Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T22:40:20.207Z Has data issue: false hasContentIssue false

10 - Transmembrane Transport and Biomimetic Membranes

Published online by Cambridge University Press:  30 November 2023

Nikolai Kocherginsky
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Based on physicochemical mechanics, Chapter 10 discusses transport through artificial and biological membranes. It also describes simple biomimetic membranes,and their possible applications.

Type
Chapter
Information
Physicochemical Mechanics
With Applications in Physics, Chemistry, Membranology and Biology
, pp. 276 - 351
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonov, V. F., Petrov, V. & Molnar, A. A., 1980. Appearance of single-ion channels in unmodified lipid bilayer-membranes at the phase-transition temperature. Nature, 283(5747), pp. 585586.CrossRefGoogle ScholarPubMed
Avdeef, A., 2003. Absorption and Drug Development. Hoboken: Wiley-Interscience.CrossRefGoogle Scholar
Baker, R., 2012. Membrane Technology and Applications. 3rd ed. Chichester: John Wiley.CrossRefGoogle Scholar
Butterfield, D. A., 1995. Biofunctional Membranes. New York: Plenum Press.Google Scholar
Camenisch, G., Fokers, G. & van de Waterbeemd, H., 1997. Comparison of passive drug transport through Caco-2 cells and artificial membranes. International Journal of Pharmaceutics, 147, pp. 6170.CrossRefGoogle Scholar
Crank, J., 1975. The Mathematics of Diffusion. 2nd ed. Oxford: Oxford University Press.Google Scholar
Cussler, E. L., 1997. Diffusion: Mass Transfer in Fluid Systems. 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Drioli, E., Giorno, L. & Fontananova, E., 2017. Comprehensive Membrane Science and Engineering. 2nd ed. New York: Elsevier.Google Scholar
Duncan, A. L., Robinson, A. & Walker, J. E., 2016. Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases. Proceedings of the National Academy of Sciences of the United States of America, 113(31), pp. 86878692.CrossRefGoogle ScholarPubMed
Fane, A., Wang, R. & Hu, M., 2015. Synthetic membranes for water purification: Status and future. Angewandte Reviews, 54, pp. 33683386.Google Scholar
Gasanoff, E., Yaguzhinsky, L. & Garab, G., 2021. Cardiolipin, non-bilayer structures and mitochondrial bioenergetics: Relevance to cardiovascular disease. Cells, 10(7), 1721.CrossRefGoogle ScholarPubMed
Gasanov, E. S., Kim, A., Yaguzhinsky, L. & Dagda, R., 2018. Non-bilayer structures in mitochondrial membrane regulate ATP synthase activity. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1860(2), pp. 586599.CrossRefGoogle ScholarPubMed
Giwa, A A., Hasan, S. W., Yousuf, A., Chakraborty, S., Johnson, D. J., Hilal, N., 2017. Biomimetic membranes: A critical review of recent progress. Desalination, 420, pp. 403424.CrossRefGoogle Scholar
Goldman, D., 1943. Potential, impedance, and rectification in membranes. Journal of General Physiology, 27, pp. 3756.CrossRefGoogle ScholarPubMed
Graham, T., 1866. On the absorption and dialytic separation of gases by colloid septa. Philosophical Magazine, 32, pp. 399-439.Google Scholar
Haines, T., 1983. Anionic lipid headgroups as a proton-conducting pathway along the surface of membranes: A hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 80(1), pp. 160164.CrossRefGoogle ScholarPubMed
Helix-Nielsen, C., ed., 2012. Biomimetic Membranes for Sensor and Separation Applications. Biological and Medical Physics, Biomedical Engineering. Dordrecht: Springer.CrossRefGoogle Scholar
Hille, B., 2022. Ionic channels in nerve membranes, 50 years on. Progress in Biophysics and Molecular Biology, 169170, pp. 1220.CrossRefGoogle Scholar
Hodgkin, A. & Huxley, A., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, pp. 500544.CrossRefGoogle ScholarPubMed
Hodgkin, A. & Katz, B., 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. Journal of Physiology, 108, pp. 3777.CrossRefGoogle ScholarPubMed
Horseva, N., Kocherginsky, N. & Shvedova, A., 1990. Transport of tetracycline antibiotics through biomimetic membranes. Bulgarian Journal of Biotechnics and Biotechnology, 1, pp. 3943.Google Scholar
Huang, S., Chen, J., Chen, L., Zou, D., Liu, C., 2020. A polymer inclusion membrane functionalized by di(2-ethylhexyl) phosphinic acid with hierarchically ordered porous structure for Lutetium (III) transport. Journal of Membrane Science, 593, 117458.CrossRefGoogle Scholar
Ikematsu, M., Iseki, M., Sugiyama, Y. & Mizukami, A., 1996. Lipid bilayer formation in a microporous membrane filter monitored by ac impedance analysis and purple membrane photoresponses. Journal of Electroanalytical Chemistry, 403, pp. 6168.CrossRefGoogle Scholar
Jelinek, R., 2013. Biomimetics: A Molecular Perspective. Berlin: De Gruyter.CrossRefGoogle Scholar
Jing, X., Ma, C., Ohigashi, Y., and Lambet, R.A., 2008. Functional studies indicate amantadine binds to the pore of the influenza A virus M2 proton-selective ion channel. Proceedings of the National Academy of Sciences of the United States of America, 105(31), pp. 1096710972.CrossRefGoogle Scholar
Kansy, M., Senner, F. & Gubernator, K., 1998. Physicochemical artificial membrane permeability assay in the description of passive absorption process. Journal of Medicinal Chemistry, 41, pp. 10701110.CrossRefGoogle Scholar
Katchalsky, A. & Curran, P., 1965. Nonequilibrium Thermodynamics in Biophysics. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Kemperman, A., 2000. Handbook on Bipolar Membrane Technology. Twente: Twente University Press.Google Scholar
Kocherginsky, N., 1979. Lipids as possible proton carriers from the respiratory chain to ATPase, and the mechanism of oxidative phosphorylation. Biofizika (USSR), 24, pp. 982987.Google Scholar
Kocherginsky, N., 1996. Facilitated transport of alkali metal cations through supported liquid membranes with fatty acids. In Bartsch, R. & Way, J., eds. Chemical Separations with Liquid Membranes. Washington, DC: American Chemical Society, pp. 7588.CrossRefGoogle Scholar
Kocherginsky, N., 2009a. Acidic lipids, H+-ATPases, and mechanism of oxidative phosphorylation: Physico-chemical ideas 30 years after P. Mitchell’s Nobel Prize award. Progress in Biophysics and Molecular Biology, 99, pp. 2041.CrossRefGoogle ScholarPubMed
Kocherginsky, N., 2009b. Voltage-sensitive ion channels, acidic lipids and Hodgkin-Huxley equations: New ideas 55 years later. Journal of Membrane Science, 328(1–2), pp. 5874.CrossRefGoogle Scholar
Kocherginsky, N., 2017. Redox membrane-based flow fuel cell. US Patent 9,799,907B2, p. 11.Google Scholar
Kocherginsky, N., 2018. Membrane-based washing and deacidification of oils. US Patent 1,006,5132B2, p. 11.Google Scholar
Kocherginsky, N., 2021a. Biomimetic membranes without proteins but with aqueous nanochannels and facilitated transport. Minireview. Membranes and Membrane Technologies, 3(6), pp. 434441.CrossRefGoogle Scholar
Kocherginsky, N., 2021b. Biomimetic membranes with aqueous nanochannels: Phase transitions and oscillations. Membranes and Membrane Technologies, 3(6), pp. 442447.CrossRefGoogle Scholar
Kocherginsky, N. & Bromberg, L., 1987. Effect of thermally induced phase transitions on the permeability of ultrafilters impregnated with lipid-like substances. Russian Journal of Physical Chemistry, 61(9), pp. 13411344.Google Scholar
Kocherginsky, N., Goldfeld, M. & Osak, I., 1991. Photo-stimulated coupled transport of electrons and protons across quinone-doped liquid polymer-supported biomimetic membrane. Journal of Membrane Science, 59, pp. 114.CrossRefGoogle Scholar
Kocherginsky, N. & Grishchenko, A., 2000. Mass transfer of long chain fatty acids through liqid-liquid interface stabilized by porous membrane. Separation and Purification Technology, 20, pp. 197208.CrossRefGoogle Scholar
Kocherginsky, N. & Grischenko, A., 2003. Method for metal recovery from aqueous solutions. US Patent 6,521,117B2, p. 12.Google Scholar
Kocherginsky, N., Grishchenko, A., Osipov, A. N. & Koh, S., 2001. Nitroxide radicals: Controlled release from and transport through biomimetic and hollow fibre membranes. Free Radical Research, 34, pp. 263283.CrossRefGoogle ScholarPubMed
Kocherginsky, N., Korolev, P. N., Krasnokutskaia, E. V., Kariagin, V. A., Bulgakova, V. G., 1988. Investigation of physicochemical mechanisms of gramicidin S action on a model membrane. Antibiotics and Chemotherapy (in Russian), 33(7), pp. 501508.Google Scholar
Kocherginsky, N., Liu, K. & Swartz, H., 1996. Thermo-induced phase transitions and regulation of permeability of biomimetic membranes. In Biofunctional Membranes. Butterfield, D. A. ed., New York: Plenum Press, pp. 163171.CrossRefGoogle Scholar
Kocherginsky, N. & Lvovich, V., 2010. Biomimetic membranes with aqueous nano channels but without proteins: Impedance of impregnated cellulose filters. Langmuir, 26(23), pp. 1820918218.CrossRefGoogle Scholar
Kocherginsky, N. & Osak, I., 1986. Dependence of the time to establish a stationary rate of transport in a liquid membrane on the concentration of the “carrier.Russian Journal of Physical Chemistry, 60(5), pp. 725727.Google Scholar
Kocherginsky, N., Osak, I. & Moshkovskii, Y., 1986a. Physicochemical study of the membranotoxic effects of aminazine (chlorpromazine) and of a group of antidepressants. Russian Journal of Physical Chemistry, 60(10), pp. 15161520.Google Scholar
Kocherginsky, N., Osak, I., Tul’kes, S. & Moshkovskii, Y. S., 1986b. The ion-exchange interactions of rimantadine with ultrafilters impregnated with lipid analogs. Russian Journal of Physical Chemistry, 60(9), pp. 13671370.Google Scholar
Kocherginsky, N. & Sharma, B. K., 2021. Interactions of surfactants with biomimetic membranes. 1: Ionic surfactants. Journal of Surfactants and Detergents, 24, pp. 661667.CrossRefGoogle Scholar
Kocherginsky, N. & Wang, Z., 2007. Polyaniline membrane based potentiometric sensor for ascorbic acid, other redox active species and chloride. Journal of Electroanalytical Chemistry, 611, pp. 162168.CrossRefGoogle Scholar
Kocherginsky, N. & Wang, Z., 2008. Ion/electron coupled transport through polyaniline membrane: Fast transmembrane reaction at neutral pH. Journal of Physical Chemistry B, 112, pp. 70167021.CrossRefGoogle ScholarPubMed
Kocherginsky, N. & Zhang, Y. K., 2003. Role of standard chemical potential in transport through anisotropic media and asymmetrical membranes. Journal of Physical Chemistry B, 107, pp. 78307837.CrossRefGoogle Scholar
Kocherginsky, N. M., 1989. The transport of non-electrolytes through an inhomogenious or asymmetric membrane. Russian Journal of Physical Chemistry, 63, pp. 10761078.Google Scholar
Kocherginsky, N. M., Bromberg, L. E., Osak, I. S. et al., 1985. Simulation of water transport through biomembranes on impregnated filters. Biologicheskie Membrany (in Russian), 1(9), pp. 17341755.Google Scholar
Kocherginsky, N. M., Osak, I. S., Bromberg, L. E. et al., 1987a. The modelling of biological membrane properties by means of filters impregnated with lipid-like substances. Journal of Membrane Science, 30, pp. 3946.CrossRefGoogle Scholar
Kocherginsky, N. M., Osak, I. S., Demochkin, V. V. & Rubaylo, V. L., 1987b. Physicochemical mechanism of ionophoric activity of fatty acids as stimulants of transmembrane monovalent cation exchange. Biologicheskie Membrany, 4(8), pp. 838848.Google Scholar
Kocherginsky, N. M., Zhang, Y. K. & Stucki, J. W., 2002. D2EHPA-based strontium removal from strongly alkaline nuclear waste. Desalination, 144, pp. 267272.CrossRefGoogle Scholar
Kotyk, A., Janacek, K. & Koryta, J., 1988. Biophysical Chemistry of Membrane Functions. Chichester: John Wiley.Google Scholar
Lakshminarayanaiah, N., 1969. Transport Phenomena in Membranes. New York: Academic Press.Google Scholar
Laude, H. & Masters, P. S., 1995. The coronavirus nucleocapsid protein. In Siddell, S. G, ed. The Coronaviridae. New York: Plenum Press, pp. 141163.CrossRefGoogle Scholar
Lewenstam, A., 2011. Non-equilibrium potentiometry: The very essence. Journal of Solid State Electrochemistry, 15, pp. 1522.CrossRefGoogle Scholar
Markin, V. & Chizmadjev, Y., 1974. Induced Ion Transport. Moscow: Nauka.Google Scholar
Mitchell, P., 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191(4784), pp. 144148.CrossRefGoogle ScholarPubMed
Mogutov, A. & Kocherginsky, N., 1994. Macrokinetics of facilitated transport through liquid membranes. Part 2: Stirring. Journal of Membrane Science, 86(1–2), pp. 127135.CrossRefGoogle Scholar
Morf, W., 1981. The Principles of Ion-Selective Electrodes and of Membrane Transport. Budapest: Akademia Kiado.Google Scholar
Mosgaard, L. & Heimburg, T., 2013. Lipid ion channels and the role of proteins. Accounts of Chemical Research, 46(12), pp. 29662976.CrossRefGoogle ScholarPubMed
Mulder, M., 1995. Basic Principles of Membrane Technology. 2nd ed. Dordrecht: Kluwer Academic.Google Scholar
Parsegian, A., 1969. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature, 221, pp. 644646.CrossRefGoogle Scholar
Podolak, M., Kocherginsky, N.M., Osak, I.S., Przestalski, S., Witek, S., 1992. Fluctuations of biomimetic membrane potential and membrane lysis, induced by surface-active glycine esters. Journal of Membrane Science, 66, pp. 143147.CrossRefGoogle Scholar
Sakmann, B. & Neher, E., eds., 1983. Single-Channel Recording. New York: Plenum Press.Google Scholar
Schafer, M., Gross, W., Ackemann, J. & Gebhard, M., 2002. The complex dielectric spectrum of heart tissue during ischemia. Bioelectrochemistry, 58(2), pp. 171180.CrossRefGoogle Scholar
Shen, Y.-X., Saboe, P.O., Sines, I.T., Erbakan, M., Kumar, M., 2014. Biomimetic membranes: A review. Journal of Membrane Science, 454, pp. 359381.CrossRefGoogle Scholar
Shohami, E. & Ilani, A., 1973. Model hydrophobic ion exchange membranes. Biophysical Journal, 13(11), pp. 12421260.CrossRefGoogle Scholar
Shu, J.-J., Teo, J. B. M. & Chan, W. K., 2017. Fluid velocity slip and temperature jump at a solid surface. Applied Mechanics Reviews, 69(2), 020801.CrossRefGoogle Scholar
Sorensen, T. & Compan, V., 1996. Salt flux and electromotive force in concentration cells with asymmetric ion exchange membranes and ideal 2:1 electrolytes. Journal of Physical Chemistry, 100, pp. 1526115273.CrossRefGoogle Scholar
Ti Tien, H. & Ottova-Leitmannova, A., 2000. Membrane Biophysics: As Viewed from Experimental Bilayer Lipid Membranes (Planar Lipid Bilayers and Spherical Liposomes). Amsterdam: Elsevier.Google Scholar
Timashev, S., 1991. Physical Chemistry of Membrane Processes. Chichester: Ellis Horwood.Google Scholar
Volkov, A. & Deamer, D., 1996. Liquid–Liquid Interfaces: Theory and Methods. Boca Raton: CRC Press.Google Scholar
Wang, J., Dlamini, D.S., Mishra, A.K., et al., 2014. A critical review of transport through osmotic membranes. Journal of Membrane Science, 454, pp. 516537.CrossRefGoogle Scholar
Weichselbaum, E., Österbauer, M., Knyazev, D. G., et al., 2017. Origin of proton affinity to membrane/water interfaces. Scientific Reports, 7(1), 4553.CrossRefGoogle ScholarPubMed
Williams, R. J. P., 1988. Proton circuits in biological energy interconversions. Annual Review of Biophysics and Biophysical Chemistry, 17, pp. 7197.CrossRefGoogle ScholarPubMed
Wu, B., Steinbronn, C, Alsterfjord, M, Zeuthen, T, Beitz, E., 2009. Concerted action of two cation filters in the aquaporin water channel. EMBO Journal, 28, pp. 21882194.CrossRefGoogle ScholarPubMed
Yampolskii, Y., Pinnau, I. & Freeman, B. E., 2006. Materials Science of Membranes for Gas and Vapor Separation. Chichester: John Wiley.CrossRefGoogle Scholar
Yaroslavtsev, A. B., Kulova, T. L., Skundin, A. M., Desyatov, A.V., Stenina, I. A., 2019. Nanomaterials for electrical energy storage. In Bradshaw, D., ed. Comprehensive Nanoscience and Nanotechnology. Vol. 5: Application of Nanoscience. 2nd ed. Amsterdam: Elsevier Academic Press, pp. 165206.CrossRefGoogle Scholar
Zhang, J., Kamenev, A. & Shklovskii, B., 2006. Ion exchange phase transitions in water-filled channels with charged walls. Physical Review E, 73(5), 051205.CrossRefGoogle ScholarPubMed
Zhao, J., Zhao, X., Zh., Jiang, Zh., Li, et al., 2014. Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 39, pp. 16681720.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×