegalovirus infection. J Infect Dis 2014;209:1573–84.10.1093/infdis/jiu019CrossRefGoogle ScholarPubMed
Eden, TW. A study of the human placenta, pysiological and pathological. Journal of pathology and bacteriology 1897;4:265–83.10.1002/path.1700040212CrossRefGoogle Scholar
Basnet, K, Bentley-Lewis, R, Wexler, DJ, Kilic, F, Roberts, DJ. The prevalence of intervillous thrombi is increased in placentas from pregnancies complicated by diabetes. Pediatr Dev Pathol. 2016;19:502–5.10.2350/15-11-1734-OA.1CrossRefGoogle ScholarPubMed
Demmler, GJ. Congenital cytomegalovirus infection and disease. Advances in pediatric infectious diseases 1996;11:135–62.Google ScholarPubMed
Pass, RF, Stagno, S, Myers, GJ, Alford, CA. Outcome of symptomatic congenital cytomegalovirus infection: results of long-term longitudinal follow-up. Pediatrics 1980;66:758–62.10.1542/peds.66.5.758CrossRefGoogle ScholarPubMed

References

Alanjari, A, Wright, E, Keating, S, Ryan, G, Kingdom, J. Prenatal diagnosis, clinical outcomes, and associated pathology in pregnancies complicated by massive subchorionic thrombohematoma (Breus’ mole). Prenat Diagn. 2013;33(10):973–8.10.1002/pd.4176CrossRefGoogle ScholarPubMed
Shanklin, DR, Scott, JS. Massive subchorial thrombohaematoma (Breus’ mole). Br J Obstet Gynaecol. 1975;82(6):476–87.10.1111/j.1471-0528.1975.tb00673.xCrossRefGoogle ScholarPubMed
Fung, TY, To, KF, Sahota, DS, Chan, LW, Leung, TY, Lau, TK. Massive subchorionic thrombohematoma: a series of 10 cases. Acta Obstet Gynecol Scand. 2010;89(10):1357–61.10.3109/00016349.2010.512656CrossRefGoogle ScholarPubMed
Breus, C: Das Tuberose Subchoriale Haematom der Decidua. Leipzig, Deuticke, 1892Google Scholar
Yamada, S, Marutani, T, Hisaoka, M, Tasaki, T, Nabeshima, A, Shiraishi, M, Sasaguri, Y. Pulmonary hypoplasia on preterm infant associated with diffuse chorioamniotic hemosiderosis caused by intrauterine hemorrhage due to massive subchorial hematoma: report of a neonatal autopsy case. Pathol Int. 2012;62(8):543–8.10.1111/j.1440-1827.2012.02834.xCrossRefGoogle ScholarPubMed
Thomas, D, Makhoul, J, Müller, C. Fetal growth retardation due to massive subchorionic thrombohematoma: report of two cases. J Ultrasound Med. 1992;11(5):245–7.10.7863/jum.1992.11.5.245CrossRefGoogle ScholarPubMed
Perrin, EVDK. Placenta as a reflection of fetal disease: A brief overview. In, Pathology of the Placenta. Perrin, E.V.D.K. ed. Churchill Livingstone, New York, 1984.Google Scholar
Kim, DT, Riddell, DC, Welch, JP, Scott, H, Fraser, RB, Wright, JR Jr. Association between Breus’ mole and partial hydatidiform mole: chance or can hydropic villi precipitate placental massive subchorionic thrombosis? Pediatr Pathol Mol Med. 2002;21(5):451–9.10.1080/pdp.21.5.451.459CrossRefGoogle ScholarPubMed
Heller, DS, Rush, D, Baergen, RN. Subchorionic hematoma associated with thrombophilia: report of three cases. Pediatr Dev Pathol. 2003;6(3):261–4.10.1007/s10024-002-0107-9CrossRefGoogle ScholarPubMed
Fisteag-Kiprono, L, Foster, K, McKenna, D, Baptista, M. Antenatal sonographic diagnosis of massive subchorionic hematoma: a case report. J Reprod Med. 2005;50(3):219–21.Google ScholarPubMed
Sepulveda, W, Aviles, G, Carstens, E, Corral, E, Perez, N. Prenatal diagnosis of solid placental masses: the value of color flow imaging. Ultrasound Obstet Gynecol. 2000;16(6):554–8.10.1046/j.1469-0705.2000.00245.xCrossRefGoogle ScholarPubMed
Kojima, K, Suzuki, Y, Makino, A, Murakami, I, Suzumori, K. A case of massive subchorionic thrombohematoma diagnosed by ultrasonography and magnetic resonance imaging. Fetal Diagn Ther. 2001;16(1):5760.10.1159/000053882CrossRefGoogle ScholarPubMed
Gupta, R, Sharma, R, Jain, T, Vashisht, S. Antenatal MRI diagnosis of massive subchorionic hematoma: a case report. Fetal Diagn Ther. 2007;22(6):405–8.10.1159/000106343CrossRefGoogle ScholarPubMed
Windrim, C, Athaide, G, Gerster, T, Kingdom, JC. Sonographic findings and clinical outcomes in women with massive subchorionic hematoma detected in the second trimester. J Obstet Gynaecol Can. 2011;33(5):475–910.1016/S1701-2163(16)34881-2CrossRefGoogle ScholarPubMed
Tuuli, MG, Norman, SM, Odibo, AO, Macones, GA, Cahill, AG. Perinatal outcomes in women with subchorionic hematoma: a systematic review and meta-analysis. Obstet Gynecol. 2011;117(5):1205–12.10.1097/AOG.0b013e31821568deCrossRefGoogle ScholarPubMed
Wright, JR, Samson, KA, Cooper-Rosen, E, Riddel, DC. Breus’ Mole: DNA Shows Massive Subchorionic Hematoma is Maternal in Origin. Fetal Pediatr Pathol 1998;18:151156.10.3109/15513819809168783CrossRefGoogle Scholar
Porat, S, Fitzgerald, B, Wright, E, Keating, S, Kingdom, JC. Placental hyperinflation and the risk of adverse perinatal outcome. Ultrasound Obstet Gynecol. 2013;42(3):315–21.10.1002/uog.12386CrossRefGoogle ScholarPubMed
Tancrède, S, Bujold, E, Giguère, Y, Renald, MH, Girouard, J, Forest, JC. Mid-trimester maternal serum AFP and hCG as markers of preterm and term adverse pregnancy outcomes. J Obstet Gynaecol Can. 2015;37(2):111–6.10.1016/S1701-2163(15)30331-5CrossRefGoogle ScholarPubMed
Toal, M, Chaddha, V, Windrim, R, Kingdom, J. Ultrasound detection of placental insufficiency in women with elevated second trimester serum alpha-fetoprotein or human chorionic gonadotropin. J Obstet Gynaecol Can. 2008;30(3):198206.10.1016/S1701-2163(16)32756-6CrossRefGoogle ScholarPubMed
Kaplan, CG. Fetal Membranes and Surface. In: Color Atlas of Gross Placental Pathology. 2nd ed. New York, Springer, 2016.Google Scholar
Faye-Petersen, OM, Heller, DS, Joshi, VV. Chapter 8: Gross abnormalities of the placenta: lesions due to disturbances of maternal and of fetal blood flow. In: Handbook of Placental Pathology. Abingdon, Oxon: Taylor and Francis, 2006.Google Scholar
Fitzgerald, B, Shannon, P, Kingdom, J, Keating, S. Rounded intraplacental haematomas due to decidual vasculopathy have a distinctive morphology. J Clin Pathol. 2011;64(8):729–32.10.1136/jcp.2010.087916CrossRefGoogle ScholarPubMed
Neville, G, Russell, N, O’Donoghue, K, Fitzgerald, B. Rounded Intraplacental Haematomas – a high risk placental lesion as illustrated by a prospective study of 26 consecutive cases. Presentation, Society for Pediatic Pathology Spring Meeting; 2017;San Antonio, USA.Google Scholar
Aurioles-Garibay, A, Hernandez-Andrade, E, Romero, R, Qureshi, F, Ahn, H, Jacques, SM, Garcia, M, Yeo, L, Hassan, SS. Prenatal diagnosis of a placental infarction hematoma associated with fetal growth restriction, preeclampsia and fetal death: clinicopathological correlation. Fetal Diagn Ther. 2014;36(2):154–61.10.1159/000357841CrossRefGoogle ScholarPubMed
Bendon, RW. Nosology: infarction hematoma, a placental infarction encasing a hematoma. Hum Pathol. 2012;43(5):761–3.10.1016/j.humpath.2011.07.023CrossRefGoogle ScholarPubMed
Fitzgerald, B, Shannon, P, Kingdom, J, Keating, S. Basal plate plaque: a novel organising placental thrombotic process. J Clin Pathol. 2011;64(8):725–8.10.1136/jcp.2010.086355CrossRefGoogle ScholarPubMed

References

Hiersch, L, Krispin, E, Linder, N, et al. Meconium-stained amniotic fluid and neonatal morbidity in low-risk pregnancies at term: The effect of gestational age. Am J Perinatol. 2017;34(2):183–90.Google ScholarPubMed
Sheiner, E, Hadar, A, Shoham-Vardi, et al. The effect of meconium on perinatal outcome: a prospective analysis. J Matern Fetal Neonatal Med. 2002;11(1):54–9.10.1080/jmf.11.1.54.59CrossRefGoogle ScholarPubMed
Brabbing-Goldstein, D, Nir, D, Cohen, D, et al. Preterm meconium-stained amniotic fluid is an ominous sign for the development of chorioamnionitis and for in utero cord compression. J Matern Fetal Neonatal Med. 2017;8:14.Google Scholar
Ziadeh, SM, Sunna, E. Obstetric and perinatal outcome of pregnancies with term labour and meconium-stained amniotic fluid. Arch Gynecol Obstet. 2000;264(2):84–7.10.1007/s004040000088CrossRefGoogle ScholarPubMed
Ciftçi, AO, Tanyel, FC, Karnak, I, et al. In-utero defecation: fact or fiction? Eur J Pediatr Surg. 1999;9(6):376–80.CrossRefGoogle ScholarPubMed
Kimble, RM, Trudenger, B, Cass, D. Fetal defaecation: is it a normal physiological process? J Paediatr Child Health. 1999;35(2):116–9.10.1046/j.1440-1754.1999.00314.xCrossRefGoogle ScholarPubMed
Ahanya, SN, Lakshmanan, J, Morgan, BL, et al. Meconium passage in utero: mechanisms, consequences, and management. Obstet Gynecol Surv. 2005;60(1):4556.10.1097/01.ogx.0000149659.89530.c2CrossRefGoogle ScholarPubMed
Lakshmanan, J, Ross, MG. Mechanism(s) of in utero meconium passage. J Perinatol. 2008;28 Suppl 3:S813.10.1038/jp.2008.144CrossRefGoogle ScholarPubMed
Frey, HA, Tuuli, MG, Shanks, AL, et al. Interpreting category II fetal heart rate tracings: does meconium matter? Am J Obstet Gynecol. 2014;211(6):644.e18.10.1016/j.ajog.2014.06.033CrossRefGoogle ScholarPubMed
Xu, H, Mas-Calvet, M, Wei, SQ, et al. Abnormal fetal heart rate tracing patterns in patients with thick meconium staining of the amniotic fluid: association with perinatal outcomes. Am J Obstet Gynecol. 2009;200(3):283.e17.10.1016/j.ajog.2008.08.043CrossRefGoogle ScholarPubMed
Vidyasagar, D, Zagariya, A. Studies of meconium-induced lung injury: inflammatory cytokine expression and apoptosis. J Perinatol. 2008;28 Suppl 3:S102–7.10.1038/jp.2008.153CrossRefGoogle ScholarPubMed
de Beaufort, AJ, Pelikan, DM, Elferink, JG, et al. Effect of interleukin 8 in meconium on in-vitro neutrophil chemotaxis. Lancet. 1998;352(9122):102–5.10.1016/S0140-6736(98)85013-7CrossRefGoogle ScholarPubMed
Yamada, T, Minakami, H, Matsubara, S, et al. Meconium-stained amniotic fluid exhibits chemotactic activity for polymorphonuclear leukocytes in vitro. J Reprod Immunol. 2000;46(1):2130.10.1016/S0165-0378(99)00048-0CrossRefGoogle ScholarPubMed
Castellheim, A, Lindenskov, PH, Pharo, A, et al. Meconium is a potent activator of complement in human serum and in piglets. Pediatr Res. 2004;55(2):310–8.10.1203/01.PDR.0000100902.76021.8ECrossRefGoogle Scholar
Holcberg, G, Huleihal, M, Katz, M, et al. Vasoconstrictive activity of meconium stained amniotic fluid in the human placental vasculature. Eur J Obstet Gynecol Reprod Biol. 1999;87(2):147–50.10.1016/S0301-2115(99)00099-8CrossRefGoogle ScholarPubMed
King, EL, Redline, RW, Smith, SD, et al. Myocytes of chorionic vessels from placentas with meconium-associated vascular necrosis exhibit apoptotic markers. Hum Pathol. 2004;35(4):412–7.10.1016/j.humpath.2003.12.002CrossRefGoogle ScholarPubMed
Miller, PW, Coen, RW, Benirschke, K: Dating the time interval from meconium passage to birth. Obstet Gynecol. 1985;66:459462.Google ScholarPubMed
Kovalak, EE, Dede, FS, Gelisen, O, et al. Nonreassuring fetal heart rate patterns and nucleated red blood cells in term neonates. Arch Gynecol Obstet. 2011;283(5):1005–9.10.1007/s00404-010-1517-yCrossRefGoogle ScholarPubMed
Beebe, LA, Cowan, LD, Altshuler, G. The epidemiology of placental features: associations with gestational age and neonatal outcome. Obstet Gynecol. 1996;87(5 Pt 1):771–8.10.1016/0029-7844(95)00483-1CrossRefGoogle ScholarPubMed
Kaspar, HG, Abu-Musa, A, Hannoun, A, et al. The placenta in meconium staining: lesions and early neonatal outcome. Clin Exp Obstet Gynecol. 2000;27(1):63–6.Google ScholarPubMed
Redline, RW, O’Riordan, MA. Placental lesions associated with cerebral palsy and neurologic impairment following term birth. Arch Pathol Lab Med. 2000;124(12):1785–91.10.5858/2000-124-1785-PLAWCPCrossRefGoogle ScholarPubMed
Chang, KT, Keating, S, Costa, S, et al: Third-trimester stillbirths: correlative neuropathology and placental pathology. Pediatr Dev Pathol. 2011;14(5):345–52.10.2350/10-07-0882-OA.1CrossRefGoogle ScholarPubMed
Martinez-Biarge, M, Cheong, JL, Diez-Sebastian, J, et al. Risk factors for neonatal arterial ischemic stroke: The importance of the intrapartum period. J Pediatr. 2016;173:6268.10.1016/j.jpeds.2016.02.064CrossRefGoogle ScholarPubMed
Cimic, A, Baergen, RN. Meconium-associated umbilical vascular myonecrosis: correlations with adverse outcome and placental pathology. Pediatr Dev Pathol. 2016;19(4):315319.10.2350/15-06-1660-OA.1CrossRefGoogle ScholarPubMed
Redline, RW. Severe fetal placental vascular lesions in term infants with neurologic impairment. Am J Obstet Gynecol. 2005;192(2):452–7.10.1016/j.ajog.2004.07.030CrossRefGoogle ScholarPubMed
Redline, RW, O’Riordan, MA. Placental lesions associated with cerebral palsy and neurologic impairment following term birth. Arch Pathol Lab Med. 2000;124(12):1785–91.10.5858/2000-124-1785-PLAWCPCrossRefGoogle ScholarPubMed

References

Dulay, AT, Buhimschi, IA, Zhao, G, et al. Nucleated red blood cells are a direct response to mediators of inflammation in newborns with early-onset neonatal sepsis. Am J Obstet Gynecol. 2008;198(6):728.10.1016/j.ajog.2008.01.040CrossRefGoogle ScholarPubMed
Bedrick, AD. Nucleated red blood cells and fetal hypoxia: a biologic marker whose ‘timing’ has come? J Perinatol. 2014;34(2):85–6.10.1038/jp.2013.169CrossRefGoogle ScholarPubMed
Ferber, A, Minior, VK, Bornstein, E, et al: Fetal “non-reassuring status” is associated with elevation of nucleated red blood cell counts and interleukin-6. Am J Obstet Gynecol. 2005;192(5):1427–29.10.1016/j.ajog.2004.12.076CrossRefGoogle Scholar
Stachon, A, Bolulu, O, Holland-Letz, T, et al. Association between nucleated red blood cells in blood and the levels of erythropoietin, interleukin 3, interleukin 6, and interleukin 12p70. Shock. 2005;24(1):34–9.10.1097/01.shk.0000164693.11649.91CrossRefGoogle ScholarPubMed
Şaracoglu, F, Sahin, I, Eser, E, et al: Nucleated red blood cells as a marker in acute and chronic fetal asphyxia. Int J Gynaecol Obstet. 2000;71(2):113–8.10.1016/S0020-7292(00)00259-9CrossRefGoogle ScholarPubMed
Hanlon-Lundberg, KM, Kirby, RS: Nucleated red blood cells as a marker of acidemia in term neonates. Am J Obstet Gynecol. 1999;181(1):196201.10.1016/S0002-9378(99)70459-XCrossRefGoogle ScholarPubMed
Madazli, R, Tuten, A, Calay, Z, et al: The incidence of placental abnormalities, maternal and cord plasma malondialdehyde and vascular endothelial growth factor levels in women with gestational diabetes mellitus and nondiabetic controls. Gynecol Obstet Invest. 2008;65(4):227–32.10.1159/000113045CrossRefGoogle ScholarPubMed
Teramo, K, Klemetti, M, Tikkanen, M, et al. Maternal diabetes and fetal hypoxia [article in Finnish]. Duodecim. 2013;129(3):228–34.Google ScholarPubMed
Escobar, J, Teramo, K, Stefanovic, V, et al. Amniotic fluid oxidative and nitrosative stress biomarkers correlate with fetal chronic hypoxia in diabetic pregnancies. Neonatology. 2013;103(3):193–8.10.1159/000345194CrossRefGoogle ScholarPubMed
Cetin, H, Yalaz, M, Akisu, M, et al. Polycythaemia in infants of diabetic mothers: β-hydroxybutyrate stimulates erythropoietic activity. J Int Med Res. 2011;39(3):815–21.10.1177/147323001103900314CrossRefGoogle ScholarPubMed
Widness, JA, Teramo, KA, Clemons, GK, et al. Temporal response of immunoreactive erythropoietin to acute hypoxemia in fetal sheep. Pediatr Res. 1986;20(1):15–9.10.1203/00006450-198601000-00004CrossRefGoogle ScholarPubMed
Blackwell, SC, Hallak, M, Hotra, JW, et al. Timing of fetal nucleated red blood cell count elevation in response to acute hypoxia. Biol Neonate. 2004;85:217–20.10.1159/000075808CrossRefGoogle ScholarPubMed
D’Souza, SW, Black, P, MacFarlane, T, et al. Hametologic values in cord blood in relation to fetal hypoxia. Br J Obstet Gynaecol. 1981;88:129–32.Google ScholarPubMed
Şaracoglu, F, Sahin, I, Eser, E, et al. Nucleated red blood cells as a marker in acute and chronic fetal asphyxia. Int J Gynaecol Obstet. 2000;71(2):113–8.10.1016/S0020-7292(00)00259-9CrossRefGoogle ScholarPubMed
Dulay, AT, Buhimschi, IA, Zhao, G, et al. Nucleated red blood cells are a direct response to mediators of inflammation in newborns with early-onset neonatal sepsis. Am J Obstet Gynecol. 2008;198(6):728.10.1016/j.ajog.2008.01.040CrossRefGoogle ScholarPubMed
Klausen, T, Olsen, NV, Poulsen, TD, et al. Hypoxemia increases serum interleukin-6 in humans. Eur J Appl Physiol. 1997;76:480–2.10.1007/s004210050278CrossRefGoogle ScholarPubMed
Naldini, A, Carraro, F, Silvestri, S, et al. Hypoxia affects cytokine production and proliferative responses by human peripheral mononuclear cells. J Cell Physiol. 1997;173:335–42.10.1002/(SICI)1097-4652(199712)173:3<335::AID-JCP5>3.0.CO;2-O3.0.CO;2-O>CrossRefGoogle ScholarPubMed
von Lindern, M, Zauner, W, Mellitzer, G, et al. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood. 1999;94(2):550–9.10.1182/blood.V94.2.550CrossRefGoogle ScholarPubMed
Falchi, M, Varricchio, L, Martelli, F, et al. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion. Haematologica. 2015;100(2):178–87.10.3324/haematol.2014.114405CrossRefGoogle ScholarPubMed
Lewis, JM, Hori, TS, Rise, ML, et al. Transcriptome responses to heat stress in the nucleated red blood cells of the rainbow trout (Oncorhynchus mykiss). Physiol Genomics. 2010;42(3):361–73.10.1152/physiolgenomics.00067.2010CrossRefGoogle Scholar
Lim, SK, Park, SH. High glucose stimulates the expression of erythropoietin in rat glomerular epithelial cellsLab Anim Res2011;27(3):245–50.10.5625/lar.2011.27.3.245CrossRefGoogle ScholarPubMed
Ferber, A, Grassi, A, Akyol, D, et al. The association of fetal heart rate patterns with nucleated red blood cell counts at birth. Am J Obstet Gynecol. 2003;188(5):1228–30.10.1067/mob.2003.352CrossRefGoogle ScholarPubMed
Phelan, JP, Kirkendall, C, Korst, LM, et al. Nucleated red blood cell and platelet counts in asphyxiated neonates sufficient to result in permanent neurologic impairment. J Matern Fetal Neonatal Med. 2007;20(5):377–80.10.1080/14767050701232596CrossRefGoogle ScholarPubMed
Goel, M, Dwivedi, R, Gohiya, P, Hedge, D. Nucleated red blood cell in cord blood as a marker of perinatal asphyxia. J Clin Neonatol. 2013;2(4):179–82.10.4103/2249-4847.123097CrossRefGoogle ScholarPubMed
Boskabadi, H, Zakerihamidi, M, Sadeghian, MH, et al. Nucleated red blood cells count as a prognostic biomarker in predicting the complications of asphyxia in neonates. J Matern Fetal Neonatal Med. 2017;(21):2551–56.10.1080/14767058.2016.1256988CrossRefGoogle Scholar
Redline, RW: Elevated circulating fetal nucleated red blood cells and placental pathology in term infants who develop cerebral palsy. Hum Pathol. 2008;39(9):13781384.10.1016/j.humpath.2008.01.017CrossRefGoogle ScholarPubMed
Walsh, BH, Boylan, GB, Dempsey, EM, et al. Association of nucleated red blood cells and severity of encephalopathy in normothermic and hypothermic infants. Acta Paediatr. 2013;102(2):e64–7.10.1111/apa.12086CrossRefGoogle ScholarPubMed
Bergman, RA, Afifi, AK, Heidger, JR, PM, eds. Digital anatomy atlas, Atlas of microscopic anatomy; Section 4: Blood. In: Atlas of hematologic neoplasms, 1st ed, 2009, Springer NY, Sun T, 1116.Google Scholar
Axt-Fliedner, R, Hendrik, HJ, Schmidt, W. Nucleated red blood cell counts in growth-restricted neonates with absent or reversed-end-diastolic umbilical artery velocity. Clin Exp Obstet Gynecol. 2002;29(4):242–6.Google ScholarPubMed
Baschat, AA, Gungor, S,Kush, ML, et al. Nucleated red blood cell counts in the first week of life: a critical appraisal of relationships with perinatal outcome in preterm growth-restricted neonates. Am J Obstet Gynecol. 2007;197(3):286,e 18.10.1016/j.ajog.2007.06.020CrossRefGoogle ScholarPubMed
Ghosh, B, Mittal, S, Kumar, S, Dadhwal, V. Prediction of perinatal asphyxia with nucleated red blood cells in cord blood of newborns. Int J Gynaecol Obstet. 2003;81(3):267–71.10.1016/S0020-7292(03)00124-3CrossRefGoogle ScholarPubMed
Hebbar, S, Misha, M, Rai, L. Significance of maternal and cord blood nucleated red blood cell count in pregnancies complicated by preeclampsia. J Pregnancy. 2014;2014:496416.10.1155/2014/496416CrossRefGoogle ScholarPubMed
Li, J, Kobata, K, Kamei, Y, et al. Nucleated red blood cell counts: an early predictor of brain injury and 2-year outcome in neonates with hypoxic-ischemic encephalopathy in the era of cooling-based treatment. Brain Dev. 2014; 36(6):472–8.10.1016/j.braindev.2013.06.012CrossRefGoogle Scholar
Buonocore, G, Perrone, S, Gioia, D, et al. Nucleated red blood cell count at birth as an index of perinatal brain damage. Am J Obstet Gynecol. 1999;181(6):1500–5.10.1016/S0002-9378(99)70396-0CrossRefGoogle Scholar
Korst, LM, Phelan, JP, Ahn, MO, Martin, GI. Nucleated red blood cells: an update on the marker for fetal asphyxia. Am J Obstet Gynecol. 1996;175(4 Pt 1):843–6.10.1016/S0002-9378(96)80010-XCrossRefGoogle ScholarPubMed
Redline, RW, O’Riordan, MA. Placental lesions associated with cerebral palsy and neurologic impairment following term birth. Arch Pathol Lab Med. 2000;124:1785–91.10.5858/2000-124-1785-PLAWCPCrossRefGoogle ScholarPubMed
Bernson-Leung, ME, Boyd, TK, Meserve, EE, et al. Placental pathology in neonatal stroke: A retrospective case-control study. J Pediatr. Published: J Pediatr. 2018;195:39–47.Google Scholar
Christensen, RD, Henry, E, Andres, RL, Bennett, ST: Reference ranges for blood concentrations of nucleated red blood cells in neonates. Neonatology. 2011;99(4):289–94.10.1159/000320148CrossRefGoogle ScholarPubMed
Christensen, RD, Henry, E, Jopling, J, Wiedmeier, SE: The CBC: reference ranges for neonates. Semin Perinatol. 2009;33(1):311.10.1053/j.semperi.2008.10.010CrossRefGoogle ScholarPubMed
Rolfo, A, Maconi, M, Cardaropoli, S, et al. Nucleated red blood cells in term fetuses: reference values using an automated analyzer. Neonatology. 2007;92(3):205–8.10.1159/000102096CrossRefGoogle ScholarPubMed
Hanlon-Lundberg, KM, Kirby, RS, Gandhi, S, et al. Nucleated red blood cells in cord blood of singleton term neonates. Am J Obstet Gynecol. 1997;176(6):1149–54.10.1016/S0002-9378(97)70328-4CrossRefGoogle Scholar
Hermansen, MC. Nucleated red blood cells in the fetus and newborn. Arch Dis Child Fetal Neonatal Ed. 2001;84:F211–15.10.1136/fn.84.3.F211CrossRefGoogle ScholarPubMed
McCarthy, JM, Capullari, T, Thompson, Z, et al. Umbilical cord nucleated red blood cell counts: normal values and the effect of labor. J Perinatol. 2006;26(2):8992.10.1038/sj.jp.7211437CrossRefGoogle ScholarPubMed
Perrone, S, Vezzosi, P, Longini, M, et al. Nucleated red blood cell count in term and preterm newborns: reference values at birth. Arch Dis Child Fetal Neonatal. 2005;90:F174F175.10.1136/adc.2004.051326CrossRefGoogle ScholarPubMed
Rolfo, A, Maconi, M, Cardaropoli, S, et al. Nucleated red blood cells in term fetuses: reference values using an automated analyzer. Neonatology. 2007;92(3):205–8.10.1159/000102096CrossRefGoogle ScholarPubMed

References

Opitz, JM, Johnson, DR, Gilbert-Barness, EF. ADAM “Sequence” part II: hypothesis and speculation. Am J Med Genet Part A 2015;167A:478503.10.1002/ajmg.a.36937CrossRefGoogle ScholarPubMed
Higginbotham, MC, Jones, KL, Hall, BD, Smith, DW. The amnionic band disruption complex: timing of amniotic rupture and variable spectra of consequent defects. J Pediatr 1979;95:544–9.Google Scholar
Kalousek, D, Bamforth, S. Amnion rupture sequence in previable fetuses. Am J Med Genet 1988;31:6373.10.1002/ajmg.1320310110CrossRefGoogle ScholarPubMed
Benirschke, K, Burton, GJ, Baergen, RN. Anatomy and Pathology of the Placental Membranes. In: Pathology of the Human Placenta. 6th ed. New York: Springer. 2012:287–94.10.1007/978-3-642-23941-0CrossRefGoogle Scholar
Orioli, IM, Ribeiro, MG, Castilla, EE. Clinical and epidemiological studies of amniotic deformity, adhesion and mutilation (ADAM) sequence in a South American (ECLAMC) population. Am J Med Genet 2003;118A:135–45.10.1002/ajmg.a.10194CrossRefGoogle Scholar
Torpin, A. Amniochorionic mesoblastic fibrous strings and aniotic bands. Associated constricting fetal malformations or fetal death. Am J Obstet Gynecol 1965;91:6575.10.1016/0002-9378(65)90588-0CrossRefGoogle ScholarPubMed
Streeter, GL . Focal deficiencies in fetal tissues and their relation to intra-uterine amputation. Contrib Embryol 1930;22:344.Google Scholar
Van Allen, MI, Curry, C, Gallagher, L. Limb body wall complex: I. Pathogenesis. Am J Med Genet 1987;28:529–48.Google ScholarPubMed
Van Allen, MI, Curry, C, Walden, CE, Gallagher, L, Patten, RM. Limb body wall complex: II. Limb and spine defects. Am J Med Genet 1987;28:549–65.Google ScholarPubMed
Yang, SS. ADAM sequence and innocent amniotic band: manifestations of early amnion rupture. Am J Med Genet 1990;37:562–8.10.1002/ajmg.1320370429CrossRefGoogle ScholarPubMed
Yang, SS, Levine, AJ, Sanborn, JR, Delp, RA. Amniotic rupture, extra-amniotic pregnancy, and vernix granulomata. Am J Surg Path 1984;8:117–22.10.1097/00000478-198402000-00005CrossRefGoogle ScholarPubMed
Keswani, SG, Johnson, MP, Adzik, NS, Hori, S, Howell, LJ, Wilson, RD, Hedrick, H, Flake, AW, Crombleholme, TM. In utero limb salvage: fetoscopic release of amniotic bands for threatened limb amputation. J Pediatr Surg 2003;38:848–51.10.1016/S0022-3468(03)00109-XCrossRefGoogle ScholarPubMed
Soldado, F, Aguirre, M, Pierὀ, JL, Fontecha, CG, Esteves, M, Velez, R, Martinez-Ibáñez, V . Fetal surgery of extremity amniotic bands: an experimental model of in utero limb salvage in fetal lamb. J Pediatr Orthop 2009;29:98102.10.1097/BPO.0b013e318192196eCrossRefGoogle ScholarPubMed
Lubinsky, M, Sujansky, E, Sanger, W, Salyards, W, Severn, C. Familial amniotic bands. Am J Med Genet 1983;14:81–7.10.1002/ajmg.1320140113CrossRefGoogle ScholarPubMed
Strauss, A, Hasbergen, U, Paek, B, Bauerfeind, I, Hepp, H. Intra-uterine fetal demise caused by amniotic band syndrome after standard amniocentesis. Fetal Diagn Ther 2000;15:47.10.1159/000020968CrossRefGoogle ScholarPubMed
Jacques, SM, Qureshi, F. Subamnionic vernix caseosa. Pediatr pathol 1994;14:585–93.10.3109/15513819409023333CrossRefGoogle ScholarPubMed
Bendon, RW, Ray, RB. The pathologic findings of the fetal membranes in very prolonged amniotic fluid leakage. Arch Pathol Lab Med 1986;110:4750.Google ScholarPubMed
Landing, BH. Amnion nodosum: a lesion of the placenta apparently associated with deficient secretion of fetal urine. Am J Obstet Gynecol. 1950;60:1339–42.10.1016/0002-9378(50)90016-0CrossRefGoogle ScholarPubMed
Bartman, J, Driscoll, SG. Amnion nodosum and hypoplastic cystic kidneys: an electron microscopic and microdissection study. Obstet Gynecol. 1968;32:700–05.Google ScholarPubMed
Bain, AD, Beath, MM, Flint, WF. Sirenomelia and monomelia with renal agenesis and amnion nodosum. Arch Dis Child. 1960;35:250–3.10.1136/adc.35.181.250CrossRefGoogle ScholarPubMed
Adeniran, A J, Stanek, J. Amnion nodosum revisited. Clinicopathologic and placental correlations. Arch Pathol Lab Med. 2007;131:1829–33.10.5858/2007-131-1829-ANRCAPCrossRefGoogle ScholarPubMed

References

Potter, JF, Schoeneman, M. Metastasis of maternal cancer to the placenta and fetus. Cancer 1970;25:380–8.10.1002/1097-0142(197002)25:2<380::AID-CNCR2820250216>3.0.CO;2-Q3.0.CO;2-Q>CrossRefGoogle Scholar
Pavlidis, N, Pentheroudakis, G. Metastatic Involvement of Placenta and Foetus in Pregnant Women with Cancer. Cancer and Pregnancy. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008:183–94.Google Scholar
Pavlidis, NA. Coexistence of pregnancy and malignancy. The oncologist 2002;7:279–87.10.1634/theoncologist.2002-0279CrossRefGoogle ScholarPubMed
Pentheroudakis, G, Pavlidis, N. Cancer and pregnancy: poena magna, not anymore. European journal of cancer 2006;42:126–40.10.1016/j.ejca.2005.10.014CrossRefGoogle Scholar
Fox, H, Sebire, N. Pathology of the Placenta. 3 ed: Saunders Elsevier; 2007.Google Scholar
Dildy, GA 3rd, Moise, KJ Jr., Carpenter, RJ Jr., Klima, T. Maternal malignancy metastatic to the products of conception: a review. Obstet Gynecol Surv 1989;44:535–40.10.1097/00006254-198907000-00008CrossRefGoogle Scholar
Rothman, LA, Cohen, CJ, Astarloa, J. Placental and fetal involvement by maternal malignancy: a report of rectal carcinoma and review of the literature. Am J Obstet Gynecol 1973;116:1023–34.10.1016/S0002-9378(16)33854-6CrossRefGoogle ScholarPubMed
Baergen, RN, Johnson, D, Moore, T, Benirschke, K. Maternal melanoma metastatic to the placenta: a case report and review of the literature. Arch Pathol Lab Med 1997;121:508–11.Google Scholar
Alexander, A, Samlowski, WE, Grossman, D, et al. Metastatic melanoma in pregnancy: risk of transplacental metastases in the infant. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2003;21:2179–86.10.1200/JCO.2003.12.149CrossRefGoogle ScholarPubMed
Shuhaila, A, Rohaizak, M, Phang, KS, Mahdy, ZA. Maternal melanoma with placental metastasis. Singapore medical journal 2008;49:e71–2.Google ScholarPubMed
Valenzano Menada, M, Moioli, M, Garaventa, A, et al. Spontaneous regression of transplacental metastases from maternal melanoma in a newborn: case report and review of the literature. Melanoma research 2010;20:443–9.10.1097/CMR.0b013e32833faf6aCrossRefGoogle Scholar
Cavell, B. Transplacental Metastasis of Malignant Melanoma. Report of a Case. Acta paediatrica Supplementum 1963:SUPPL146:3740.10.1111/j.1651-2227.1963.tb05515.xCrossRefGoogle ScholarPubMed
Cavell, B. Letter: Transplacental melanoma–one-year survival. Pediatrics 1976;57:978–9.10.1542/peds.57.6.978CrossRefGoogle ScholarPubMed
Anderson, JF, Kent, S, Machin, GA. Maternal malignant melanoma with placental metastasis: a case report with literature review. Pediatr Pathol 1989;9:3542.10.3109/15513818909022330CrossRefGoogle ScholarPubMed
Dillman, RO, Vandermolen, LA, Barth, NM, Bransford, KJ. Malignant melanoma and pregnancy ten questions. The Western journal of medicine 1996;164:156–61.Google ScholarPubMed
Surbone, A, Pecatori, F, Pavlidis, N. Cancer and Pregnancy. Berlin: Springer; 2008.10.1007/978-3-540-71274-9CrossRefGoogle ScholarPubMed
Sheikh, SS, Khalifa, MA, Marley, EF, Bagg, A, Lage, JM. Acute monocytic leukemia (FAB M5) involving the placenta associated with delivery of a healthy infant: case report and discussion. Int J Gynecol Pathol 1996;15:363–6.10.1097/00004347-199610000-00010CrossRefGoogle Scholar
Osada, S, Horibe, K, Oiwa, K, et al. A case of infantile acute monocytic leukemia caused by vertical transmission of the mother’s leukemic cells. Cancer 1990;65:1146–9.10.1002/1097-0142(19900301)65:5<1146::AID-CNCR2820650519>3.0.CO;2-J3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Catlin, EA, Roberts, JD Jr., Erana, R, et al. Transplacental transmission of natural-killer-cell lymphoma. N Engl J Med 1999;341:8591.10.1056/NEJM199907083410204CrossRefGoogle ScholarPubMed
Maruko, K, Maeda, T, Kamitomo, M, Hatae, M, Sueyoshi, K. Transplacental transmission of maternal B-cell lymphoma. Am J Obstet Gynecol 2004;191:380–1.10.1016/j.ajog.2003.12.036CrossRefGoogle ScholarPubMed
Priesel, A, Winkelbauer, A. Placentare Ubertragung des lymphogranulomas. Virchows Arch 1926;262:749.10.1007/BF01996871CrossRefGoogle Scholar
Meguerian-Bedoyan, Z, Lamant, L, Hopfner, C, Pulford, K, Chittal, S, Delsol, G. Anaplastic large cell lymphoma of maternal origin involving the placenta: case report and literature survey. Am J Surg Pathol 1997;21:1236–41.10.1097/00000478-199710000-00016CrossRefGoogle ScholarPubMed
Vetter, G, Zimmermann, F, Bruder, E, Schulzke, S, Hosli, I, Vetter, M. Aggressive Breast Cancer during Pregnancy with a Rare Form of Metastasis in the Maternal Placenta. Geburtshilfe und Frauenheilkunde 2014;74:579–82.Google ScholarPubMed
Boussios, S, Han, SN, Fruscio, R, et al. Lung cancer in pregnancy: report of nine cases from an international collaborative study. Lung cancer 2013;82:499505.10.1016/j.lungcan.2013.09.002CrossRefGoogle ScholarPubMed
Jackisch, C, Louwen, F, Schwenkhagen, A, et al. Lung cancer during pregnancy involving the products of conception and a review of the literature. Arch Gynecol Obstet 2003;268:6977.10.1007/s00404-002-0356-xCrossRefGoogle Scholar
Thelmo, MC, Shen, EP, Shertukde, S. Metastatic pulmonary adenocarcinoma to placenta and pleural fluid: clinicopathologic findings. Fetal Pediatr Pathol 2010;29:4556.10.3109/15513810903266625CrossRefGoogle ScholarPubMed
Tolar, J, Coad, JE, Neglia, JP. Transplacental transfer of small-cell carcinoma of the lung. N Engl J Med 2002;346:1501–2.10.1056/NEJM200205093461917CrossRefGoogle ScholarPubMed
Innamaa, A, Deering, P, Powell, MC. Advanced lung cancer presenting with a generalized seizure in pregnancy. Acta Obstet Gynecol Scand 2006;85:1148–9.10.1080/00016340600604062CrossRefGoogle ScholarPubMed
Walker, JW, Reinisch, JF, Monforte, HL. Maternal pulmonary adenocarcinoma metastatic to the fetus: first recorded case report and literature review. Pediatr Pathol Mol Med 2002;21:5769.10.1080/pdp.21.1.57.69CrossRefGoogle Scholar
Cailliez, D, Moirot, MH, Fessard, C, Hemet, J, Philippe, E. [Placental localisation of cancer of the cervix (author’s transl)]. Journal de gynecologie, obstetrique et biologie de la reproduction 1980;9:461–3.Google ScholarPubMed
Can, NT, Robertson, P, Zaloudek, CJ, Gill, RM. Cervical squamous cell carcinoma metastatic to placenta. Int J Gynecol Pathol 2013;32:516–9.10.1097/PGP.0b013e3182763178CrossRefGoogle ScholarPubMed
Herskovic, E, Ryan, M, Weinstein, J, Wadhwani, NR. Maternal to fetal transmission of cervical carcinoma. Pediatric radiology 2014;44:1035–8.10.1007/s00247-013-2858-zCrossRefGoogle ScholarPubMed
Fritsch, M, Jaffe, ES, Griffin, C, Camacho, J, Raffeld, M, Kingma, DW. Lymphoproliferative disorder of fetal origin presenting as oligohydramnios. Am J Surg Pathol 1999;23:595601.10.1097/00000478-199905000-00015CrossRefGoogle ScholarPubMed
Dai, Q, Reddy, VV, Choi, JK, Faye-Petersen, OM. Trisomy 21-associated transient abnormal myelopoiesis involving the maternal space of the placenta: a case report and literature review. Pediatr Dev Pathol 2014;17:366–73.10.2350/14-04-1476-CR.1CrossRefGoogle ScholarPubMed
Kume, A, Morikawa, T, Ogawa, M, Yamashita, A, Yamaguchi, S, Fukayama, M. Congenital neuroblastoma with placental involvement. International journal of clinical and experimental pathology 2014;7:8198–204.Google ScholarPubMed
de Tar, MW, Dittman, W, Gilbert, J. Transient myeloproliferative disease of the newborn: case report with placental, cytogenetic, and flow cytometric findings. Hum Pathol 2000;31:396–8.Google ScholarPubMed
Ohyama, M, Ijiri, R, Tanaka, Y, et al. Congenital primitive epithelial tumor of the liver showing focal rhabdoid features, placental involvement, and clinical features mimicking multifocal hemangioma or stage 4S neuroblastoma. Hum Pathol 2000;31:259–63.CrossRefGoogle ScholarPubMed
Perkins, DG, Kopp, CM, Haust, MD. Placental infiltration in congenital neuroblastoma: a case study with ultrastructure. Histopathology 1980;4:383–9.Google ScholarPubMed
Reif, P, Hofer, N, Kolovetsiou-Kreiner, V, Benedicic, C, Ratschek, M. Metastasis of an undifferentiated fetal soft tissue sarcoma to the maternal compartment of the placenta: maternal aspects, pathology findings and review of the literature on fetal malignancies with placenta metastases. Histopathology 2014;65:933–42.10.1111/his.12442CrossRefGoogle Scholar
O’Day, MP, Nielsen, P, al-Bozom, I, Wilkins, IA. Orbital rhabdomyosarcoma metastatic to the placenta. Am J Obstet Gynecol 1994;171:1382–3.Google ScholarPubMed
Nath, ME, Kanbour, A, Hu, J, Surti, U, Kunschner, A, Dickman, PS. Transplantation of congenital primitive neuroectodermal tumor of fetus to the uterus of mother: application of biotin-labeled chromosome-specific probes. Int J Gynecol Cancer 1995;5:459–64.10.1046/j.1525-1438.1995.05060459.xCrossRefGoogle Scholar
de Tar, M, Sanford Biggerstaff, J. Congenital renal rhabdoid tumor with placental metastases: immunohistochemistry, cytogenetic, and ultrastructural findings. Pediatr Dev Pathol 2006;9:161–7.CrossRefGoogle ScholarPubMed
White, FV, Dehner, LP, Belchis, DA, et al. Congenital disseminated malignant rhabdoid tumor: a distinct clinicopathologic entity demonstrating abnormalities of chromosome 22q11. Am J Surg Pathol 1999;23:249–56.CrossRefGoogle ScholarPubMed
Schneiderman, H, Wu, AY, Campbell, WA, et al. Congenital melanoma with multiple prenatal metastases. Cancer 1987;60:1371–7.10.1002/1097-0142(19870915)60:6<1371::AID-CNCR2820600635>3.0.CO;2-03.0.CO;2-0>CrossRefGoogle ScholarPubMed
Robinson, HB Jr., Bolande, RP. Case 3. Fetal hepatoblastoma with placental metastases. Pediatr Pathol 1985;4:163–7.10.3109/15513818509025915CrossRefGoogle ScholarPubMed
Doss, BJ, Vicari, J, Jacques, SM, Qureshi, F. Placental involvement in congenital hepatoblastoma. Pediatr Dev Pathol 1998;1:538–42.10.1007/s100249900074CrossRefGoogle ScholarPubMed
Gray, ES, Balch, NJ, Kohler, H, Thompson, WD, Simpson, JG. Congenital leukaemia: an unusual cause of stillbirth. Arch Dis Child 1986;61:1001–6.10.1136/adc.61.10.1001CrossRefGoogle ScholarPubMed
Las Heras, J, Leal, G, Haust, MD. Congenital leukemia with placental involvement. Report of a case with ultrastructural study. Cancer 1986;58:2278–81.Google ScholarPubMed
Allan, RR, Wadsworth, LD, Kalousek, DK, Massing, BG. Congenital erythroleukemia: a case report with morphological, immunophenotypic, and cytogenetic findings. American journal of hematology 1989;31:114–21.10.1002/ajh.2830310208CrossRefGoogle ScholarPubMed
Mora, J, Dobrenis, AM, Bussel, JB, Aledo, A. Spontaneous remission of congenital acute nonlymphoblastic leukemia with normal karyotype in twins. Medical and pediatric oncology 2000;35:110–3.10.1002/1096-911X(200008)35:2<110::AID-MPO4>3.0.CO;2-Z3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Heald, B, Hilden, JM, Zbuk, K, et al. Severe TMD/AMKL with GATA1 mutation in a stillborn fetus with Down syndrome. Nature clinical practice Oncology 2007;4:433–8.10.1038/ncponc0876CrossRefGoogle Scholar
Roy, A, Roberts, I, Vyas, P. Biology and management of transient abnormal myelopoiesis (TAM) in children with Down syndrome. Semin Fetal Neonatal Med 2012;17:196201.10.1016/j.siny.2012.02.010CrossRefGoogle ScholarPubMed
Ravishankar, S, Hoffman, L, Lertsburapa, T, Welch, J, Treaba, D, De Paepe, ME. Extensive placental choriovascular infiltration by maturing myeloid cells in down syndrome-associated transient abnormal myelopoiesis. Pediatr Dev Pathol 2015;18:231–6.CrossRefGoogle ScholarPubMed
Bombery, M, Vergilio, JA. Transient abnormal myelopoiesis in neonates: GATA get the diagnosis. Arch Pathol Lab Med 2014;138:1302–6.10.5858/arpa.2014-0304-CCCrossRefGoogle ScholarPubMed
Allen, AT, Dress, AF, Moore, WF. Mirror syndrome resulting from metastatic congenital neuroblastoma. Int J Gynecol Pathol 2007;26:310–2.10.1097/pgp.0b013e31802e3bfeCrossRefGoogle ScholarPubMed
Scalvenzi, M, Palmisano, F, Cacciapuoti, S, et al. Giant congenital melanocytic naevus with proliferative nodules mimicking congenital malignant melanoma: a case report and review of the literature of congenital melanoma. Case reports in dermatological medicine 2013;2013:473635.10.1155/2013/473635CrossRefGoogle ScholarPubMed
Viana, AC, Gontijo, B, Bittencourt, FV. Giant congenital melanocytic nevus. Anais brasileiros de dermatologia 2013;88:863–78.10.1590/abd1806-4841.20132233CrossRefGoogle ScholarPubMed
Alper, J, Holmes, LB, Mihm, MC Jr. Birthmarks with serious medical significance: nevocullular nevi, sebaceous nevi, and multiple cafe au lait spots. J Pediatr 1979;95:696700.10.1016/S0022-3476(79)80713-1CrossRefGoogle ScholarPubMed
Castilla, EE, da Graca Dutra, M, Orioli-Parreiras, IM. Epidemiology of congenital pigmented naevi: I. Incidence rates and relative frequencies. The British journal of dermatology 1981;104:307–15.Google ScholarPubMed
Demian, SD, Donnelly, WH, Frias, JL, Monif, GR. Placental lesions in congenital giant pigmented nevi. Am J Clin Pathol 1974;61:438–42.10.1093/ajcp/61.3.438CrossRefGoogle ScholarPubMed
Holaday, WJ, Castrow, FF 2nd. Placental metastasis from a fetal giant pigmented nevus. Archives of dermatology 1968;98:486–8.10.1001/archderm.1968.01610170046007CrossRefGoogle ScholarPubMed
Sotelo-Avila, C, Graham, M, Hanby, DE, Rudolph, AJ. Nevus cell aggregates in the placenta. A histochemical and electron microscopic study. Am J Clin Pathol 1988;89:395400.10.1093/ajcp/89.3.395CrossRefGoogle ScholarPubMed
Antaya, RJ, Keller, RA, Wilkerson, JA. Placental nevus cells associated with giant congenital pigmented nevi. Pediatric dermatology 1995;12:260–2.10.1111/j.1525-1470.1995.tb00173.xCrossRefGoogle ScholarPubMed
Jauniaux, E, de Meeus, MC, Verellen, G, Lachapelle, JM, Hustin, J. Giant congenital melanocytic nevus with placental involvement: long-term follow-up of a case and review of the literature. Pediatr Pathol 1993;13:717–21.10.3109/15513819309048258CrossRefGoogle ScholarPubMed
Kinsler, V, Thomas, A, Ishida, M, et al. Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 62 of NRAS. The Journal of investigative dermatology 2013;133:2229–36.10.1038/jid.2013.70CrossRefGoogle Scholar
Charbel, C, Fontaine, RH, Malouf, GG, et al. NRAS mutation is the sole recurrent somatic mutation in large congenital melanocytic nevi. The Journal of investigative dermatology 2014;134:1067–74.10.1038/jid.2013.429CrossRefGoogle Scholar
Etchevers, HC. Hiding in plain sight: molecular genetics applied to giant congenital melanocytic nevi. The Journal of investigative dermatology 2014;134:879–82.10.1038/jid.2013.531CrossRefGoogle ScholarPubMed
Zaal, LH, Mooi, WJ, Klip, H, van der Horst, CM. Risk of malignant transformation of congenital melanocytic nevi: a retrospective nationwide study from The Netherlands. Plastic and reconstructive surgery 2005;116:1902–9.10.1097/01.prs.0000189205.85968.12CrossRefGoogle ScholarPubMed
Bittencourt, FV, Marghoob, AA, Kopf, AW, Koenig, KL, Bart, RS. Large congenital melanocytic nevi and the risk for development of malignant melanoma and neurocutaneous melanocytosis. Pediatrics 2000;106:736–41.10.1542/peds.106.4.736CrossRefGoogle ScholarPubMed

References

Jacques, SM, Qureshi, F. Adrenocortical and hepatic nodules within placental tissue. Pediatr Dev Pathol 2003;6:464–6.Google ScholarPubMed
Khalifa, MA, Gersell, DJ, Hansen, CH, Lage, JM. Hepatic (hepatocellular) adenoma of the placenta: a study of four cases. Int J Gynecol Pathol 1998;17:241–4.10.1097/00004347-199807000-00008CrossRefGoogle ScholarPubMed
Vesoulis, Z, Agamanolis, D. Benign hepatocellular tumor of the placenta. Am J Surg Pathol 1998;22:436–40.10.1097/00000478-199803000-00011CrossRefGoogle ScholarPubMed
DeNapoli, TS. Coexistent chorangioma and hepatic adenoma in one twin placenta: a case report and review of the literature. Pediatr Dev Pathol 2015;18:422–5.10.2350/14-12-1592-CR.1CrossRefGoogle ScholarPubMed
Chen, KTK, Chan, KM, Kassel, SH. Hepatocellular adenoma of the placenta. Am J Surg Pathol 1986;10:436–40.10.1097/00000478-198606000-00009CrossRefGoogle ScholarPubMed
Cox, JN, Chavrier, F. Heterotopic adrenocortical tissue within a placenta. Placenta 1980;1:131–3.10.1016/S0143-4004(80)80021-XCrossRefGoogle ScholarPubMed
Labarrere, CA, Caccamo, D, Telenta, M, Althabe, O, Gutman, R. A nodule of adrenocortical tissue within a human placenta: light microscopic and immunocytochemical findings. Placenta 1984;5:139–43.10.1016/S0143-4004(84)80057-0CrossRefGoogle ScholarPubMed
Qureshi, F, Jacques, SM. Adrenocortical heterotopia in the placenta. Pediatr Pathol Lab Med 1995;15:51–6.10.3109/15513819509026939CrossRefGoogle ScholarPubMed
Guschmann, M, Vogel, M, Urban, M. Adrenal tissue in the placenta: a heterotopia caused by migration and embolism? Placenta 2000;21:427–31.10.1053/plac.1999.0497CrossRefGoogle ScholarPubMed
Zhong, H, Xu, B, Popiolek, DA. Growth patterns of placental and paraovarian adrenocortical heterotopias are different. Case Rep Pathol 2013: 205692.10.1155/2013/205692CrossRefGoogle Scholar
Unger, JL, Placental teratoma Am J Clin Pathol 1989;92:371–3.10.1093/ajcp/92.3.371CrossRefGoogle ScholarPubMed
Block, D, Cruikshank, S, Kelly, K, Stanely, M. Placental teratoma. Int J Gynecol Obstet 1991;34:377–80.10.1016/0020-7292(91)90608-8CrossRefGoogle ScholarPubMed
Meinhard, K, Dimitrov, S, Nicolov, A, Dimitrova, V, Vassilev, N. Placental teratoma – a case report. Pathol Res Pract 1999;195:649–51.10.1016/S0344-0338(99)80130-7CrossRefGoogle ScholarPubMed
Fox, H, Butler-Manuel, R. A teratoma of the placenta. J Pathol Bacteriol 1964;88:137–40.10.1002/path.1700880118CrossRefGoogle ScholarPubMed
Stephens, TD, Spall, R, Urfer, AG, Martin, R. Fetus amorphus or placental teratoma? Teratology 1989;40: 110.CrossRefGoogle ScholarPubMed
Fox, H. Pathology of the Placenta. Philadelphia: WB Saunders, 1978:343–67.Google ScholarPubMed
Drut, R, Mortera, M, Drut, RM. Yolk sac tumor of the placenta in Wiedemann-Beckwith Syndrome. Pediatr Dev Pathol 1998;1:534–7.10.1007/s100249900073CrossRefGoogle ScholarPubMed
Matsuyama, T, Kushima, M, Yamochi-Onizuka, T, Ota, H. Placental yolk sac tumor with divergent endodermal differentiation. Int J Gynecol Pathol 2004;23;398402.10.1097/01.pgp.0000139662.05916.70CrossRefGoogle ScholarPubMed

References

Lake, BD, Young, EP, Winchester, BG. Prenatal diagnosis of lysosomal storage diseases. Brain Pathol. 1998;8:133–49.10.1111/j.1750-3639.1998.tb00141.xCrossRefGoogle ScholarPubMed
Platt, FM, Boland, B, van der Spoel, AC. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol. 2012;199:723–34.10.1083/jcb.201208152CrossRefGoogle ScholarPubMed
Whybra, C, Mengel, E, Russo, A, et al. Lysosomal storage disorder in non-immunological hydrops fetalis (NIHF): more common than assumed? Report of four cases with transient NIHF and a review of the literature. Orphanet J Rare Dis. 2012;7:86.CrossRefGoogle Scholar
Case Records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 23–1997. A premature newborn infant with congenital ascites. N Engl J Med. 1997;337:260–7.Google Scholar
Cox, P. Syndromes with stippled epiphyses/chondrodysplasia punctata (London medical database). Pediatric pathologists of the world, listserv. July 17, 2011.Google Scholar
Redline, RW, Zaragoza, MV, Hassold, T. Prevalence of developmental and inflammatory lesions in non-molar first trimester spontaneous abortions. Hum Pathol. 1999;30:93100.10.1016/S0046-8177(99)90307-6CrossRefGoogle Scholar
Dainese, L, Adam, N, Boudjemaa, S, et al. Glycogen Storage Disease Type IV and Early Implantation Defect: Early Trophoblastic Involvement Associated with a New GBE1 Mutation. Pediatr Dev Pathol. 2016;19:512–5.CrossRefGoogle ScholarPubMed
Grafe, MR, Benirschke, K. Ultrastructural study of the amniotic epithelium in a case of gastroschisis. Pediatr Pathol. 1990;10:95101.10.3109/15513819009067099CrossRefGoogle Scholar
Fowler, DJ, Anderson, G, Vellodi, A, et al. Electron microscopy of chorionic villus samples for prenatal diagnosis of lysosomal storage disorders. Ultrastruct Pathol. 2007;31:1521.10.1080/01913120601169469CrossRefGoogle ScholarPubMed
Jones, CJ, Lendon, M, Chawner, LE, et al. Ultrastructure of the human placenta in metabolic storage disease. Placenta. 1990;11:395411.10.1016/S0143-4004(05)80215-2CrossRefGoogle ScholarPubMed
Thurberg, BL, Politei, JM. Histologic abnormalities of placental tissues in Fabry disease: a case report and review of the literature. Hum Pathol. 2012;43:610–4.10.1016/j.humpath.2011.07.020CrossRefGoogle ScholarPubMed
Kostadinov, S, Shah, BA, Alroy, J, et al. A case of galactosialidosis with novel mutations of the protective protein/cathepsin a gene: diagnosis prompted by trophoblast vacuolization on placental examination. Pediatr Dev Pathol. 2014;17:474–7.10.2350/14-05-1500-CR.1CrossRefGoogle ScholarPubMed
Ferreira, CR, Gahl, WA. Lysosomal storage diseases. Translat Sci of Rare Dis. 2017;25:171.Google Scholar
Ernst, LM, Parkash, V. Placental pathology in fetal bartter syndrome. Pediatr Dev Pathol. 2002;5:76–9.10.1007/s10024-001-0092-4CrossRefGoogle ScholarPubMed
Maruyama, H, Shinno, Y, Fujiwara, K, et al. Nephrocalcinosis and placental findings in neonatal Bartter syndrome. AJP Rep. 2013;3:21–4.Google ScholarPubMed
Krasikov, NE, McKusick, VA. #241200 Bartter syndrome, type 2, antenatal; BARTS2. www.omim.org/entry/241200.Google Scholar
Dane, B, Dane, C, Aksoy, F, et al. Antenatal Bartter syndrome: analysis of two cases with placental findings. Fetal Pediatr Pathol. 2010;29:121–6.10.3109/15513811003777276CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×