Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T12:51:33.051Z Has data issue: false hasContentIssue false

2 - Phagocytosis: receptors and biology

Published online by Cambridge University Press:  07 August 2009

Wouter L. W. Hazenbos
Affiliation:
Program in Host-Pathogen Interactions University of California San Francisco
Eric J. Brown
Affiliation:
Program in Host-Pathogen Interactions University of California San Francisco
Joel D. Ernst
Affiliation:
New York University
Olle Stendahl
Affiliation:
Linköpings Universitet, Sweden
Get access

Summary

INTRODUCTION

Consumption followed by digestion has developed from a nutrition mechanism in unicellular eukaryotes into a highy regulated and indispensable mechanism of host defense against infection in mammals. Phagocytosis of pathogenic microorganisms by phagocytes, or “eating cells,” is a major host defense mechanism of the innate immune system. The process of phagocytosis was first described at the beginning of the twentieth century by Elie Metchnikoff, who observed ingestion of small particles by cells from starfish larvae. Phagocytosis is generally defined as the internalization of particles with a diameter of at least 0.5μm, such as bacteria, viruses, parasites, large immune complexes, or apoptotic cells and cell debris. Ingestion of smaller particles, such as small immune complexes or other macromolecules, occurs through a fundamentally distinct mechanism, called endocytosis. Phagocytosis and endocytosis are distinguishable by the importance of actin polymerization, which directs membrane motility during phagocytosis, but not endocytosis. Another distinction can be made by the presence of clathrin coats around vacuoles formed during some forms of endocytosis, but not phagocytosis (Greenberg 1986). Recently, one more distinction has been added by showing that endocytosis by IgG Fc receptors (FcγR), but not phagocytosis, requires ubiquitylation (Booth et al. 2002). Thus, the specific molecular pathways that direct the process of ingestion depend on the size of the particle. When the target particle is too large to be ingested, a process designated “frustrated phagocytosis” may occur, involving activation of pathways partially similar, but not identical, to those activated during phagocytosis.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agramonte-Hevia J, González-Arenas A, Barrera, D, Velasco-Velásquez, M. 2002. Gram-negative bacteria and phagocytic cell interaction mediated by complement receptor 3. FEMS Immunol. Med. Microbiol. 34: 255–66.CrossRefGoogle ScholarPubMed
Akira, S. 2003. Mammalian Toll-like receptors. Curr. Opin. Immunol. 15(1): 5–11CrossRefGoogle ScholarPubMed
Allen, , Aderem, A. 1996. Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J. Exp. Med. 184(2): 627–37.CrossRefGoogle ScholarPubMed
Appelmelk, BJ Die I, Vliet, SJet al. 2003. Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J. Immunol. 170(4): 1635–9.CrossRefGoogle ScholarPubMed
Arnaout, MA, Todd, RF III, Dana, Net al. 1983. Inhibition of phagocytosis of complement C3- or immunoglobulin G-coated particles and of C3bi binding by monoclonal antibodies to a monocyte-granulocyte membrane glycoprotein (Mol). J. Clin. Invest. 72(1): 171–9.CrossRefGoogle Scholar
Banchereau, J, Steinman, RM. 1998. Dendritic cells and the control of immunity. Nature 392: 245–51.CrossRefGoogle ScholarPubMed
Barnes, N, Gavin, AL, Tan, PSet al. 2002. FcgammaRI-deficient mice show multiple alterations to inflammatory and immune responses. Immunity 16: 379–89.CrossRefGoogle ScholarPubMed
Berton, G, Laudanna, C, Sorio, C, Rossi, F. 1992. Generation of signals activating neutrophil functions by leukocyte integrins: LFA-1 and gp150/95, but not CR3, are able to stimulate the respiratory burst of human neutrophils. J. Cell Biol. 116(4): 1007–17.CrossRefGoogle Scholar
Bharadwaj, D, Stein, MP, Volzer, M, Mold, C, TW, Du Clos. 1999. The major receptor for C-reactive protein on leukocytes is fcgamma receptor II. J. Exp. Med. 190(4): 585–90.CrossRefGoogle ScholarPubMed
Billker, O, Popp, A, Brinkmann, Vet al. 2002. Distinct mechanisms of internalization of Neisseria gonorrhoeae by members of the CEACAM receptor family involving Rac1- and Cdc42-dependent and -independent pathways. EMBOJ. 21(4): 560–71.CrossRefGoogle ScholarPubMed
Bitar, DM, Molmeret, M, , Abu Kwaik Y. 2004. Molecular and cell biology of Legionella pneumophila. Int. J. Med. Microbiol. 293(7–8): 519–27.CrossRefGoogle ScholarPubMed
Blander, JM, Medzhitov, R. 2004. Regulation of phagosome maturation by signals from toll-like receptors. Science 304: 1014–18.CrossRefGoogle ScholarPubMed
Bliska, JB, Black, DS. 1995. Inhibition of the Fc receptor-mediated oxidative burst in macrophages by the Yersinia pseudotuberculosis tyrosine phosphatase. Infect. Immun. 63(2): 681–5.Google ScholarPubMed
Blystone, SD, Graham, IL, Lindberg, FP, Brown, EJ. 1994. Integrin alpha v beta 3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor alpha 5 beta 1. J. Cell Biol. 127(4): 1129–37.CrossRefGoogle ScholarPubMed
Blystone, SD, Slater, SE, Williams, MP, Crow, MT, Brown, EJ. 1999. A molecular mechanism of integrin crosstalk: alpha beta 3 suppression of calcium/calmodulin-dependent protein kinase II regulates alpha 5 beta 1 function. J. Cell Biol. 145(4): 889–97.CrossRefGoogle Scholar
Bohuslav, J, Horejsi, V, Hansmann, Cet al. 1995. Urokinase plasminogen activator receptor, beta 2-integrins, and Src-kinases within a single receptor complex of human monocytes. J. Exp. Med. 181(4): 1381–90.CrossRefGoogle ScholarPubMed
Booth, JW, Kim, MK, Jankowski, A, Schreiber, AD, Grinstein, S. 2002. Contrasting requirements for ubiquitylation during Fc receptor-mediated endocytosis and phagocytosis. EMBO J. 21(3): 251–8.CrossRefGoogle ScholarPubMed
Bredius, RG, Vries, CE, Troelstra, Aet al. 1993. Phagocytosis of Staphylococcus aureus and Haemophilus influenzae type B opsonized with polyclonal human IgG1 and IgG2 antibodies. Functional hFc gamma RIIa polymorphism to IgG2. J. Immunol. 151(3): 1463–72.Google ScholarPubMed
Bretscher, MS. 1992. Circulating integrins: alpha 5 beta 1, alpha 6 beta 4 and Mac-1, but not alpha 3 beta 1, alpha 4 beta 1 or LFA-1. EMBO J. 11(2): 405–10.Google ScholarPubMed
Brown, EJ. 1991. Complement receptors and phagocytosis. Curr. Opin. Immunol. 3(1): 76–82CrossRefGoogle ScholarPubMed
Brown E. 2005 Complement receptors, adhesion, and phagocytosis. In Molecular Mechanisms of Phagocytosis.Rosales, C., Ed., pp. 49–57. Georgetown, TX: Landes Bioscience.Google Scholar
Brown, GD, Gordon, S. 2001. Immune recognition. A new receptor for beta-glucans. Nature 413(6851): 36–7.CrossRefGoogle ScholarPubMed
Bullock, WE, Wright, SD. 1987. Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages. J. Exp. Med. 165(1): 195–210CrossRefGoogle ScholarPubMed
Burke-Gaffney, A, Blease, K, Hartnell, A, Helewell, PG. 2002. TNF-α potentiates C5a-stimulated eosinophil adhesion to human bronchial epithelila cells: a role for α5β1 integrin. J. Immunol. 168: 1380–8.CrossRefGoogle Scholar
Cambi, A, Gijzen, K, de Vries JM et al. 2003. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol. 33(2): 532–8.CrossRefGoogle ScholarPubMed
Cambi, A, De Lange F, Van Maarseveen NM et al. 2004. Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells. J. Cell Biol. 164(1): 145–55.CrossRefGoogle ScholarPubMed
Capo, C, Lindberg, FP, Meconi, Set al. 1999. Subversion of monocyte functions by Coxiella burnetii: impairment of the cross-talk between alphavbeta3 integrin and CR3. J. Immunol. 163(11): 6078–85.Google ScholarPubMed
Caron, E, Hall, A. 1998. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282(5394): 1717–21.CrossRefGoogle ScholarPubMed
Chen, H, Mocsai, A, Zhang, Het al. 2003. Role for plastin in host defense distinguishes integrin signaling from cell adhesion and spreading. Immunity 19(1): 95–104CrossRefGoogle ScholarPubMed
China, B, N'Guyen BT, de Bruyere M, Cornelis, GR. 1994. Role of YadA in resistance of Yersinia enterocolitica to phagocytosis by human polymorphonuclear leukocytes. Infect. Immun. 62(4): 1275–81.Google ScholarPubMed
Chouchakova, N, Skokowa, J, Baumann, Uet al. 2001. Fc gamma RIII-mediated production of TNF-alpha induces immune complex alveolitis independently of CXC chemokine generation. J. Immunol. 166(8): 5193–200.CrossRefGoogle ScholarPubMed
Chroneos, Z, Shepherd, VL. 1995. Differential regulation of the mannose and SP-A receptors on macrophages. Am. J. Physiol. 269(6 Pt 1): L721–6Google ScholarPubMed
Chuang, FY, Sassaroli, M, Unkeless, JC. 2000. Convergence of Fc gamma receptor IIA and Fc gamma receptor IIIB signaling pathways in human neutrophils. J. Immunol. 164: 350–60.CrossRefGoogle ScholarPubMed
Clynes, R, Maizes, JS, Guinamard, Ret al. 1999. Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J. Exp. Med. 189(1): 179–85.CrossRefGoogle Scholar
Coggeshall, KM, Nakamura, K, Phee, H. 2002. How do inhibitory phosphatases work? Mol. Immunol. 39(9): 521–9.
Colmenares, M, Puig-Kroger A, Pello, OM, Corbi, AL, Rivas, L. 2002. Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes. J. Biol. Chem. 277(39): 36766–9.CrossRefGoogle Scholar
Condeelis, J. 1993. Life at the leading edge: the formation of cell protrusions. A. Rev. Cell Biol. 9: 411–44.CrossRefGoogle Scholar
Cossart, P, Sansonetti, PJ. 2004. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304(5668): 242–8.CrossRefGoogle ScholarPubMed
Cox, D, Dale, BM, Kashiwada, M, Helgason, CD, Greenberg, S. 2001. A regulatory role for Src homology 2 domain-containing inositol 5′-phosphatase (SHIP) in phagocytosis mediated by Fc gamma receptors and complement receptor 3 (alpha(M)beta(2); CD11b/CD18). J. Exp. Med. 193(1): 61–71CrossRefGoogle Scholar
Coxon, A, Rieu, P, Barkalow, FJet al. 1996. A novel role for the β2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity 5: 653–66.CrossRefGoogle ScholarPubMed
Crowley, MT, Costello, PS, Fitzer-Attas CJ et al. 1997. A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J. Exp. Med. 186(7): 1027–39.CrossRefGoogle ScholarPubMed
Daëron, M. 1997. Fc receptor biology. A. Rev. Immunol. 15: 203–34.CrossRefGoogle ScholarPubMed
Daëron, M, Malbec, O, Latour, Set al. 1993. Distinct intracytoplasmic sequences are required for endocytosis and phagocytosis via murine Fc gamma RII in mast cells. Int. Immunol. 5: 1393–401.CrossRefGoogle ScholarPubMed
Defacque, H, Egeberg, M, Habermann, Aet al. 2000. Involvement of ezrin/moesin in de novo actin assembly on phagosomal membranes. EMBO J. 19(2): 199–212CrossRefGoogle ScholarPubMed
Denker, SP, Huang, DC, Orlowski, J, Furthmayr, H, Barber, DL. 2000. Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol. Cell 6(6): 1425–36.CrossRefGoogle ScholarPubMed
Diamond, MS, Alon, R, Parkos, CA, Quinn, MT, Springer, TA. 1995. Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD1). J. Cell Biol. 130(6): 1473–82.CrossRefGoogle Scholar
Ding, L, Shevach, E. 2001. Inhibition of the function of the FcγRIIB by a monoclonal antibody to thymic shared antigen, a Ly-6 family antigen. Immunology 104: 28–36CrossRefGoogle ScholarPubMed
Domingo, P, Muniz-Diaz E, Baraldes, MAet al. 2002. Associations between Fc gamma receptor IIA polymorphisms and the risk and prognosis of meningococcal disease. Am. J. Med. 112(1): 19–25CrossRefGoogle ScholarPubMed
Dykstra, M, Cherukuri, A, Sohn, HW, Tzeng, SI, Pierce, SK. 2003. Location is everything: lipid rafts and immune cell signaling. A. Rev. Immunol. 21: 457–81.CrossRefGoogle ScholarPubMed
Echtenacher, B, Mannel, DN, Hultner, L. 1996. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381(6577): 75–7.CrossRefGoogle Scholar
Edberg, JC, Kimberly, RP. 1994. Modulation of Fc gamma and complement receptor function by the glycosyl-phosphatidylinositol-anchored form of Fc gamma RIII. J. Immunol. 152(12): 5826–35.Google ScholarPubMed
Fallman, M, Gullberg, M, Hellberg, C, Andersson, T. 1992. Complement receptor-mediated phagocytosis is associated with accumulation of phosphatidylcholine-derived diglyceride in human neutrophils. Involvement of phospholipase D and direct evidence for a positive feedback signal of protein kinase. J. Biol. Chem. 267(4): 2656–63.Google ScholarPubMed
Fallman, M, Andersson, R, Andersson, T. 1993. Signaling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles. J. Immunol. 151(1): 330–8.Google ScholarPubMed
Fallman, M, Andersson, K, Hakansson, Set al. 1995. Yersinia pseudotuberculosis inhibits Fc receptor-mediated phagocytosis in J774 cells. Infect. Immun. 63(8): 3117–24.Google ScholarPubMed
Fitzer-Attas, CJ, Lowry, M, Crowley, MT, 2000. Fcgamma receptor-mediated phagocytosis in macrophages lacking the Src family tyrosine kinases Hck, Fgr, and Lyn. J. Exp. Med. 191(4): 669–82.CrossRefGoogle ScholarPubMed
Friedrichson, T, Kurzchalia, TV. 1998. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394: 802–5.Google ScholarPubMed
Fukushima, T, Waddell, TK, Grinstein, Set al. 1996. Na+/H+ exchange activity during phagocytosis in human neutrophils: role of Fcgamma receptors and tyrosine kinases. J. Cell Biol. 132(6): 1037–52.CrossRefGoogle ScholarPubMed
Funato, K, Beron, W, Yang, CZ, Mukhopadhyay, A, Stahl, PD. 1997. Reconstitution of phagosome-lysosome fusion in streptolysin O-permeabilized cells. J. Biol. Chem. 272(26): 16147–51.CrossRefGoogle ScholarPubMed
Gardai, SJ, Xiao, YQ, Dickinson, Met al. 2003. By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115(1): 13–23CrossRefGoogle ScholarPubMed
Gatfield, J, Pieters, J. 2000. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288(5471): 1647–50.CrossRefGoogle ScholarPubMed
Geertsma, MF, Nibbering, PH, Haagsman, HP, Daha, MR, van Furth R. 1994. Binding of surfactant protein A to C1q receptors mediates phagocytosis of Staphylococcus aureus by monocytes. Am. J. Physiol. 267(5 Pt 1): L578–84Google ScholarPubMed
Geijtenbeek, TB, Kwon, DS, Torensma, Ret al. 2000. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100(5): 587–97.CrossRefGoogle ScholarPubMed
Geijtenbeek, TB, van Vliet SJ, Engering, A, ‘t Hart BA, van Kooyk Y. 2004. Self- and nonself-recognition by C-type lectins on dendritic cells. A. Rev. Immunol. 22: 33–54CrossRefGoogle ScholarPubMed
Graham, IL, Lefkowith, JB, Anderson, DC, Brown, EJ. 1993. Immune complex-stimulated neutrophil LTB4 production is dependent on beta2 integrins. J. Cell Biol. 120: 1509–17.CrossRefGoogle Scholar
Green, JM, Schreiber, AD, Brown, EJ. 1997. Role for a glycan phosphoinositol anchor in Fc gamma receptor synergy. J. Cell Biol. 139: 1209–17.CrossRefGoogle ScholarPubMed
Greenberg S, Silverstein SC. 1993. Phagocytosis. In Fundamental Immunology.Paul, W, Ed., pp. 941–64. New York: Raven Press.Google Scholar
Greenberg, S, Chang, P, Silverstein, SC. 1993. Tyrosine phosphorylation is required for Fc receptor-mediated phagocytosis in mouse macrophages. J. Exp. Med. 177(2): 529–34.CrossRefGoogle ScholarPubMed
Gresham, HD, Graham, IL, Anderson, DC, Brown, EJ. 1991. Leukocyte adhesion-deficient neutrophils fail to amplify phagocytic function in response to stimulation. Evidence for CD11b/CD18-dependent and -independent mechanisms of phagocytosis. J. Clin. Invest. 88(2): 588–97.CrossRefGoogle ScholarPubMed
Gresham, HD, Dale, BM, Potter, JWet al. 2000. Negative regulation of phagocytosis in murine macrophages by the Src kinase family member, Fgr. J. Exp. Med. 191(3): 515–28.CrossRefGoogle ScholarPubMed
Griffin, FM Jr, Silverstein, SC. 1974. Segmental response of the macrophage plasma membrane to a phagocytic stimulus. J. Exp. Med. 139(2): 323–36.CrossRefGoogle ScholarPubMed
Griffin, FM Jr, Griffin, JA, Leider, JE, Silverstein, SC. 1975. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J. Exp. Med. 142(5): 1263–82.CrossRefGoogle ScholarPubMed
Griffin, FM Jr, Griffin, JA, Silverstein, SC. 1976. Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J. Exp. Med. 144(3): 788–809CrossRefGoogle ScholarPubMed
Gyetko, MR, Sud, S, Kendall, Tet al. 2000. Urokinase receptor-deficient mice have impaired neutrophil recruitment in response to pulmonary Pseudomonas aeruginosa infection. J. Immunol. 165(3): 1513–19.CrossRefGoogle ScholarPubMed
Hackam, DJ, Rotstein, OD, Sjolin, Cet al. 1998. v-SNARE-dependent secretion is required for phagocytosis. Proc. Natl. Acad. Sci. USA 95(20): 11691–6.CrossRefGoogle ScholarPubMed
Hammarstrom, S. 1999. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 9(2): 67–81CrossRefGoogle ScholarPubMed
Hartwig, JH, Thelen, M, Rosen, Aet al. 1992. MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356(6370): 618–22.CrossRefGoogle ScholarPubMed
Hayashi, T, Rao, SP, Catanzaro, A. 1997. Binding of the 68-kilodalton protein of Mycobacterium avium to alpha(V)beta3 on human monocyte-derived macrophages enhances complement receptor type 3 expression. Infect. Immun. 65(4): 1211–16.Google ScholarPubMed
Hazenbos, WLW, van den Berg BM, van Furth R. 1993. Very late antigen-5 and complement receptor type 3 cooperatively mediate the interaction between Bordetella pertussis and human monocytes. J. Immunol. 151(11): 6274–82.
Hazenbos, WL, van den Berg BM, Geuijen, CW, Mooi, FR, van Furth R. 1995. Binding of FimD on Bordetella pertussis to very late antigen-5 on monocytes activates complement receptor type 3 via protein tyrosine kinases. J. Immunol. 155(8): 3972–8.Google ScholarPubMed
Hazenbos, WL, Gessner, JE, Hofhuis, FMet al. 1996. Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc gamma RIII (CD16) deficient mice. Immunity 5(2): 181–8.CrossRefGoogle ScholarPubMed
Hazenbos, WL, Heijnen, IA, Meyer, Det al. 1998. Murine IgG1 complexes trigger immune effector functions predominantly via Fc gamma RIII (CD16). J. Immunol. 161(6): 3026–32.Google Scholar
Hazenbos, WL, Clausen, BE, Takeda, J, Kinoshita, T. 2004. GPI-anchor deficiency in myeloid cells causes impaired FcγR effector functions. Blood 104(9): 2825–31.CrossRefGoogle ScholarPubMed
Hellwig, SM, Hazenbos, WLW, van de Winkel JG, Mooi, FR. 1999. Evidence for an intracellular niche for Bordetella pertussis in broncho-alveolar lavage cells of mice. FEMS Immunol. Med. Microbiol. 26: 203–7.CrossRefGoogle Scholar
Hellwig, SM, van Spriel AB, Schellekens, JF, Mooi, FR, van de Winkel JG. 2001a. Immunoglobulin A-mediated protection against Bordetella pertussis infection. Infect. Immun. 69(8): 4846–50.CrossRefGoogle Scholar
Hellwig, SM, Van Oirschot HF, Hazenbos, WLWet al. 2001b. Targeting to Fcgamma receptors, but not CR3 (CD11b/CD18), increases clearance of Bordetella pertussis. J. Infect. Dis. 183: 871–9.
Henson, PM, Bratton, DL, Fadok, VA. 2001. Apoptotic cell removal. Curr. Biol. 11(19): R795–805CrossRefGoogle ScholarPubMed
Hogarth, PM. 2002. Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr. Opin. Immunol. 14(6): 798–802CrossRefGoogle ScholarPubMed
Hogg, N, Henderson, R, Leitinger, Bet al. 2002. Mechanisms contributing to the activity of integrins on leukocytes. Immunol. Rev. 186: 164–71.CrossRefGoogle ScholarPubMed
Holmskov, U, Thiel, S, Jensenius, JC. 2003. Collections and ficolins: humoral lectins of the innate immune defense. A. Rev. Immunol. 21: 547–78.CrossRefGoogle ScholarPubMed
Hunter, S, Indik, ZK, Kim, MKet al. 1998. Inhibition of Fcgamma receptor-mediated phagocytosis by a nonphagocytic Fcgamma receptor. Blood 91(5): 1762–8.Google ScholarPubMed
Indik, ZK, Pan, XQ, Huang, MMet al. 1994. Insertion of cytoplasmic tyrosine sequences into the nonphagocytic receptor Fc gamma RIIB establishes phagocytic function. Blood 83(8): 2072–80.Google ScholarPubMed
Indik, ZK, Park, JG, Pan, XQ, Schreiber, AD. 1995. Induction of phagocytosis by a protein tyrosine kinase. Blood 85(5): 1175–80.Google ScholarPubMed
Ioan-Facsinay, A, de Kimpe SJ, Hellwig, SMet al. 2002. FcgammaRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection. Immunity 16: 391–402CrossRefGoogle ScholarPubMed
Isberg, RR, Leong, JM. 1990. Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60: 861–71.CrossRefGoogle Scholar
Isberg, RR, Hamburger, Z, Dersch, P. 2000. Signaling and invasin-promoted uptake via integrin receptors. Microbes Infect. 2(7): 793–801CrossRefGoogle ScholarPubMed
Ishibashi, Y, Claus, S, Relman, DA. 1994. Bordetella pertussis filamentous hemagglutinin interacts with a leukocyte signal transduction complex and stimulates bacterial adherence to monocyte CR3 (CD11b/CD18). J. Exp. Med. 180(4): 1225–33.CrossRefGoogle Scholar
Jahraus, A, Tjelle, TE, Berg, Tet al. 1998. In vitro fusion of phagosomes with different endocytic organelles from J774 macrophages. J. Biol. Chem. 273(46): 30379–90.CrossRefGoogle ScholarPubMed
Jefferis, R, Kumararatne, DS. 1990. Selective IgG subclass deficiency: quantification and clinical relevance. Clin. Exp. Immunol. 81(3): 357–67.CrossRefGoogle ScholarPubMed
Jippo, T, Morii, E, Ito, A, Kitamura, Y. 2003. Effect of anatomical distribution of mast cells on their defense function against bacterial infections: demonstration using partially mast cell-deficient tg/tg mice. J. Exp. Med. 197(11): 1417–25.CrossRefGoogle ScholarPubMed
Joiner, KA, Ganz, T, Albert, J, Rotrosen, D. 1989. The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes. J. Cell Biol. 109(6 Pt 1): 2771–82.CrossRefGoogle Scholar
Joiner, KA, Fuhrman, SA, Miettinen, HM, Kasper, LH, Mellman, I. 1990. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 249: 641–6.CrossRefGoogle ScholarPubMed
Jones SL, Brown EJ. 1996. Functional cooperation between Fcγ receptors and complement receptors in phagocytes. In Human IgG Fc Receptors, Winkel, JGJ and Capel, PJA, Eds., pp. 149–63. Heidelberg: Springer-Verlag.Google Scholar
Jones, SL, Knaus, UG, Bokoch, GM, Brown, EJ. 1998. Two signaling mechanisms for activation of alphaM beta2 avidity in polymorphonuclear neutrophils. J. Biol. Chem. 273(17): 10556–66.CrossRefGoogle ScholarPubMed
Kaplan, MH, Volanakis, JE. 1974. Interaction of C-reactive protein complexes with the complement system. I. Consumption of human complement associated with the reaction of C-reactive protein with pneumococcal C-polysaccharide and with the choline phosphatides, lecithin and sphingomyelin. J. Immunol. 112(6): 2135–47.Google Scholar
Kiefer, F, Brumell, J, Al-Alawi N et al. 1998. The Syk protein tyrosine kinase is essential for Fcgamma receptor signaling in macrophages and neutrophils. Mol. Cell Biol. 18(7): 4209–20.CrossRefGoogle ScholarPubMed
Kim, K, Weiss, LM. 2004. Toxoplasma gondii: the model apicomplexan. Int. J. Parasitol. 34(3): 423–32.CrossRefGoogle ScholarPubMed
Kim, M, Carman, CV, Springer, TA. 2003. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301(5640): 1720–5.CrossRefGoogle ScholarPubMed
Koul, A, Herget, T, Klebl, B, Ullrich, A. 2004. Interplay between mycobacteria and host signalling pathways. Nature Rev. Microbiol. 2(3): 189–202CrossRefGoogle ScholarPubMed
Kozma, R, Ahmed, S, Best, A, Lim, L. 1995. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell Biol. 15(4): 1942–52.CrossRefGoogle ScholarPubMed
Kushner, BH, Cheung, NK. 1992. Absolute requirement of CD11/CD18 adhesion Molecules, FcRII and the phosphatidylinositol-linked FcRIII for monoclonal antibody-mediated neutrophil antihuman tumor toxicity. Blood 76(6): 1784–90.Google Scholar
Kuusela, P. 1978. Fibronectin binds to Staphylococcus aureus. Nature 276(5689): 718–20.
Langlet, C, Bernard A-M, Drevot, P, He H-T 2000. Membrane rafts and signaling by the multichain immune recognition receptors. Curr. Opin. Immunol. 12: 250–5.CrossRefGoogle ScholarPubMed
Lee, SJ, Zheng, NY, Clavijo, M, Nussenzweig, MC. 2003. Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect. Immun. 71(1): 437–45.CrossRefGoogle ScholarPubMed
Leong, JM, Morrissey, PE, Marra, A, Isberg, RR. 1995. An aspartate residue of the Yersinia pseudotuberculosis invasin protein that is critical for integrin binding. EMBO J. 14(3): 422–31.Google ScholarPubMed
Li, J, Aderem, A. 1992. MacMARCKS, a novel member of the MARCKS family of protein kinase C substrates. Cell 70(5): 791–801CrossRefGoogle ScholarPubMed
Lorenzi, R, Brickell, PM, Katz, DR, Kinnon, C, Thrasher, AJ. 2000. Wiskott–Aldrich syndrome protein is necessary for efficient IgG-mediated phagocytosis. Blood 95(9): 2943–6.Google ScholarPubMed
Malaviya, R, Ikeda, T, Ross, E, Abraham, SN. 1996. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 381(6577): 77–80CrossRefGoogle ScholarPubMed
Malaviya, R, Gao, Z, Thankavel, K, van der Merwe PA, Abraham, SN. 1999. The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc. Natl. Acad. Sci. USA 96: 8110–15.CrossRefGoogle ScholarPubMed
Maniak, M, Rauchenberger, R, Albrecht, R, Murphy, J, Gerisch, G. 1995. Coronin involved in phagocytosis: dynamics of particle-induced relocalization visualized by a green fluorescent protein Tag. Cell 83(6): 915–24.CrossRefGoogle ScholarPubMed
Mansfield, PJ, Shayman, JA, Boxer, . 2000. Regulation of polymorphonuclear leukocyte phagocytosis by myosin light chain kinase after activation of mitogen-activated protein kinase. Blood 95(7): 2407–12.Google ScholarPubMed
Marodi, L, Korchak, HM, Johnston RB Jr. 1991. Mechanisms of host defense against Candida species. I. Phagocytosis by monocytes and monocyte-derived macrophages. J. Immunol. 146(8): 2783–9.Google ScholarPubMed
Masuda, M, Roos, D. 1993. Association of all three types of Fc gamma R (CD64, CD32, and CD16) with a gamma-chain homodimer in cultured human monocytes. J. Immunol. 151(12): 7188–95.Google ScholarPubMed
Matsuda, M, Park, JG, Wang, DCet al. 1996. Abrogation of the Fc gamma receptor IIA-mediated phagocytic signal by stem-loop Syk antisense oligonucleotides. Mol. Biol. Cell 7(7): 1095–106.CrossRefGoogle ScholarPubMed
Maurer, D, Ebner, C, Reininger, Bet al. 1995. The high affinity IgE receptor (Fc epsilon RI) mediates IgE-dependent allergen presentation. J. Immunol. 154(12): 6285–90.Google ScholarPubMed
Mengaud, J, Ohayon, H, Gounon, P, Mege R-M, Cossart, P. 1996. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84(6): 923–32.CrossRefGoogle ScholarPubMed
Meresse, S, Steele-Mortimer O, Moreno, Eet al. 1999. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell. Biol. (7): E183–8
Meyer, D, Schiller, C, Westermann, Jet al. 1998. FcgammaRIII (CD16)-deficient mice show IgG isotype-dependent protection to experimental autoimmune hemolytic anemia. Blood 92(11): 3997–4002Google ScholarPubMed
Miranti, CK, Leng, L, Maschberger, P, Brugge, JS, Shattil, SJ. 1998. Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1. Curr Biol. 8(24): 1289–99.CrossRefGoogle ScholarPubMed
Mitchell, MA, Huang, MM, Chien, Pet al. 1994. Substitutions and deletions in the cytoplasmic domain of the phagocytic receptor Fc gamma RIIA: effect on receptor tyrosine phosphorylation and phagocytosis. Blood 84(6): 1753–9.Google ScholarPubMed
Miyajima, I, Dombrowicz, D, Martin, TRet al. 1997. Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. J. Clin. Invest. 99(5): 901–14.CrossRefGoogle ScholarPubMed
Mold, C, Gresham, HD, Du Clos TW. 2001. Serum amyloid P component and C-reactive protein mediate phagocytosis through murine Fc gamma Rs. J. Immunol. 166(2): 1200–5.CrossRefGoogle ScholarPubMed
Monteiro, RC, Van de Winkel JG. 2003. IgA Fc receptors. A. Rev. Immunol. 21: 177–204CrossRefGoogle ScholarPubMed
Mosser, DM, Edelson, PJ. 1985. The mouse macrophage receptor for C3bi (CR3) is a major mechanism in the phagocytosis of Leishmania promastigotes. J. Immunol. 135(4): 2785–9.Google ScholarPubMed
Mosser, DM, Edelson, PJ. 1987. The third component of complement (C3) is responsible for the intracellular survival of Leishmania major. Nature 327: 329–31.
Munro, S. 2003. Lipid rafts: elusive or illusive? Cell 115: 377–88.
Nagaishi, K, Adachi, R, Matsui, Set al. 1999. Herbimycin A inhibits both dephosphorylation and translocation of cofilin induced by opsonized zymosan in macrophagelike U937 cells. J. Cell Physiol. 180(3): 345–54.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Nakamura, A, Takai, T. 2004. A role of FcgammaRIIB in the development of collagen-induced arthritis. Biomed. Pharmacother. 58(5): 292–8.CrossRefGoogle ScholarPubMed
Nakamura, K, Malykhin, A, Coggeshall, KM. 2002. The Src homology 2 domain-containing inositol 5-phosphatase negatively regulates Fcgamma receptor-mediated phagocytosis through immunoreceptor tyrosine-based activation motif-bearing phagocytic receptors. Blood 100(9): 3374–82.CrossRefGoogle ScholarPubMed
Nobes, CD, Hall, A. 1995. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1): 53–62CrossRefGoogle ScholarPubMed
Oldenborg, PA, Gresham, HD, Lindberg, FP. 2001. CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J. Exp. Med. 193(7): 855–62.CrossRefGoogle ScholarPubMed
Ono, M, Bolland, S, Tempst, P, Ravetch, JV. 1996. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature 383(6597): 263–6.CrossRefGoogle ScholarPubMed
Ouaissi, MA, Afchain, D, Capron, A, Grimaud, JA. 1984. Fibronectin receptors on Trypanosoma cruzi trypomastigotes and their biological function. Nature 308(5957): 380–2.CrossRefGoogle ScholarPubMed
Persson, C, Carballeira, N, Wolf-Watz H, Fallman, M. 1997. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 16: 2307–18.CrossRefGoogle ScholarPubMed
Peyron, P, Bordier, C, N'Diaye, EN, Maridonneau-Parini, I. 2000. Non-opsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with glycosylphosphatidylinositol-anchored proteins. J. Immunol. 165(9): 5186–91.CrossRefGoogle Scholar
Pfeiffer, A, Böttcher A, Orsó E et al. 2001. Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur. J. Immunol. 31: 3153–64.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Pierini, L, Holowka, D, Baird, B. 1996. Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling. J. Cell Biol. 134(6): 1427–39.CrossRefGoogle ScholarPubMed
Pommier, CG, Inada, S, Fries, LFet al. 1983. Plasma fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes. J. Exp. Med. 157(6): 1844–54.CrossRefGoogle ScholarPubMed
Pommier, CG, O'Shea J, Chused, Tet al. 1984. Studies on the fibronectin receptors of human peripheral blood leukocytes. Morphologic and functional characterization. J. Exp. Med. 159(1): 137–51.CrossRefGoogle ScholarPubMed
Rambukkana, A. 2001. Molecular basis for the peripheral nerve predilection of Mycobacterium leprae. Curr. Opin. Microbiol. 4(1): 21–7.
Rambukkana, A, Salzer, JL, Yurchenco, PD, Tuomanen, EI. 1997. Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin-alpha2 chain. Cell 88(6): 811–21.CrossRefGoogle Scholar
Ratliff, TL, McCarthy R, Telle, WB, Brown, EJ. 1993. Purification of a mycobacterial adhesin for fibronectin. Infect. Immun. 61(5): 1889–94.Google ScholarPubMed
Ravetch JV. 2003. Fc receptors. In Fundamental Immunology, Paul, WE, Ed., pp. 685–700. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Relman, D, Tuomanen, E, Falkow, Set al. 1990. Recognition of a bacterial adhesion by an integrin: macrophage CR3 (alpha M beta 2, CD11b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell 61(7): 1375–82.
Reth, M. 1989. Antigen receptor tail clue. Nature 338(6214): 383–4.CrossRefGoogle ScholarPubMed
Ridley, AJ, Paterson, HF, Johnston, CL, Diekmann, D, Hall, A. 1992. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70(3): 401–10.CrossRefGoogle ScholarPubMed
Russell, DG, Wright, SD. 1988. Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes. J. Exp. Med. 168(1): 279–92.CrossRefGoogle Scholar
Saeland, E, van Royen A, Hendriksen, Ket al. 2001. Human C-reactive protein does not bind to FcgammaRIIa on phagocytic cells. J. Clin. Invest. 107(5): 641–3.CrossRefGoogle Scholar
Sakamoto, N, Shibuya, K, Shimizu, Yet al. 2001. A novel Fc receptor for IgA and IgM is expressed on both hematopoietic and non-hematopoietic tissues. Eur. J. Immunol. 31(5): 1310–16.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Salmon, JE, Millard, SS, Brogle, NL, Kimberly, RP. 1995. Fc gamma receptor IIIb enhances Fc gamma receptor IIa function in an oxidant-dependent and allele-sensitive manner. J. Clin. Invest. 95: 2877–85.CrossRefGoogle Scholar
Saukkonen, K, Cabellos, C, Burroughs, M, Prasad, S, Tuomanen, E. 1991. Integrin-mediated localization of Bordetella pertussis within macrophages: role in pulmonary colonization. J. Exp. Med. 173(5): 1143–9.CrossRefGoogle ScholarPubMed
Schmitter, T, Agerer, F, Peterson, L, Munzner, P, Hauck, CR. 2004. Granulocyte CEACAM3 is a phagocytic receptor of the innate immune system that mediates recognition and elimination of human-specific pathogens. J. Exp. Med. 199(1): 35–46CrossRefGoogle ScholarPubMed
Schorey, JS, Li, Q, McCourt DW et al. 1995. A Mycobacterium leprae gene encoding a fibronectin binding protein is used for efficient invasion of epithelial cells and Schwann cells. Infect. Immun. 63(7): 2652–7.Google ScholarPubMed
Schorey, JS, Holsti, MA, Ratliff, TL, Allen, PM, Brown, EJ. 1996. Characterization of the fibronectin-attachment protein of Mycobacterium avium reveals a fibronectin-binding motif conserved among mycobacteria. Mol. Microbiol. 21(2): 321–9.CrossRefGoogle ScholarPubMed
Serrander, L, Skarman, P, Rasmussen, Bet al. 2000. Selective inhibition of IgG-mediated phagocytosis in gelsolin-deficient murine neutrophils. J. Immunol. 165(5): 2451–7.CrossRefGoogle ScholarPubMed
Sharma, P, Varma, R, Sarasij, RCet al. 2004. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116(4): 577–89.CrossRefGoogle ScholarPubMed
Shen, L, Lasser, R, Fanger, MW. 1989. My 43, a monoclonal antibody that reacts with human myeloid cells inhibits monocyte IgA binding and triggers function. J. Immunol. 143(12): 4117–22.Google ScholarPubMed
Shibuya, A, Sakamoto, N, Shimizu, Yet al. 2000. Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes. Nat. Immunol. 1(5): 441–6.CrossRefGoogle ScholarPubMed
Shin, JS, Abraham, SN. 2001. Glycosylphosphatidylinositol-anchored receptor-mediated bacterial endocytosis. FEMS Microbiol. Lett. 197(2): 131–8.CrossRefGoogle ScholarPubMed
Shin, JS, Gao, Z, Abraham, SN. 2000. Involvement of cellular caveolae in bacterial entry into mast cells. Science 289: 785–8.CrossRefGoogle ScholarPubMed
Silverstein, SC, Steinman, RM, Cohn, ZA. 1977. Endocytosis. A. Rev. Biochem. 46: 669CrossRefGoogle ScholarPubMed
Simon, DI, Wei, Y, Zhang, Let al. 2000. Identification of a urokinase receptor-integrin interaction site. Promiscuous regulator of integrin function. J. Biol. Chem. 275(14): 10228–34.CrossRefGoogle ScholarPubMed
Simons, K, Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387: 569–72.CrossRefGoogle ScholarPubMed
Sinai, AP, Joiner, KA. 1997. Safe haven: the cell biology of nonfusogenic pathogen vacuoles. A. Rev. Microbiol. 51: 415–62.CrossRefGoogle ScholarPubMed
Sitrin, RG, Todd RF III, Albrecht, E, Gyetko, MR. 1996. The urokinase receptor (CD87) facilitates CD11b/CD18-mediated adhesion of human monocytes. J. Clin. Invest. 97(8): 1942–51.CrossRefGoogle ScholarPubMed
Solomon, JM, Leung, GS, Isberg, RR. 2003. Intracellular replication of Mycobacterium marinum within Dictyostelium discoideum: efficient replication in the absence of host coronin. Infect. Immun. 71(6): 3578–86.CrossRefGoogle ScholarPubMed
Springer, TA. 1990. Adhesion receptors of the immune system. Nature 346(6283): 425–34.CrossRefGoogle ScholarPubMed
Steele, C, Marrero, L, Swain, Set al. 2003. Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. J. Exp. Med. 198(11): 1677–88.CrossRefGoogle ScholarPubMed
Steinman, RM, Moberg, CL. 1994. Zanvil Alexander Cohn 1926–1993. J. Exp. Med. 179: 1–30CrossRefGoogle ScholarPubMed
Stendahl, OI, Hartwig, JH, Brotschi, EA, Stossel, TP. 1980. Distribution of actin-binding protein and myosin in macrophages during spreading and phagocytosis. J. Cell Biol. 84(2): 215–24.CrossRefGoogle ScholarPubMed
Strzelecka-Kiliszek, A, Kwiatkowska, K, Sobota, A. 2002. Lyn and Syk kinases are sequentially engaged in phagocytosis mediated by Fc gamma R. Immunology 169(12): 6787–94.CrossRefGoogle ScholarPubMed
Suzuki, T, Kono, H, Hirose, Net al. 2000. Differential involvement of Src family kinases in Fc gamma receptor-mediated phagocytosis. J. Immunol. 165(1): 473–82.CrossRefGoogle ScholarPubMed
Swain SD, Lee SJ, Nussenzweig MC, Harmsen AG. 2003. Absence of the macrophage mannose receptor in mice does not increase susceptibility to Pneumocystis carinii infection in vivo. Infect. Immun. 71(11): 6213–21
Takai, T, Li, M, Sylvestre, D, Clynes, R, Ravetch, JV. 1994. FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell 76(3): 519–29.CrossRefGoogle ScholarPubMed
Takai, T, Ono, M, Hikida, M, Ohmori, H, Ravetch, JV. 1996. Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature 379(6563): 346–9.CrossRefGoogle ScholarPubMed
Talay, SR, Valentin-Weigand, P, Jerlstrom, PG, Timmis, KN, Chhatwal, GS. 1992. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells. Infect. Immun. 60(9): 3837–44.Google ScholarPubMed
Thole, JE, Schoningh, R, Janson, AAet al. 1992. Molecular and immunological analysis of a fibronectin-binding protein antigen secreted by Mycobacterium leprae. Mol. Microbiol. 6(2): 153–63.CrossRefGoogle ScholarPubMed
Titus, MA. 1999. A class VII unconventional myosin is required for phagocytosis. Curr. Biol. 9(22): 1297–303.CrossRefGoogle ScholarPubMed
Titus, MA. 2000. The role of unconventional myosins in Dictyostelium endocytosis. J. Eukaryot. Microbiol. 47(3): 191–6.CrossRefGoogle ScholarPubMed
Tran Van Nhieu, G, Isberg, RR. 1991. The Yersinia pseudotuberculosis invasin protein and human fibronectin bind to mutually exclusive sites on the alpha 5 beta 1 integrin receptor. J. Biol. Chem. 266(36): 24367–75.Google Scholar
Tran Van Nhieu, G, Isberg, RR. 1993. Bacterial internalization mediated by beta 1 chain integrins is determined by ligand affinity and receptor density. EMBO J. 12(5): 1887–95.Google Scholar
Tuijnman, WB, Capel, PJA, Van de Winkel JGJ 1992. Human low affinity IgG receptor FcgammaRIIa (CD32) introduced into mouse fibroblasts mediates EA-phagocytosis. Blood 79: 1651–6.Google Scholar
Underhill, DM, Chen, J, Allen, , Aderem, A. 1998. MacMARCKS is not essential for phagocytosis in macrophages. J. Biol. Chem. 273(50): 33619–23.CrossRefGoogle Scholar
Underhill, DM, Ozinsky, A, Hajjar, AMet al. 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature. 401(6755): 811–15.Google ScholarPubMed
Berg, BM, Van Furth R, Hazenbos, WLW. 1999. Activation of complement receptor 3 on human monocytes by cross-linking of very-late antigen-5 is mediated via protein tyrosine kinases. Immunology 98(2) 197–202CrossRefGoogle ScholarPubMed
Pol, W, Van de Winkel JG. 1998. IgG receptor polymorphisms: risk factors for disease. Immunogenetics 48(3): 222–32.Google ScholarPubMed
Pol, W, Vidarsson, G, Vile, HA, Van de Winkel JG, Rodriguez, ME. 2000. Pneumococcal capsular polysaccharide-specific IgA triggers efficient neutrophil effector functions via FcalphaRI (CD89). J. Infect. Dis. 182(4): 1139–45.Google Scholar
Egmond, M, van Garderen E, van Spriel AB et al. 2000. FcalphaRI-positive liver Kupffer cells: reappraisal of the function of immunoglobulin A in immunity. Nat. Med. 6(6): 680–5.CrossRefGoogle ScholarPubMed
Furth, R, Cohn, ZA 1968. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128(3): 415–35.CrossRefGoogle ScholarPubMed
Furth, R, Cohn, ZA, Hirsch, JGet al. 1972. Mononuclear phagocytic system: new classification of macrophages, monocytes and of their cell line. Bull. World Health Organ. 47(5): 651–8.Google ScholarPubMed
Van Furth R, Diesselhoff-den Dulk MMC, Sluiter W, Van Dissel JT. 1985. New perspectives on the kinetics of mononuclear phagocytes. In Mononuclear Phagocytes: Characteristics, Physiology, and Function (Proceedings of the Fourth Conference on Mononuclear Phagocytes), Furth, R, Ed., pp. 201–8. The Hague: Martinus Nijhoff.CrossRefGoogle Scholar
Iwaarden, JF, Pikaar, JC, Storm, Jet al. 1994. Binding of surfactant protein A to the lipid A moiety of bacterial lipopolysaccharides. Biochem. J. 303(2): 407–11.CrossRefGoogle ScholarPubMed
Spriel, AB, van den Herik-Oudijk IE, van Sorge NM et al. 1999. Effective phagocytosis and killing of Candida albicans via targeting FcgammaRI (CD64) or FcalphaRI (CD89) on neutrophils. J. Infect Dis. 179(3): 661–9.Google ScholarPubMed
Spriel, AB, Leusen, JH, Van Egmond M et al. 2001. Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood 97(8): 2478–86.CrossRefGoogle ScholarPubMed
Spriel, AB, Leusen, JH, Vile, H, Van de Winkel JG. 2002. Mac-1 (CD11b/CD18) as accessory molecule for Fc alpha R (CD89) binding of IgA. J. Immunol. 169(7): 3831–6.CrossRefGoogle ScholarPubMed
Spriel, AB, Van Ojik HH, Bakker, A, Jansen, MJ, Van de Winkel JG. 2003. Mac-1 (CD11b/CD18) is crucial for effective Fc receptor-mediated immunity to melanoma. Blood 101(1): 253–8.CrossRefGoogle ScholarPubMed
Strijp, JA., Russell, DG. Tuomanen E, Brown, EJ, Wright, SD. 1993. Ligand specificity of purified complement receptor type three (CD11b/CD18, alpha m beta 2, Mac-1). Indirect effects of an Arg-Gly-Asp (RGD) sequence. J. Immunol. 151: 3324–36.Google Scholar
Vugt, MJ, Heijnen, AF, Capel, PJet al. 1996. FcR gamma-chain is essential for both surface expression and function of human Fc gamma RI (CD64) in vivo. Blood 87(9): 3593–9.
Vieira, OV, Botelho, RJ, Grinstein, S. 2002. Phagosome maturation: aging gracefully. Biochem. J. 366(3): 689–704CrossRefGoogle ScholarPubMed
Visser, LG, Annema, A, Van Furth R. 1995. Role of Yops in inhibition of phagocytosis and killing of opsonized Yersinia enterocolitica by human granulocytes. Infect. Immun. 63: 2570–5.Google ScholarPubMed
Vivier, E, Daeron, M. Immunoreceptor tyrosine-based inhibition motifs. 1997. Immunol. Today 18(6): 286–91.CrossRef
Vossebeld, PJ, Kessler, J, von dem Borne AE, Roos, D, Verhoeven, AJ. 1995. Heterotypic Fc gamma R clusters evoke a synergistic Ca2+ response in human neutrophils. J. Biol. Chem. 270(18): 10671–9.CrossRefGoogle ScholarPubMed
Vranian, G Jr, Conrad, DH, Ruddy, S. 1981. Specificity of C3 receptors that mediate phagocytosis by rat peritoneal mast cells. J. Immunol. 126(6): 2302–6.Google ScholarPubMed
Wang, J, Brown, EJ. 1999. Immune complex-induced integrin activation and L-complex phosphorylation require protein kinase A. J. Biol. Chem. 274: 24349–56.CrossRefGoogle Scholar
Weisbart, RH, Kacena, A, Schuh, A, Golde, DW. 1988. GM-CSF induces human neutrophil IgA-mediated phagocytosis by an IgA Fc receptor activation mechanism. Nature 332(6165): 647–8.CrossRefGoogle ScholarPubMed
Wirth, JJ, Kierszenbaum, F. 1984. Fibronectin enhances macrophage association with invasive forms of Trypanosoma cruzi. J. Immunol. 133(1): 460–4.
Woodside, DG, Obergfell, A, Leng, L, et al. 2001. Activation of Syk protein tyrosine kinase through interaction with integrin beta cytoplasmic domains. Curr. Biol. 11(22): 1799–804.CrossRefGoogle ScholarPubMed
Wright, SD, Silverstein, SC. 1982. Tumor-promoting phorbol esters stimulate C3b and C3b′ receptor-mediated phagocytosis in cultured human monocytes. J. Exp. Med. 156: 1149–64.CrossRefGoogle ScholarPubMed
Wright, SD, Silverstein, SC. 1983. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J. Exp. Med. 158(6): 2016–23.CrossRefGoogle Scholar
Wright, SD, Craigmyle, LS, Silverstein, SC. 1983. Fibronectin and serum amyloid P component stimulate C3b- and C3bi-mediated phagocytosis in cultured human monocytes. J. Exp. Med. 158: 1338–43.CrossRefGoogle ScholarPubMed
Wyler, DJ, Sypek, JP, McDonald JA. 1985. In vitro parasite-monocyte interactions in human leishmaniasis: possible role of fibronectin in parasite attachment. Infect. Immun. 49(2): 305–11.Google ScholarPubMed
Xia, Y, Borland, G, Huang, Jet al. 2002. Function of the lectin domain of Mac-1/complement receptor type 3 (CD11b/CD18) in regulating neutrophil adhesion. J. Immunol. 169(11): 6417–26.CrossRefGoogle ScholarPubMed
Xue, W, Kindzelskii, AL, Todd, RF III, Petty, HR. 1994. Physical association of complement receptor type 3 and urokinase-type plasminogen activator receptor in neutrophil membranes. J. Immunol. 152: 4630–40.Google ScholarPubMed
Yokota, A, Yukawa, K, Yamamoto, Aet al. 1999. Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: identification of the critical cytoplasmic domains. Proc. Natl. Acad. Sci. USA. 89(11): 5030–4.CrossRefGoogle Scholar
Yuan, R, Clynes, R, Oh, J, Ravetch, JV, Scharff, MD, 1998. Antibody-mediated modulation of Cryptococcus neoformans infection is dependent on distinct Fc receptor functions and IgG subclasses. J. Exp. Med. 187(4): 641–8.CrossRefGoogle ScholarPubMed
Zhang, JR, Mostov, KE, Lamm, MEet al. 2000. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102(6): 827–37.CrossRefGoogle ScholarPubMed
Zhou, MJ, Brown, EJ. 1994. CR3 (Mac-1, alpha M beta 2, CD11b/CD18) and Fc gamma RIII cooperate in generation of a neutrophil respiratory burst: requirement for Fc gamma RIII and tyrosine phosphorylation. J. Cell Biol. 125(6): 1407–16.CrossRefGoogle Scholar
Zhou, M, Todd RF III, Van de Winkel JG, Petty, HR. 1993. Cocapping of the leukoadhesin molecules complement receptor type 3 and lymphocyte function-associated antigen-1 with Fc gamma receptor III on human neutrophils. Possible role of lectin-like interactions. J. Immunol. 150: 3030–41.Google ScholarPubMed
Zhou, MJ, Lublin, DM, Link, DC, Brown, EJ. 1995. Distinct tyrosine kinase activation and Triton X-100 insolubility upon Fc gamma RII or Fc gamma RIIIB ligation in human polymorphonuclear leukocytes. Implications for immune complex activation of the respiratory burst. J. Biol. Chem. 270(22): 13553–60.CrossRefGoogle ScholarPubMed
Zhu, Z, Bao, Z, Li, J. 1995. MacMARCKS mutation blocks macrophage phagocytosis of zymosan. J. Biol. Chem. 270(30): 17652–5.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×