Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T00:06:41.879Z Has data issue: false hasContentIssue false

22 - Interacting Populations

from Part III - Interacting Bacteria and Biofilms

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Models for the growth of interacting bacteria, structured populations, game theory and pattern formation.

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 247 - 258
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

McNamara, J. M.; Leimar, O. Game Theory in Biology: Concepts and Frontiers. Oxford University Press: 2020. A wide ranging book on biological game theory, although there is a niche in the market for something with more emphasis on microorganisms e.g. a textbook on ‘Game theory with microorganisms’ needs to be written.CrossRefGoogle Scholar
Novak, M. A. Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press: 2006. Excellent intuitive introduction to game theory and evolutionary dynamics.Google Scholar
Otto, S. P., Day, T. A Biologist’s Guide to Mathematical Modelling in Ecology and Evolution. Princeton University Press: 2007.CrossRefGoogle Scholar

References

Otto, S.; Day, T., A Biologist’s Guide to Mathematical Modeling in Ecology and Evolution. Princeton University Press: 2007.CrossRefGoogle Scholar
Vynnycky, E.; White, R. G., An Introduction to Infectious Disease Modelling. Oxford University Press: 2010.Google Scholar
Drake, J. W., A constant rate of spontaneous mutation in DNA-based microbes. PNAS 1991, 88 (16), 71607164.CrossRefGoogle ScholarPubMed
Ochman, H.; Lawrence, J. G.; Groisman, E. A., Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405 (6784), 299304.CrossRefGoogle ScholarPubMed
Jones, C. J.; Lennon, J. T., Dormancy contributes to the maintenance of microbial diversity. PNAS 2010, 107 (13), 58815886.CrossRefGoogle Scholar
Ellner, S. P.; Guckenheimer, J., Dynamic Models in Biology. Princeton University Press: 2006.CrossRefGoogle Scholar
Koleva, K. Z.; Hellweger, F. L., From protein damage to cell aging to population fitness in E. coli: Insights from a multi-level agent-based model. Ecological Modelling 2015, 301, 6271.CrossRefGoogle Scholar
Wilson, M., Bacteriology of Humans: An Ecological Perspective. Blackwell: 2008.Google Scholar
Barb, J. J.; et al., The oral microbiome in alcohol use disorder. Journal of Oral Microbiology 2022, 14 (1), 2004790.CrossRefGoogle ScholarPubMed
Lambert, G.; Bergman, A.; Zhang, Q.; Bortz, D.; Austin, R., Physics of biofilms: The initial stages of biofilm formation and dynamics. New Journal of Physics 2014, 16 (4), 045005.CrossRefGoogle Scholar
Edelstein-Keshet, L., Mathematical Models in Biology. SIAM: 2005.CrossRefGoogle Scholar
Steinbach, G.; Crison, C.; Ng, S. L.; Hammer, B. K.; Yunker, P. J., Accumulation of dead cells from contact killing facilitates coexistence in bacterial biofilms. Journal of the Royal Society – Interface 2020, 17 (173), 20200486.CrossRefGoogle ScholarPubMed
Li, Y. Y.; Lachnit, T.; Fraune, S.; Bosch, T. C. G.; Traulsen, A.; Sieber, M., Temperate phages as self-replicating weapons in bacterial competition. Journal of the Royal Society – Interface 2017, 14 (137), 20170563.CrossRefGoogle ScholarPubMed
McNamara, J. M.; Leimar, O., Game Theory in Biology: Concepts and Frontiers. Oxford University Press: 2020.CrossRefGoogle Scholar
Li, X. Y.; Pietschke, C.; Fraune, S.; Altrock, P. M.; Bosch, T. C. G.; Traulsen, A., Which games are growing bacterial populations playing? Journal of Royal Society Interface 2015, 12 (108), 20150121.CrossRefGoogle ScholarPubMed
Kerr, B.; Riley, M. A.; Feldman, M. W.; Bohannan, J. M., Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 2002, 418 (6894), 171174.CrossRefGoogle Scholar
Maisonneuve, E.; Gerdes, K., Molecular mechanisms underlying bacterial persisters. Cell 2014, 157 (3), 539548.CrossRefGoogle ScholarPubMed
Griffin, A. S.; West, S. A.; Buckling, A., Cooperation and competition in pathogenic bacteria. Nature 2004, 430 (7003), 10241027.CrossRefGoogle ScholarPubMed
Ignazio-Espinoza, J. C.; Ahlgren, N. A.; Fuhrman, J. A., Long-term stability and red queen-like strain dynamics in marine viruses. Nature Microbiology 2020, 5 (2), 265271.CrossRefGoogle Scholar
Heilmann, S.; Sneppen, K.; Krishnae, S., Coexistence of phage and bacteria on the boundary of self-organized refuges. PNAS 2012, 109 (31), 1282812833.CrossRefGoogle ScholarPubMed
Xavier, J. B.; Foaster, K. R., Cooperation and conflict in microbial biofilms. PNAS 2007, 104 (3), 876881.CrossRefGoogle ScholarPubMed
Veening, J. W.; Smits, W. K.; Kuipers, O. P., Bistability, epigenetics and bet-hedging in bacteria. Annual Review of Microbiology 2008, 62, 193210.CrossRefGoogle ScholarPubMed
Kreft, J. U., Biofilms promote altruism. Microbiology 2004, 150 (8), 27512760.CrossRefGoogle ScholarPubMed
Zapien-Campos, R.; Olmedo-Alvarez, G.; Santillan, M., Antagonistic interactions are sufficient to explain self-assemblage of bacterial communities in a homogeneous environment. Frontiers in Microbiology 2015, 6, 489.Google Scholar
Reichenbach, T.; Mobilia, M.; Frey, E., Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature 2007, 448 (7157), 10461049.CrossRefGoogle ScholarPubMed
Solopova, A.; van Gestel, J.; Weissing, F. J.; Bachmann, H.; Teusink, B.; Kok, J.; Kuipers, O. P., Bet-hedging during bacterial diauxic shift. PNAS 2014, 111 (20), 74277432.CrossRefGoogle ScholarPubMed
Yong, E., I Contain Multitudes: The Microbes Within Us and A Grander View of Life. Vintage: 2017.Google Scholar
Lambert, G.; Vyawahare, S.; Austin, R. H., Bacteria and game theory: The rise and fall of cooperation in spatially heterogeneous environments. Interface Focus 2014, 4 (4), 0029.CrossRefGoogle ScholarPubMed
Whiteley, M.; Diggle, S. P.; Greenberg, E. P., Progress in and promise of bacterial quorum sensing research. Nature 2017, 551 (7680), 313320.CrossRefGoogle ScholarPubMed
Bolen, B. R.; Thoendel, M.; Singh, P. K., Self-generated diversity produces an insurance effect in biofilm communities. PNAS 2004, 101 (47), 1663016635.Google Scholar
Czirok, A.; Matsushita, M.; Vicsek, T., Theory of periodic swarming of bacteria: Application to Proteus mirabilis. Physical Review E 2001, 63 (3 Pt 1), 031915.CrossRefGoogle ScholarPubMed
Borner, U.; Deutsch, A.; Reichenbach, H.; Bar, M., Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions. Physical Review Letters 2002, 89 (7), 078101.CrossRefGoogle ScholarPubMed
Ben-Jacob, E.; Levine, H., Self-engineering capabilities of bacteria. Journal of Royal Society Interface 2006, 3 (6), 197214.CrossRefGoogle ScholarPubMed
Ben-Jacob, E.; Cohen, I.; Levine, H., Cooperative self-organization of microorganisms. Advances in Physics 2010, 49 (4), 395554.CrossRefGoogle Scholar
Alon, U., An Introduction to Systems Biology: Design Principles of Biological Circuits. 2nd ed. CRC Press: 2020.Google Scholar
Farrell, F.; Hallatschek, O.; Marenduzzo, D.; Waclaw, B., Mechanically driven growth of quasi-two-dimensional microbial colonies. Physical Review Letters 2013, 111 (16), 168101.CrossRefGoogle ScholarPubMed
Tronnolone, H.; et al., Diffusion-limited growth of microbial colonies. Scientific Reports 2018, 8 (1), 5992.CrossRefGoogle ScholarPubMed
Mendez, V.; Fedotov, S.; Horsthemke, W., Reaction-transport Systems: Mesoscopic Foundations, Fronts and Spatial Instabilities. Springer: 2012.Google Scholar
Vicsek, T.; Czirok, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Novel type of phase transition in a system of self-driven particles. Physical Review Letters 1995, 75 (6), 12261229.CrossRefGoogle Scholar
Ben-Jacob, E.; Cohen, I.; Shochet, O.; Tenenbaum, A.; Czirok, A.; Vicsek, T., Cooperative formation of chiral patterns during growth of bacterial colonies. Physical Review Letters 1995, 75 (15), 2899.CrossRefGoogle ScholarPubMed
Wakano, J. Y.; Maenosono, S.; Komoto, A.; Eiha, N.; Yamaguchi, Y., Self-organized pattern formation of a bacteria colony modeled by a reaction diffusion system and nucleation theory. Physical Review Letters 2003, 90 (25), 2581021.CrossRefGoogle ScholarPubMed
Cronenberg, T.; Welker, A.; Zollner, R.; Meel, C., Molecular motors govern liquid-like ordering and fusion dynamics of bacterial colonies. Physical Review Letters 2018, 121 (11), 118102.Google Scholar
Petroff, A. P.; Wu, X. L.; Libchaber, A., Fast moving bacteria can self-organize into active two-dimensional crystals of rotating cells. Physical Review Letters 2015, 114 (15), 158102.CrossRefGoogle ScholarPubMed
Guyon, E.; Hulin, J. P.; Petit, L.; Mitescu, C. D., Physical Hydrodynamics, 2nd ed. Oxford University Press: 2015.CrossRefGoogle Scholar
Hong, S. H.; Gorce, J. B.; Punzmann, H.; Francois, N.; Shats, M.; Xia, H., Surface waves control bacterial attachment and formation of biofilms in thin layers. Science Advances 2020, 6 (22), eaaz9386.CrossRefGoogle ScholarPubMed
Thomen, P.; Valentin, J. D. P.; Bitbol, A. F.; Henry, N., Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance. Soft Matter 2020, 16 (2), 494504.CrossRefGoogle Scholar
Paul, R.; Ghosh, T.; Tang, T.; Kamar, A., Rivalry in Bacillus subtilis: Enemy or family? Soft Matter 2019, 15 (27), 54005411.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×