Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T07:57:55.410Z Has data issue: false hasContentIssue false

10 - Other Methods of Nuclear Spin Polarization

Published online by Cambridge University Press:  03 February 2020

Get access

Summary

Methods other than DNP may also produce high nuclear spin polarization, either in thermal equilibrium with the solid lattice, or in dynamic equilibrium in a rotating frame. Optical pumping methods create a very high enhancement of the nuclear spin polarization based on spin exchange collisions with atoms whose outer electron is polarized by circular polarized light. Some methods are also based on creating high non-equilibrium polarization that is then frozen in by increasing the spin–lattice relaxation time. Chemical and biomedical research teams use the term “hyperpolarization” to describe the general methods of spin polarization enhancement beyond thermal equilibrium; DNP methods belong clearly to these. Other methods include optical pumping and chemical polarization methods such as Chemical Induced Dynamic Nuclear Polarization (CIDNP) and Parahydrogen Induced Polarization (PHIP).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Seely, M. L., Gould, C. R., Haase, D. G., et al., Polarized targets at triangle universities nuclear laboratory, Nuclear Instruments and Methods in Physics Research A356 (1995) 142147.Google Scholar
Heeringa, W., A brute-force polarized proton target, in: Meyer, W. (ed.) Proc. 4th Int. Workshop on Polarized Target Materials and Techniques, Physikalisches Institut, Universität Bonn, Bonn, 1984, pp. 129135.Google Scholar
Heeringa, W., Maier, C., Skacel, H., Exchange of polarized targets in a high magnetic field and at mK temperatures, in: Jaccard, S., Mango, S. (eds.) Proc. Int. Workshop on Polarized Sources and Targets, 1986, pp. 795798.Google Scholar
Hardy, W. N., Gaines, J. R., Nuclear spin relaxation in solid HD with H2 impurity, Phys. Rev. Lett. 17 (1966) 12781281.Google Scholar
Honig, A., Highly spin-polarized proton samples-large, accessible, and simply produced, Phys. Rev. Lett. 19 (1967) 10091010.Google Scholar
Honig, A., Fan, Q., Wei, X., Sandorfi, A. M., Whisnant, C. S., New investigations of polarized solid HD targets, in: Dutz, H., Meyer, W. (eds.) Proc. 7th Int. Workshop on Polarized Target Materials and Techniques, Elsevier, Amsterdam, 1995, pp. 3946.Google Scholar
LEGS-Spin Collaboration, Hoblit, S., Sandorfi, A. M., et al., Measurements of and implications for the convergence of the Gerasimov-Drell-Hearn integral, Phys. Rev. Lett. 102 (2009) 172002.Google Scholar
Wheatley, J. C., Possible polarized He3 targets using the adiabatic compression method, in: Shapiro, G. (ed.) Proc. 2nd Int. Conf. on Polarized Targets, LBL, University of California, Berkeley, Berkeley, 1971, pp. 7376.Google Scholar
Langley, K. H., Jeffries, C. D., Theory and operation of a proton-spin refrigerator, Phys. Rev. 159 (1966) 358376.Google Scholar
Button-Shafer, J., Lichti, R. L., Potter, W. H., High proton polarization achieved with a (Yb, Y)(C2H5SO4)3·9H2O) spin refrigerator in a nonuniform magnetic field, Phys. Rev. Lett. 39 (1977) 677680.Google Scholar
Button-Shafer, J., The University of Massachusetts spin refrigerator and strange particle physics with the Brookhaven multiparticle spectrometer, in: Thomas, G.H. (ed.) High Energy Physics with Polarized Beams and Polarized Targets, American Institute of Physics, New York, 1979, pp. 4147.Google Scholar
Niinikoski, T. O., Penttila, S., Rieubland, J.-M., Stable atomic hydrogen: possible applications in intense polarized sources, in: Bunce, G. M. (ed.) Proc. 5th Int. Symp. on High-Energy Spin Physics, American Institute of Physics, New York, 1983, pp. 597600.Google Scholar
Matthey, A. T. M., Walraven, J. T. M., Silvera, I. F., Measurement of pressure of gaseous H↓: adsorption energies and surface recombination rates on helium, Phys. Rev. Lett. 46 (1981) 668.Google Scholar
van Yperen, G., Matthey, A. T. M., Walraven, J. T. M., Silvera, I. F., Adsorption energy and nuclear relaxation of H↓ on 3He-4HeMixtures, Phys. Rev. Lett. 47 (1981) 800803.Google Scholar
Penttilä, S., Niinikoski, T. O., Rieubland, J.-M., Rijllart, A., Continuous-wave NMR in spin-polarized atomic hydrogen, Phys. Rev. B 36 (1987) 35773582.Google Scholar
Griffin, R. G., Prisner, T. F., High field dynamic nuclear polarization—the renaissance, Physical Chemistry Chemical Physics 12 (2010) 57375740.Google Scholar
Kaptein, R., Photo-CIDNP studies of proteins, Biol. Magn. Res. 4 (1982) 145191.Google Scholar
Eisenschmid, T. C., Kirss, R. U., Deutsch, P. P., et al., Para hydrogen induced polarization in hydrogenation reactions, J. Am. Chem. Soc. 109 (1987) 80898091.Google Scholar
Golman, K., Axelsson, O., Johannesson, H., et al., Parahydrogen-induced polarization in imaging: subsecond C-13 angiography, Magn. Reson. Med. 46 (2001) 15.Google Scholar
Overhauser, A. W., Polarization of nuclei in metals, Phys. Rev. 92 (1953) 411415.Google Scholar
Carver, T. R., Slichter, C. P., Polarization of nuclear spins in metals, Phys. Rev. 92 (1953) 212213.Google Scholar
Carver, T. R., Slichter, C. P., Experimental verification of the Overhauser nuclear polarization effect, Phys. Rev. 102 (1956) 975980.Google Scholar
Abragam, A., The Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1961.Google Scholar
Hausser, K. H., Stehlik, D., Dynamic nuclear polarization in liquids, Advances in Magnetic and Optical Resonance 3 (1968) 79.Google Scholar
Solomon, I., Relaxation processes in a system of two spins, Phys. Rev. 99 (1955) 559565.Google Scholar
Henstra, A., Wenckebach, W. T., The theory of nuclear orientation via electron spin locking (NOVEL), Molecular Physics 106 (2008) 859871.Google Scholar
Henstra, A., Dirksen, P., Schmidt, J., Wenckebach, W. T., Nuclear spin orientation via electron spin locking (NOVEL), J. Magn. Reson. 77 (1988) 389393.Google Scholar
Hartmann, S. R., Hahn, E. L., Nuclear double resonance in the rotating frame, Phys. Rev. 128 (1962) 20422053.Google Scholar
Wenckebach, W. T., Essentials of Dynamic Nuclear Polarization, Spindrift Publications, The Netherlands, 2016.Google Scholar
Haeberli, W., Review of operating atomic beam sources, in: Jaccard, S., Mango, S. (eds.) Proc. Int. Workshop on Polarized Sources and Targets, Birkhäuser, Montana, Switzerland, 1986, pp. 513525.Google Scholar
Korsch, W., Intensity measurements on the FILTEX atomic beam source, in: Meyer, W., et al. (eds.) High Energy Spin Physics, Springer Verlag, Heidelberg, Bonn, 1990, pp. 168172.Google Scholar
Grüebler, W., Schmelzbach, P. A., Singy, D., Zhang, W. Z., Polarized atomic beams for targets, in: Meyer, W. (ed.) Proc. 4th Int. Workshop on Polarized Target Materials and Techniques, Physikalisches Institut, Universität Bonn, Bonn, 1984, pp. 193201.Google Scholar
Grüebler, W., Schmelzbach, P. A., Singy, D., Zhang, W. Z., Progress report on the cooled ETH polarized ion source, in: Jaccard, S., Mango, S. (eds.) Proc. Int. Workshop on Polarized Sources and Targets, Montana, Switzerland, 1986, pp. 568572.Google Scholar
Herschcovitch, A., Kponou, A., Niinikoski, T. O., Cooling of high-intensity atomic beams to liquid helium temperatures, in: Jaccard, S., Mango, S. (eds.) Proc. Int. Workshop on Polarized Sources and Targets, Montana, Switzerland, 1986, pp. 526538.Google Scholar
Schmelzbach, P. A., Recombination problems between 4 and 100 K, in: Jaccard, S., Mango, S. (eds.) Proc. Int. Workshop on Polarized Sources and Targets, Montana, Switzerland, 1986, pp. 539546.Google Scholar
Sukhanov, A. V., Torpakov, D. K., The pumping speed limitations of the atomic beam intensity, in: Meyer, W., et al. (eds.) High Energy Spin Physics, Springer Verlag, Heidelberg, Bonn, 1990, pp. 173177.Google Scholar
Steffens, E., Workshop report: polarized gas targets for storage rings, Heidelberg 1991, in Hasegawa, T. et al. (Eds.) Proc. 10th Int Symp. On High-Energy Spin Physics, Universal Academy Press, Inc., Tokyo, 1992, pp. 259268.Google Scholar
Golendoukhin, A., for the HERMES Collaboration, The HERMES polarized proton target at HERA, in: de Jager, C. W., et al. (eds.) 12th Int. Symp. on High-Energy Spin Physics, World Scientific, Singapore, 1996, pp. 331333.Google Scholar
Airapetian, A., Akopov, N., Akopov, Z., et al., The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring, Nuclear instruments and methods in physics research A 540 (2005) 68101.Google Scholar
Braun, B., Polarization of the HERMES hydrogen target, in: de Jager, C. W., et al. (eds.) 12th Int. Symp. on High-Energy Spin Physics, World Scientific, Singapore, 1996, pp. 241243.Google Scholar
Walters, G. K., Polarized 3He targets and ion sources by optical pumping, Polarized Targets and Ion Sources, La Direction de la Physique, CEN Saclay, Saclay, France, 1966, pp. 201214.Google Scholar
Carver, T. R., Some general problems in producing dense polarized 3He targets, Polarized Targets and Ion Sources, La Direction de la Physique, CEN Saclay, Saclay, France, 1966, pp. 191199.Google Scholar
Chupp, T. E., Wagshul, M. E., Coulter, K. P., McDonald, A. B., Happer, W., Polarized, high-density, gaseous 3He targets, Physical Review C 36 (1987) 22442251.Google Scholar
Johnson, J. R., Thompson, A. K., Chupp, T. E., et al., The SLAC high-density gaseous polarized 3He target, in: Dutz, H., Meyer, W. (eds.) 7th Int. Workshop on Polarized Target Materials and Techniques, Elsevier, Amsterdam, 1994, pp. 148152.Google Scholar
Singh, J., Dolph, P., Mooney, K., et al., Recent advances in polarized He-3 targets, in: Crabb, D. G., et al. (eds.) 18th International Spin Physics Symposium, American Institute of Physics, New York, 2008, pp. 823832.Google Scholar
Nacher, P.-J., Courtade, E., Abboud, M., et al., Optical pumping of helium-3 at high pressure and magnetic field, hal.archives-ouvertes.fr/hal-00002223/2002 , pp. 22252236.Google Scholar
Otten, E. W., Take a breath of polarized noble gas, Europhysics News 35 (2004) 1620.Google Scholar
Krimmer, J., Heil, W., Karpuk, S., Sahli, Z., Polarized 3He targets at MAMI, in: Crabb, D.G., et al. (eds.) 18th International Spin Physics Symposium, American Institute of Physics, New York, 2008, pp. 829832.Google Scholar
Chudakov, E., Luppov, V., Møller polarimetry with atomic hydrogen targets, IEEE Trans. Nucl. Sci. 51 (2004) 15331540.Google Scholar
Chudakov, E., Luppov, V., Møller polarimetry with atomic hydrogen targets, The European Physical Journal A 24 (2005) 123126.Google Scholar
Becker, D., Bucoveanu, R., Grzesik, C., et al., The P2 experiment – a future high-precision measurement of the electroweak mixing angle at low momentum transfer, arXiv, 2018, pp. 164.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×