Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T12:49:55.904Z Has data issue: false hasContentIssue false

6 - Yersinia inhibition of phagocytosis

Published online by Cambridge University Press:  07 August 2009

Maria Fällman
Affiliation:
Dept of Molecular Biology University of Umeå, 901 87 Umeå, Sweden
Anna Gustavsson
Affiliation:
Department of Molecular Biology University of Umeå, 90187 Umeå, Sweden
Joel D. Ernst
Affiliation:
New York University
Olle Stendahl
Affiliation:
Linköpings Universitet, Sweden
Get access

Summary

THE YERSINIA INFECTION

There are three human pathogenic Yersinia species: Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis (Smego et al. 1999; Sulakvelidze 2000). Y. pestis is the causative agent of bubonic plague and has been responsible for the deaths of millions of people over the years. This pathogen is transmitted to humans by the bite of an infected rodent flea. Once inside, the bacteria initially invade and proliferate in lymphatic tissue. Y. enterocolitica and Y. pseudotuberculosis cause enteric infections (yersinosis) in humans. These are transmitted to humans by infected beverages and food or by direct contact with infected mammals; pigs are the major reservoir (Bottone 1999; Smego et al. 1999). Despite having a different route of infection, the orally transmitted non-plague Yersinia species also exhibit tropism for lymphoid tissue. The infection route occurs through the ileal mucosa in the gastrointestinal tract, where they are taken up into the lymphoid follicles through M-cells. These specialized cells cover the lymphoid follicles of Peyer's patches and engulf bacteria in a way that resembles active phagocytosis (Grassl et al., 2003). The bacteria multiply within the Peyer's patches, which are intestinal lymphoid nodules that contain B and T lymphocytes and phagocytes, and then drain to mesenteric lymph nodes. At this location, Yersinia encounters cells of the innate immune system, and can exert a block on the customary antimicrobial functions of these cells, including phagocytosis (Hanski et al. 1989; Simonet et al. 1990).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abassi, Y. A., Rehn, M., Ekman, N., Alitalo, K. and Vuori, K. (2003). p130Cas couples the tyrosine kinase Bmx/Etk with regulation of the actin cytoskeleton and cell migration. J Biol Chem 278, 35636–43CrossRefGoogle ScholarPubMed
Aepfelbacher, M., Trasak, C., Wilharm, G.et al. (2003). Characterization of YopT effects on Rho GTPases in Yersinia enterocolitica infected cells. J Biol Chem 278, 33217–23CrossRefGoogle ScholarPubMed
Aili, M., Hallberg, B., Wolf-Watz, H. and Rosqvist, R. (2002). GAP activity of Yersinia YopE. Methods Enzymol 358, 359–70CrossRefGoogle ScholarPubMed
Aili, M., Telepnev, M., Hallberg, B., Wolf-Watz, H. and Rosqvist, R. (2003). In vitro GAP activity towards RhoA, Rac1 and Cdc42 is not a prerequisite for YopE induced HeLa cell cytotoxicity. Microb Pathogen 34, 297–308CrossRefGoogle Scholar
Albert, M. L., Kim, J. I. and Birge, R. B. (2000). alphavbeta5 Integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2, 899–905CrossRefGoogle ScholarPubMed
Andersson, K., Carballeira, N., Magnusson, K. E.et al. (1996). YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Molec Microbiol 20, 1057–69CrossRefGoogle ScholarPubMed
Andersson, K., Magnusson, K. E., Majeed, M., Stendahl, O. and Fällman, M. (1999). Yersinia pseudotuberculosis-induced calcium signaling in neutrophils is blocked by the virulence effector YopH. Infect Immun 67, 2567–74Google ScholarPubMed
Andor, A., Trulzsch, K., Essler, M.et al. (2001). YopE of Yersinia, a GAP for Rho GTPases, selectively modulates Rac-dependent actin structures in endothelial cells. Cell Microbiol 3, 301–10CrossRefGoogle ScholarPubMed
Aspenstrom, P., Fransson, A. and Saras, J. (2004). Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 377, 327–37CrossRefGoogle ScholarPubMed
Baba, Y., Nonoyama, S., Matsushita, M.et al. (1999). Involvement of Wiskott-Aldrich syndrome protein in B-cell cytoplasmic tyrosine kinase pathway. Blood 93, 2003–12Google ScholarPubMed
Bachmann, C., Fischer, L., Walter, U. and Reinhard, M. (1999). The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J Biol Chem 274, 23549–57CrossRefGoogle ScholarPubMed
Barz, C., Abahji, T. N., Trulzsch, K. and Heesemann, J. (2000). The Yersinia Ser/Thr protein kinase YpkA/YopO directly interacts with the small GTPases RhoA and Rac-1. FEBS Lett 482, 139–43CrossRefGoogle ScholarPubMed
Bear, J. E., Svitkina, T. M., Krause, M.et al. (2002). Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109, 509–21CrossRefGoogle ScholarPubMed
Black, D. S. and Bliska, J. B. (1997). Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J 16, 2730–44CrossRefGoogle Scholar
Black, D. S. and Bliska, J. B. (2000). The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Molec Microbiol 37, 515–27CrossRefGoogle ScholarPubMed
Black, D. S., Montagna, L. G., Zitsmann, S. and Bliska, J. B. (1998). Identification of an amino-terminal substrate-binding domain in the Yersinia tyrosine phosphatase that is required for efficient recognition of focal adhesion targets. Molec Microbiol 29, 1263–74CrossRefGoogle ScholarPubMed
Black, D. S., Marie-Cardine, A., Schraven, B. and Bliska, J. B. (2000). The Yersinia tyrosine phosphatase YopH targets a novel adhesion- regulated signalling complex in macrophages. Cell Microbiol 2, 401–14CrossRefGoogle ScholarPubMed
Bliska, J. B. and Black, D. S. (1995). Inhibition of the Fc receptor-mediated oxidative burst in macrophages by the Yersinia pseudotuberculosis tyrosine phosphatase. Infect Immun 63, 681–5Google ScholarPubMed
Bliska, J. B. and Falkow, S. (1992). Bacterial resistance to complement killing mediated by the Ail protein of Yersinia enterocolitica. Proc Natl Acad Sci USA 89, 3561–5CrossRefGoogle ScholarPubMed
Bölin, I. and Wolf-Watz, H. (1988). The plasmid-encoded Yop2b protein of Yersinia pseudotuberculosis is a virulence determinant regulated by calcium and temperature at the level of transcription. Molec Microbiol 2, 237–45CrossRefGoogle Scholar
Bölin, I., Norlander, L. and Wolf-Watz, H. (1982). Temperature-inducible outer membrane protein of Yersinia pseudotuberculosis and Yersinia enterocolitica is associated with the virulence plasmid. Infect Immun 37, 506–12Google ScholarPubMed
Booth, J. W., Trimble, W. S. and Grinstein, S. (2001). Membrane dynamics in phagocytosis. Semin Immunol 13, 357–64CrossRefGoogle ScholarPubMed
Botelho, R. J., Tapper, H., Furuya, W., Mojdami, D. and Grinstein, S. (2002). Fc gamma R-mediated phagocytosis stimulates localized pinocytosis in human neutrophils. J Immunol 169, 4423–9CrossRefGoogle ScholarPubMed
Bottone, E. J. (1999). Yersinia enterocolitica: overview and epidemiologic correlates. Microbes Infect 1, 323–33CrossRefGoogle ScholarPubMed
Bouton, A. H., Riggins, R. B. and Bruce-Staskal, P. J. (2001). Functions of the adapter protein Cas: signal convergence and the determination of cellular responses. Oncogene 20, 6448–58CrossRefGoogle ScholarPubMed
Bovallius, A. and Nilsson, G. (1975). Ingestion and survival of Y. pseudotuberculosis in HeLa cells. Can J Microbiol 21, 1997–2007CrossRefGoogle Scholar
Bröms, J. E., Sundin, C., Francis, M. S. and Forsberg, Å. (2003). Comparative analysis of type III effector translocation by Yersinia pseudotuberculosis expressing native LcrV or PcrV from Pseudomonas aeruginosa. J Infect Dis 188, 239–49CrossRefGoogle ScholarPubMed
Bruce-Staskal, P. J., Weidow, C. L., Gibson, J. J. and Bouton, A. H. (2002). Cas, Fak and Pyk2 function in diverse signaling cascades to promote Yersinia uptake. J Cell Sci 115, 2689–700Google ScholarPubMed
Brunet, S., Thibault, P., Gagnon, E., Kearney, P., Bergeron, J. J. and Desjardins, M. (2003). Organelle proteomics: looking at less to see more. Trends Cell Biol 13, 629–38CrossRefGoogle ScholarPubMed
Burrows, T. and Bacon, G. A. (1956). The basis of virulence in Pasteurella pestis: an antigen determining virulence. Br J Exp Pathol 37, 481–93Google Scholar
Caron, E. and Hall, A. (1998). Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717–21CrossRefGoogle ScholarPubMed
Carter, R. S., Pennington, K. N., Ungurait, B. J., Arrate, P. and Ballard, D. W. (2003). Signal-induced ubiquitination of I kappaB Kinase-beta. J Biol Chem 278, 48903–6CrossRefGoogle ScholarPubMed
Casamassima, A. and Rozengurt, E. (1998). Insulin-like growth factor I stimulates tyrosine phosphorylation of p130(Cas), focal adhesion kinase, and paxillin. Role of phosphatidylinositol 3′-kinase and formation of a p130(Cas).Crk complex. J Biol Chem 273, 26149–56CrossRefGoogle ScholarPubMed
Chavrier, P. (2001). Molecular basis of phagocytosis. Semin Immunol 13, 337–8CrossRefGoogle Scholar
Chiang, S. H., Baumann, C. A., Kanzaki, M.et al. (2001). Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410, 944–8CrossRefGoogle ScholarPubMed
Chimini, G. and Chavrier, P. (2000). Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol 2, E191–6CrossRefGoogle ScholarPubMed
Cho, S. Y. and Klemke, R. L. (2002). Purification of pseudopodia from polarized cells reveals redistribution and activation of Rac through assembly of a CAS/Crk scaffold. J Cell Biol 156, 725–36CrossRefGoogle ScholarPubMed
Clark, M. A., Hirst, B. H. and Jepson, M. A. (1998). M-cell surface beta1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer's patch M cells. Infect Immun 66, 1237–43Google ScholarPubMed
Coppolino, M. G., Krause, M., Hagendorff, P.et al. (2001). Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcgamma receptor signalling during phagocytosis. J Cell Sci 114, 4307–18Google ScholarPubMed
Cornelis, G. R. (1998). The Yersinia Yop virulon, a bacterial system to subvert cells of the primary host defense. Folia Microbiol 43, 253–61CrossRefGoogle ScholarPubMed
Cornelis, G. R. (2002). The Yersinia Ysc-Yop ‘type III’ weaponry. Nat Rev Molec Cell Biol 3, 742–52CrossRefGoogle ScholarPubMed
Cornelis, G. R. and Wolf-Watz, H. (1997). The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Molec Microbiol 23, 861–7CrossRefGoogle ScholarPubMed
Cote, J. F. and Vuori, K. (2002). Identification of an evolutionarily conserved superfamily of DOCK180- related proteins with guanine nucleotide exchange activity. J Cell Sci 115, 4901–13CrossRefGoogle ScholarPubMed
da Silva, A. J., Janssen, O. and Rudd, C. E. (1993). T cell receptor zeta/CD3-p59fyn(T)-associated p120/130 binds to the SH2 domain of p59fyn(T). J Exp Med 178, 2107–13CrossRefGoogle Scholar
da Silva, A. J., Li, Z., de Vera, C., Canto, E., Findell, P. and Rudd, C. E. (1997a). Cloning of a novel T-cell protein FYB that binds FYN and SH2-domain-containing leukocyte protein 76 and modulates interleukin 2 production. Proc Natl Acad Sci USA 94, 7493–8CrossRefGoogle Scholar
da Silva, A. J., Raab, M., Li, Z. and Rudd, C. E. (1997b). TcR zeta/CD3 signal transduction in T-cells: downstream signalling via ZAP-70, SLP-76 and FYB. Biochem Soc Trans 25, 361–6CrossRefGoogle Scholar
da Silva, A. J., Rosenfield, J. M., Mueller, I., Bouton, A., Hirai, H. and Rudd, C. E. (1997c). Biochemical analysis of p120/130: a protein-tyrosine kinase substrate restricted to T and myeloid cells. J Immunol 158, 2007–16Google Scholar
Deleuil, F., Mogemark, L., Francis, M. S., Wolf-Watz, H. and Fällman, M. (2003). Interaction between the Yersinia protein tyrosine phosphatase YopH and eukaryotic Cas/Fyb is an important virulence mechanism. Cell Microbiol 5, 53–64CrossRefGoogle ScholarPubMed
Denu, J. M., Lohse, D. L., Vijayalakshmi, J., Saper, M. A. and Dixon, J. E. (1996). Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci USA 93, 2493–8CrossRefGoogle ScholarPubMed
Dersch, P. (2003). Molecular and cellular mechanisms of bacterial entry into host cells. Contrib Microbiol 10, 183–209CrossRefGoogle ScholarPubMed
Desjardins,, M. (2003). ER-mediated phagocytosis: a new membrane for new functions. Nat Rev Immunol 3, 280–91CrossRefGoogle Scholar
Desjardins, M., Huber, L. A., Parton, R. G. and Griffiths, G. (1994). Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol 124, 677–88CrossRefGoogle ScholarPubMed
Dolfi, F., Garcia-Guzman, M., Ojaniemi, M., Nakamura, H., Matsuda, M. and Vuori, K. (1998). The adaptor protein Crk connects multiple cellular stimuli to the JNK signaling pathway. Proc Natl Acad Sci USA 95, 15394–9CrossRefGoogle ScholarPubMed
Dukuzumuremyi, J. M., Rosqvist, R., Hallberg, B., Akerstrom, B., Wolf-Watz, H. and Schesser, K. (2000). The Yersinia protein kinase A is a host factor inducible RhoA/Rac-binding virulence factor. J Biol Chem 275, 35281–90CrossRefGoogle ScholarPubMed
Eitel, J. and Dersch, P. (2002). The YadA protein of Yersinia pseudotuberculosis mediates high-efficiency uptake into human cells under environmental conditions in which invasin is repressed. Infect Immun 70, 4880–91CrossRefGoogle ScholarPubMed
El Tahir, Y. and Skurnik, M. (2001). YadA, the multifaceted Yersinia adhesin. Int J Med Microbiol 291, 209–18CrossRefGoogle ScholarPubMed
Ernst, J. D. (2000). Bacterial inhibition of phagocytosis. Cell Microbiol 2, 379–86CrossRefGoogle ScholarPubMed
Evdokimov, A. G., Tropea, J. E., Routzahn, K. M., Copeland, T. D. and Waugh, D. S. (2001). Structure of the N-terminal domain of Yersinia pestis YopH at 2.0 Å resolution. Acta Crystallogr D Biol Crystallogr 57, 793–9CrossRefGoogle ScholarPubMed
Fällman, M., Andersson, K., Håkansson, S., Magnusson, K. E., Stendahl, O. and Wolf-Watz, H. (1995). Yersinia pseudotuberculosis inhibits Fc receptor-mediated phagocytosis in J774 cells. Infect Immun 63, 3117–24Google ScholarPubMed
Fällman, M., Deleuil, F. and McGee, K. (2002). Resistance to phagocytosis by Yersinia. Int J Med Microbiol 291, 501–9CrossRefGoogle ScholarPubMed
Forsberg, A. and Wolf-Watz, H. (1988). The virulence protein Yop5 of Yersinia pseudotuberculosis is regulated at transcriptional level by plasmid-plB1-encoded trans-acting elements controlled by temperature and calcium. Molec Microbiol 2, 121–33CrossRefGoogle ScholarPubMed
Fujii, Y., Wakahara, S., Nakao, T.et al. (2003). Targeting of MIST to Src-family kinases via SKAP55-SLAP-130 adaptor complex in mast cells. FEBS Lett 540, 111–16CrossRefGoogle ScholarPubMed
Gagnon, E., Duclos, S., Rondeau, C.et al. (2002). Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–31CrossRefGoogle ScholarPubMed
Galyov, E. E., Håkansson, S., Forsberg, Å. and Wolf-Watz, H. (1993). A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature 361, 730–2CrossRefGoogle ScholarPubMed
Galyov, E. E., Håkansson, S. and Wolf-Watz, H. (1994). Characterization of the operon encoding the YpkA Ser/Thr protein kinase and the YopJ protein of Yersinia pseudotuberculosis. J Bact 176, 4543–8CrossRefGoogle ScholarPubMed
Garin, J., Diez, R., Kieffer, S.et al. (2001). The phagosome proteome: insight into phagosome functions. J Cell Biol 152, 165–80CrossRefGoogle ScholarPubMed
Geng, L. and Rudd, C. E. (2002). Signalling scaffolds and adaptors in T-cell immunity. Br J Haematol 116, 19–27CrossRefGoogle ScholarPubMed
Geng, L., Pfister, S., Kraeft, S. K. and Rudd, C. E. (2001). Adaptor FYB (Fyn-binding protein) regulates integrin-mediated adhesion and mediator release: Differential involvement of the FYB SH3 domain. Proc Natl Acad Sci USA 98, 11527–32CrossRefGoogle ScholarPubMed
Grassl, G. A., Bohn, E., Muller, Y., Buhler, O. T. and Autenrieth, I. B. (2003). Interaction of Yersinia enterocolitica with epithelial cells: invasin beyond invasion. Int J Med Microbiol 293, 41–54CrossRefGoogle ScholarPubMed
Greenberg, S. and Grinstein, S. (2002). Phagocytosis and innate immunity. Curr Opin Immunol 14, 136–45CrossRefGoogle ScholarPubMed
Greenberg, S., Chang, P. and Silverstein, S. C. (1993). Tyrosine phosphorylation is required for Fc receptor-mediated phagocytosis in mouse macrophages. J Exp Med 177, 529–34CrossRefGoogle ScholarPubMed
Griffiths, E. K. and Penninger, J. M. (2002). Communication between the TCR and integrins: role of the molecular adapter ADAP/Fyb/Slap. Curr Opin Immunol 14, 317–22CrossRefGoogle ScholarPubMed
Griffiths, E. K., Krawczyk, C., Kong, Y. Y.et al. (2001). Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap. Science 293, 2260–3CrossRefGoogle ScholarPubMed
Grosdent, N., Maridonneau-Parini, I., Sory, M. P. and Cornelis, G. R. (2002). Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect Immun 70, 4165–76CrossRefGoogle ScholarPubMed
Gual, P., Shigematsu, S., Kanzaki, M.et al. (2002). A Crk-II/TC10 signaling pathway is required for osmotic shock-stimulated glucose transport. J Biol Chem 277, 43980–6CrossRefGoogle ScholarPubMed
Guan, K. L. and Dixon, J. E. (1990). Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249, 553–6CrossRefGoogle ScholarPubMed
Gustavsson, A., Yuan, M. and Fällman, M. (2004). Temporal dissection of beta1-integrin signaling indicates a role for p130Cas-Crk in filopodia formation. J Biol Chem 279, 22893–901CrossRefGoogle ScholarPubMed
Håkansson, S., Galyov, E. E., Rosqvist, R. and Wolf-Watz, H. (1996a). The Yersinia YpkA Ser/Thr kinase is translocated and subsequently targeted to the inner surface of the HeLa cell plasma membrane. Molec Microbiol 20, 593–603CrossRefGoogle Scholar
Håkansson, S., Schesser, K., Persson, C.et al. (1996b). The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J 15, 5812–23Google Scholar
Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509–14CrossRefGoogle ScholarPubMed
Hall, A. and Nobes, C. D. (2000). Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Phil Trans R Soc Lond B 355, 965–70CrossRefGoogle ScholarPubMed
Hamburger, Z. A., Brown, M. S., Isberg, R. R. and Bjorkman, P. J. (1999). Crystal structure of invasin: a bacterial integrin-binding protein. Science 286, 291–5CrossRefGoogle ScholarPubMed
Hamid, N., Gustavsson, A., Andersson, K.et al. (1999). YopH dephosphorylates Cas and Fyn-binding protein in macrophages. Microb Pathogen 27, 231–42CrossRefGoogle ScholarPubMed
Hampton, M. B., Kettle, A. J. and Winterbourn, C. C. (1998). Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92, 3007–17Google ScholarPubMed
Hanski, C., Kutschka, U., Schmoranzer, H. P.et al (1989). Immunohistochemical and electron microscopic study of interaction of Yersinia enterocolitica serotype O8 with intestinal mucosa during experimental enteritis. Infect Immun 57, 673–8Google ScholarPubMed
Harte, M. T., Macklem, M., Weidow, C. L., Parsons, J. T. and Bouton, A. H. (2000). Identification of two focal adhesion targeting sequences in the adapter molecule p130(Cas). Biochim Biophys Acta 1499, 34–48CrossRefGoogle Scholar
Holmström, A., Rosqvist, R., Wolf-Watz, H. and Forsberg, Å. (1995). Virulence plasmid-encoded YopK is essential for Yersinia pseudotuberculosis to cause systemic infection in mice. Infect Immun 63, 2269–76Google Scholar
Holmström, A., Olsson, J., Cherepanov, P.et al. (2001). LcrV is a channel size-determining component of the Yop effector translocon of Yersinia. Molec Microbiol 39, 620–32Google Scholar
Honda, H., Oda, H., Nakamoto, T.et al. (1998). Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas [see comments]. Nat Genet 19, 361–5CrossRefGoogle Scholar
Hueck, C. J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Molec Biol Rev 62, 379–433Google ScholarPubMed
Hunter, A. J., Ottoson, N., Boerth, N., Koretzky, G. A. and Shimizu, Y. (2000). Cutting edge: a novel function for the SLAP-130/FYB adapter protein in beta 1 integrin signaling and T lymphocyte migration. J Immunol 164, 1143–7CrossRefGoogle Scholar
Iriarte, M. and Cornelis, G. R. (1998). YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Molec Microbiol 29, 915–29CrossRefGoogle ScholarPubMed
Isberg, R. R. (1989). Mammalian cell adhesion functions and cellular penetration of enteropathogenic Yersinia species. Molec Microbiol 3, 1449–53CrossRefGoogle ScholarPubMed
Isberg, R. R. and Barnes, P. (2001). Subversion of integrins by enteropathogenic Yersinia. J Cell Sci 114, 21–8Google ScholarPubMed
Isberg, R. R. and Leong, J. M. (1990). Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60, 861–71Google Scholar
Isberg, R. R. and Tran Van Nhieu, G. (1994). Binding and internalization of microorganisms by integrin receptors. Trends Microbiol 2, 10–4CrossRefGoogle ScholarPubMed
Isberg, R. R., Voorhis, D. L. and Falkow, S. (1987). Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50, 769–78CrossRefGoogle ScholarPubMed
Isberg, R. R., Swain, A. and Falkow, S. (1988). Analysis of expression and thermoregulation of the Yersinia pseudotuberculosis inv gene with hybrid proteins. Infect Immun 56, 2133–8Google ScholarPubMed
Isberg, R. R., Hamburger, Z. and Dersch, P. (2000). Signaling and invasin-promoted uptake via integrin receptors. Microbes Infect 2, 793–801CrossRefGoogle ScholarPubMed
Jucker, M., McKenna, K., da Silva, A. J., Rudd, C. E. and Feldman, R. A. (1997). The Fes protein-tyrosine kinase phosphorylates a subset of macrophage proteins that are involved in cell adhesion and cell-cell signaling. J Biol Chem 272, 2104–9CrossRefGoogle ScholarPubMed
Juris, S. J., Rudolph, A. E., Huddler, D., Orth, K. and Dixon, J. E. (2000). A distinctive role for the Yersinia protein kinase: actin binding, kinase activation, and cytoskeleton disruption. Proc Natl Acad Sci USA 97, 9431–6CrossRefGoogle ScholarPubMed
Kanner, S. B., Reynolds, A. B., Wang, H. C., Vines, R. R. and Parsons, J. T. (1991). The SH2 and SH3 domains of pp60src direct stable association with tyrosine phosphorylated proteins p130 and p110. EMBO J 10, 1689–98Google ScholarPubMed
Kessels, M. M., Engqvist-Goldstein, A. E. and Drubin, D. G. (2000). Association of mouse actin-binding protein 1 (mAbp1/SH3P7), an Src kinase target, with dynamic regions of the cortical actin cytoskeleton in response to Rac1 activation. Molec Biol Cell 11, 393–412CrossRefGoogle Scholar
Kessels, M. M., Engqvist-Goldstein, A. E., Drubin, D. G. and Qualmann, B. (2001). Mammalian Abp1, a signal-responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. J Cell Biol 153, 351–66CrossRefGoogle ScholarPubMed
Kirsch, K. H., Georgescu, M. M. and Hanafusa, H. (1998). Direct binding of p130(Cas) to the guanine nucleotide exchange factor C3G. J Biol Chem 273, 25673–9CrossRefGoogle ScholarPubMed
Kozma, R., Ahmed, S., Best, A. and Lim, L. (1995). The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Molec Cell Biol 15, 1942–52CrossRefGoogle ScholarPubMed
Krause, M., Sechi, A. S., Konradt, M., Monner, D., Gertler, F. B. and Wehland, J. (2000). Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J Cell Biol 149, 181–94CrossRefGoogle Scholar
Larbolette, O., Wollscheid, B., Schweikert, J., Nielsen, P. J. and Wienands, J. (1999). SH3P7 is a cytoskeleton adapter protein and is coupled to signal transduction from lymphocyte antigen receptors. Molec Cell Biol 19, 1539–46CrossRefGoogle ScholarPubMed
Law, S. F., Zhang, Y. Z., Fashena, S. J., Toby, G., Estojak, J. and Golemis, E. A. (1999). Dimerization of the docking/adaptor protein HEF1 via a carboxy-terminal helix-loop-helix domain. Exp Cell Res 252, 224–35CrossRefGoogle Scholar
Leong, J. M., Morrissey, P. E., Marra, A. and Isberg, R. R. (1995). An aspartate residue of the Yersinia pseudotuberculosis invasin protein that is critical for integrin binding. EMBO J 14, 422–31Google ScholarPubMed
Leung, K. Y., Reisner, B. S. and Straley, S. C. (1990). YopM inhibits platelet aggregation and is necessary for virulence of Yersinia pestis in mice. Infect Immun 58, 3262–71Google ScholarPubMed
Lindler, L. E. and Tall, B. D. (1993). Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages. Molec Microbiol 8, 311–24CrossRefGoogle ScholarPubMed
Lindler, L. E., Klempner, M. S. and Straley, S. C. (1990). Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun 58, 2569–77Google ScholarPubMed
Liu, J., Kang, H., Raab, M., da Silva, A. J., Kraeft, S. K. and Rudd, C. E. (1998). FYB (FYN binding protein) serves as a binding partner for lymphoid protein and FYN kinase substrate SKAP55 and a SKAP55-related protein in T cells. Proc Natl Acad Sci USA 95, 8779–84CrossRefGoogle Scholar
Magae, J., Nagi, T., Takaku, K.et al. (1994). Screening for specific inhibitors of phagocytosis of thioglycollate-elicited macrophages. Biosci Biotechnol Biochem 58, 104–7CrossRefGoogle ScholarPubMed
Marra, A. and Isberg, R. R. (1997). Invasin-dependent and invasin-independent pathways for translocation of Yersinia pseudotuberculosis across the Peyer's patch intestinal epithelium. Infect Immun 65, 3412–21Google ScholarPubMed
McDonald, C., Vacratsis, P. O., Bliska, J. B. and Dixon, J. E. (2003). The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J Biol Chem 278, 18514–23CrossRefGoogle ScholarPubMed
McGee, K., Zettl, M., Way, M. and Fällman, M. (2001). A role for N-WASP in invasin-promoted internalisation. FEBS Lett 509, 59–65CrossRefGoogle ScholarPubMed
Meresse, S., Steele-Mortimer, O., Moreno, E., Desjardins, M., Finlay, B. and Gorvel, J. P. (1999). Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nat Cell Biol 1, E183–8CrossRefGoogle ScholarPubMed
xsMiller, V. L., Farmer, J. J.III, Hill, W. E. and Falkow, S. (1989). The ail locus is found uniquely in Yersinia enterocolitica serotypes commonly associated with disease. Infect Immun 57, 121–31Google ScholarPubMed
Mogemark, L., McGee, K., Yuan, M., Deleuil, F. and Fällman, M. (2005). Disruption of target cell adhesion structures by the Yersinia effector YopH requires interaction with the substrate domain of p130Cas. Eur J Cell Biol 84(4), 447–89CrossRefGoogle ScholarPubMed
Montagna, L. G., Ivanov, M. I. and Bliska, J. B. (2001). Identification of residues in the N-terminal domain of the Yersinia tyrosine phosphatase that are critical for substrate recognition. J Biol Chem 276, 5005–11CrossRefGoogle ScholarPubMed
Musci, M. A., Hendricks-Taylor, L. R., Motto, D. G.et al. (1997). Molecular cloning of SLAP-130, an SLP-76-associated substrate of the T cell antigen receptor-stimulated protein tyrosine kinases. J Biol Chem 272, 11674–7CrossRefGoogle Scholar
Nakamoto, T., Sakai, R., Ozawa, K., Yazaki, Y. and Hirai, H. (1996). Direct binding of C-terminal region of p130Cas to SH2 and SH3 domains of Src kinase. J Biol Chem 271, 8959–65CrossRefGoogle ScholarPubMed
Neyt, C. and Cornelis, G. R. (1999). Role of SycD, the chaperone of the Yersinia Yop translocators YopB and YopD. Molec Microbiol 31, 143–56CrossRefGoogle ScholarPubMed
Nobes, C. D. and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62CrossRefGoogle ScholarPubMed
Nojima, Y., Morino, N., Mimura, T.et al. (1995). Integrin-mediated cell adhesion promotes tyrosine phosphorylation of p130Cas, a Src homology 3-containing molecule having multiple Src homology 2-binding motifs. J Biol Chem 270, 15398–402CrossRefGoogle ScholarPubMed
Ojaniemi, M. and Vuori, K. (1997). Epidermal growth factor modulates tyrosine phosphorylation of p130Cas. Involvement of phosphatidylinositol 3′-kinase and actin cytoskeleton. J Biol Chem 272, 25993–8CrossRefGoogle ScholarPubMed
Oktay, M., Wary, K. K., Dans, M., Birge, R. B. and Giancotti, F. G. (1999). Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. J Cell Biol 145, 1461–9CrossRefGoogle ScholarPubMed
O'Neill, G. M., Fashena, S. J. and Golemis, E. A. (2000). Integrin signalling: a new Cas(t) of characters enters the stage. Trends Cell Biol 10, 111–19Google Scholar
Orth, K., Xu, Z., Mudgett, M. B.et al. (2000). Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–7CrossRefGoogle ScholarPubMed
Palmer, L. E., Hobbie, S., Galan, J. E. and Bliska, J. B. (1998). YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-alpha production and downregulation of the MAP kinases p38 and JNK. Molec Microbiol 27, 953–65CrossRefGoogle ScholarPubMed
sPanetti, T. S. (2002). Tyrosine phosphorylation of paxillin, FAK, and p130CAS: effects on cell spreading and migration. Front Biosci 7, d143–50
Pepe, J. C. and Miller, V. L. (1993a). The biological role of invasin during a Yersinia enterocolitica infection. Infect Agents Disease 2, 236–41Google Scholar
Pepe, J. C. and Miller, V. L. (1993b). Yersinia enterocolitica invasin: a primary role in the initiation of infection. Proc Natl Acad Sci USA 90, 6473–7CrossRefGoogle Scholar
Pepe, J. C., Badger, J. L. and Miller, V. L. (1994). Growth phase and low pH affect the thermal regulation of the Yersinia enterocolitica inv gene. Molec Microbiol 11, 123–35CrossRefGoogle Scholar
Persson, C., Carballeira, N., Wolf-Watz, H. and Fällman, M. (1997). The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J 16, 2307–18CrossRefGoogle ScholarPubMed
Persson, C., Nordfelth, R., Andersson, K., Forsberg, Å., Wolf-Watz, H. and Fällman, M. (1999). Localization of the Yersinia PTPase to focal complexes is an important virulence mechanism. Molec Microbiol 33, 828–38CrossRefGoogle ScholarPubMed
Peterson, E. J. (2003). The TCR ADAPts to integrin-mediated cell adhesion. Immunol Rev 192, 113–21CrossRefGoogle ScholarPubMed
Peterson, E. J., Woods, M. L., Dmowski, S. A.et al. (2001). Coupling of the TCR to integrin activation by Slap-130/Fyb. Science 293, 2263–5CrossRefGoogle ScholarPubMed
Pettersson, J., Nordfelth, R., Dubinina, E.et al. (1996). Modulation of virulence factor expression by pathogen target cell contact [see comments]. Science 273, 1231–3CrossRefGoogle Scholar
Pettersson, J., Holmström, A., Hill, J.et al. (1999). The V-antigen of Yersinia is surface exposed before target cell contact and involved in virulence protein translocation. Molec Microbiol 32, 961–76CrossRefGoogle ScholarPubMed
Pierson, D. E. and Falkow, S. (1993). The ail gene of Yersinia enterocolitica has a role in the ability of the organism to survive serum killing. Infect Immun 61, 1846–52Google Scholar
Plow, E. F., Haas, T. A., Zhang, L., Loftus, J. and Smith, J. W. (2000). Ligand binding to integrins. J Biol Chem 275, 21785–8CrossRefGoogle ScholarPubMed
Polte, T. R. and Hanks, S. K. (1995). Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas. Proc Natl Acad Sci USA 92, 10678–82CrossRefGoogle ScholarPubMed
Portnoy, D. A., Moseley, S. L. and Falkow, S. (1981). Characterization of plasmids and plasmid-associated determinants of Yersinia enterocolitica pathogenesis. Infect Immun 31, 775–82Google ScholarPubMed
Ridley, A. J. and Hall, A. (1992a). Distinct patterns of actin organization regulated by the small GTP-binding proteins Rac and Rho. Cold Spring Harb Symp Quant Biol 57, 661–71Google Scholar
Ridley, A. J. and Hall, A. (1992b). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–99CrossRefGoogle Scholar
Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. and Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–10CrossRefGoogle ScholarPubMed
Rosenshine, I., Duronio, V. and Finlay, B. B. (1992). Tyrosine protein kinase inhibitors block invasin-promoted bacterial uptake by epithelial cells. Infect Immun 60, 2211–17Google ScholarPubMed
Rosqvist, R. and Wolf-Watz, H. (1986). Virulence plasmid-associated HeLa cell induced cytotoxicity of Yersinia pseudotuberculosis. Microb Pathogen 1, 229–40CrossRefGoogle ScholarPubMed
Rosqvist, R., Bolin, I. and Wolf-Watz, H. (1988a). Inhibition of phagocytosis in Yersinia pseudotuberculosis: a virulence plasmid-encoded ability involving the Yop2b protein. Infect Immun 56, 2139–43Google Scholar
Rosqvist, R., Skurnik, M. and Wolf-Watz, H. (1988b). Increased virulence of Yersinia pseudotuberculosis by two independent mutations. Nature 334, 522–4CrossRefGoogle Scholar
Rosqvist, R., Forsberg, Å., Rimpilainen, M., Bergman, T. and Wolf-Watz, H. (1990). The cytotoxic protein YopE of Yersinia obstructs the primary host defence. Molec Microbiol 4, 657–67CrossRefGoogle ScholarPubMed
Rosqvist, R., Forsberg, Å. and Wolf-Watz, H. (1991). Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect Immun 59, 4562–9Google ScholarPubMed
Rosqvist, R., Magnusson, K. E. and Wolf-Watz, H. (1994). Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J 13, 964–72Google ScholarPubMed
Ruckdeschel, K., Roggenkamp, A., Schubert, S. and Heesemann, J. (1996). Differential contribution of Yersinia enterocolitica virulence factors to evasion of microbicidal action of neutrophils. Infect Immun 64, 724–33Google ScholarPubMed
Sakai, R., Iwamatsu, A., Hirano, N.et al. (1994). A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J 13, 3748–56Google Scholar
Saltman, L. H., Lu, Y., Zaharias, E. M. and Isberg, R. R. (1996). A region of the Yersinia pseudotuberculosis invasin protein that contributes to high affinity binding to integrin receptors. J Biol Chem 271, 23438–44CrossRefGoogle ScholarPubMed
Samarin, S., Romero, S., Kocks, C., Didry, D., Pantaloni, D. and Carlier, M. F. (2003). How VASP enhances actin-based motility. J Cell Biol 163, 131–42CrossRefGoogle ScholarPubMed
Schesser, K., Spiik, A. K., Dukuzumuremyi, J. M., Neurath, M. F., Pettersson, S. and Wolf-Watz, H. (1998). The yopJ locus is required for Yersinia-mediated inhibition of NF-kappaB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Molec Microbiol 28, 1067–79CrossRefGoogle ScholarPubMed
Schlaepfer, D. D. and Mitra, S. K. (2004). Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev 14, 92–101CrossRefGoogle ScholarPubMed
Shao, F., Merritt, P. M., Bao, Z., Innes, R. W. and Dixon, J. E. (2002). A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–88CrossRefGoogle Scholar
Simonet, M., Richard, S. and Berche, P. (1990). Electron microscopic evidence for in vivo extracellular localization of Yersinia pseudotuberculosis harboring the pYV plasmid. Infect Immun 58, 841–5Google ScholarPubMed
Skrzypek, E., Cowan, C. and Straley, S. C. (1998). Targeting of the Yersinia pestis YopM protein into HeLa cells and intracellular trafficking to the nucleus. Molec Microbiol 30, 1051–65CrossRefGoogle ScholarPubMed
Small, J. V., Stradal, T., Vignal, E. and Rottner, K. (2002). The lamellipodium: where motility begins. Trends Cell Biol 12, 112–20CrossRefGoogle ScholarPubMed
Smego, R. A., Frean, J. and Koornhof, H. J. (1999). Yersiniosis I: microbiological and clinicoepidemiological aspects of plague and non-plague Yersinia infections. Eur J Clin Microbiol Infect Dis 18, 1–15CrossRefGoogle ScholarPubMed
Straley, S. C. and Bowmer, W. S. (1986). Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect Immun 51, 445–54Google ScholarPubMed
Sulakvelidze, A.(2000). Yersiniae other than Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis: the ignored species. Microbes Infect 2, 497–513CrossRefGoogle Scholar
Tachibana, K., Urano, T., Fujita, H.et al. (1997). Tyrosine phosphorylation of Crk-associated substrates by focal adhesion kinase. A putative mechanism for the integrin-mediated tyrosine phosphorylation of Crk-associated substrates. J Biol Chem 272, 29083–90CrossRefGoogle ScholarPubMed
Takenawa, T. and Miki, H.(2001). WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 114, 1801–9Google ScholarPubMed
Tapper, H.(1996). The secretion of preformed granules by macrophages and neutrophils. J Leukoc Biol 59, 613–22CrossRefGoogle ScholarPubMed
Tardy, F., Homble, F., Neyt, C.et al. (1999). Yersinia enterocolitica type III secretion-translocation system: channel formation by secreted Yops. EMBO J 18, 6793–9CrossRefGoogle ScholarPubMed
Timms, J. F., Swanson, K. D., Marie-Cardine, A.et al. (1999). SHPS-1 is a scaffold for assembling distinct adhesion-regulated multi-protein complexes in macrophages. Curr Biol 9, 927–30CrossRefGoogle ScholarPubMed
Tjelle, T. E., Lovdal, T. and Berg, T. (2000). Phagosome dynamics and function. Bioessays 22, 255–633.0.CO;2-R>CrossRefGoogle ScholarPubMed
Tonks, N. K. and Neel, B. G. (1996). From form to function: signaling by protein tyrosine phosphatases. Cell 87, 365–8Google Scholar
Tonks, N. K. and Neel, B. G. (2001). Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol 13, 182–95CrossRefGoogle ScholarPubMed
Tran van Nhieu, G. and Isberg, R. R. (1991). The Yersinia pseudotuberculosis invasin protein and human fibronectin bind to mutually exclusive sites on the alpha 5 beta 1 integrin receptor. J Biol Chem 266, 24367–75Google ScholarPubMed
Underhill, D. M. and Ozinsky, A. (2002). Phagocytosis of microbes: complexity in action. A Rev Immunol 20, 825–52CrossRefGoogle ScholarPubMed
Veale, M., Raab, M., Li, Z.et al. (1999). Novel isoform of lymphoid adaptor FYN-T-binding protein (FYB-130) interacts with SLP-76 and up-regulates interleukin 2 production. J Biol Chem 274, 28427–35CrossRefGoogle ScholarPubMed
Vieira, O. V., Botelho, R. J. and Grinstein, S. (2002). Phagosome maturation: aging gracefully. Biochem J 366, 689–704CrossRefGoogle ScholarPubMed
Visser, L. G., Annema, A. and van Furth, R. (1995). Role of Yops in inhibition of phagocytosis and killing of opsonized Yersinia enterocolitica by human granulocytes. Infect Immun 63, 2570–5Google ScholarPubMed
Von Pawel-Rammingen, U., Telepnev, M. V., Schmidt, G., Aktories, K., Wolf-Watz, H. and Rosqvist, R. (2000). GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Molec Microbiol 36, 737–48Google Scholar
Wachtel, M. R. and Miller, V. L. (1995). In vitro and in vivo characterization of an ail mutant of Yersinia enterocolitica. Infect Immun 63, 2541–8Google ScholarPubMed
Weidow, C. L., Black, D. S., Bliska, J. B. and Bouton, A. H. (2000). CAS/Crk signalling mediates uptake of Yersinia into human epithelial cells. Cell Microbiol 2, 549–60CrossRefGoogle ScholarPubMed
Wu, L., Fu, J. and Shen, S. H. (2002a). SKAP55 coupled with CD45 positively regulates T-cell receptor-mediated gene transcription. Molec Cell Biol 22, 2673–86CrossRefGoogle Scholar
Wu, L., Yu, Z. and Shen, S. H. (2002b). SKAP55 recruits to lipid rafts and positively mediates the MAPK pathway upon T cell receptor activation. J Biol Chem 277, 40420–7CrossRefGoogle Scholar
Yang, Y. and Isberg, R. R. (1993). Cellular internalization in the absence of invasin expression is promoted by the Yersinia pseudotuberculosis yadA product. Infect Immun 61, 3907–13Google ScholarPubMed
Yang, Y., Merriam, J. J., Mueller, J. P. and Isberg, R. R. (1996). The psa locus is responsible for thermoinducible binding of Yersinia pseudotuberculosis to cultured cells. Infect Immun 64, 2483–9Google ScholarPubMed
Yuan, M., Mogemark, L. and Fällman, M. (2005). Fyn binding protein, Fyb, interacts with mammalian actin binding protein, mAbp1. FEBS Lett 579 (11), 2339–47CrossRefGoogle ScholarPubMed
Zhang, Z. Y., Clemens, J. C., Schubert, H. L.et al. (1992). Expression, purification, and physicochemical characterization of a recombinant Yersinia protein tyrosine phosphatase. J Biol Chem 267, 23759–66Google ScholarPubMed
Zhou, L., Tan, A. and Hershenson, M. B. (2004). Yersinia YopJ inhibits pro-inflammatory molecule expression in human bronchial epithelial cells. Respir Physiol Neurobiol 140, 89–97CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Yersinia inhibition of phagocytosis
    • By Maria Fällman, Dept of Molecular Biology University of Umeå, 901 87 Umeå, Sweden, Anna Gustavsson, Department of Molecular Biology University of Umeå, 90187 Umeå, Sweden
  • Edited by Joel D. Ernst, New York University, Olle Stendahl, Linköpings Universitet, Sweden
  • Book: Phagocytosis of Bacteria and Bacterial Pathogenicity
  • Online publication: 07 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541513.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Yersinia inhibition of phagocytosis
    • By Maria Fällman, Dept of Molecular Biology University of Umeå, 901 87 Umeå, Sweden, Anna Gustavsson, Department of Molecular Biology University of Umeå, 90187 Umeå, Sweden
  • Edited by Joel D. Ernst, New York University, Olle Stendahl, Linköpings Universitet, Sweden
  • Book: Phagocytosis of Bacteria and Bacterial Pathogenicity
  • Online publication: 07 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541513.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Yersinia inhibition of phagocytosis
    • By Maria Fällman, Dept of Molecular Biology University of Umeå, 901 87 Umeå, Sweden, Anna Gustavsson, Department of Molecular Biology University of Umeå, 90187 Umeå, Sweden
  • Edited by Joel D. Ernst, New York University, Olle Stendahl, Linköpings Universitet, Sweden
  • Book: Phagocytosis of Bacteria and Bacterial Pathogenicity
  • Online publication: 07 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541513.006
Available formats
×