Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T12:46:15.363Z Has data issue: false hasContentIssue false

7 - Listeria invasion and spread in non-professional phagocytes

Published online by Cambridge University Press:  07 August 2009

Frederick S. Southwick
Affiliation:
Division of Infectious Diseases University of Florida
Joel D. Ernst
Affiliation:
New York University
Olle Stendahl
Affiliation:
Linköpings Universitet, Sweden
Get access

Summary

INTRODUCTION

The intracellular pathogen Listeria monocytogenes exploits a number of normal host cell functions to survive and spread; its intracellular lifestyle explains many of the unique clinical characteristics of this deadly food-borne pathogen (Southwick & Purich 1996). Listeria is able to grow on refrigerated foods and also multiplies readily at room temperature. Humans with defects in cell-mediated immunity who ingest foods stored for prolonged periods in the refrigerator are at risk of contracting Listeria. When ingested in high numbers, this bacterium can quietly enter through the gastrointestinal tract, seed the bloodstream, and subsequently invade the meninges, causing serious and often fatal bacterial meningitis. Based on epidemiologic studies, defects in humoral immunity are not associated with an increased risk of contracting Listeria; however, defects in cell-mediated immunity (particularly in patients with CD4 counts below 200) confer an increased predisposition for listeriosis. Pregnant women, neonates, patients receiving corticosteroids and other immunosuppressants to prevent the rejection of organ transplants or to treat connective tissue disease, and patients with AIDS, are all at increased risk of developing Listeria infection (Lorber 1997). Because Listeria can grow within the cytoplasm of host cells and spread from cell to cell without ever coming in contact with the extracellular milieu, this pathogen is able to avoid antibodies as well as extracellular antibiotics, and can only be killed by cell-mediated immune mechanisms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auerbuch, V., Loureiro, J. J., Gertler, F. B., Theriot, J. A., and Portnoy, D. A.. 2003. Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility. Mol Microbiol. 49: 1361–75CrossRefGoogle ScholarPubMed
Bear, J. E., Svitkina, T. M., Krause, M.et al. 2002. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell. 109: 509–21CrossRefGoogle ScholarPubMed
Bergmann, B., Raffelsbauer, D., Kuhn, M., Goetz, M., Hom, S., and Goebel, W.. 2002. InlA- but not InlB-mediated internalization of Listeria monocytogenes by non-phagocytic mammalian cells needs the support of other internalins. Mol Microbiol. 43: 557–70CrossRefGoogle Scholar
Bernardini, M. L., Mounier, J., H. d'Hauteville, M. Coquis-Rondon, and Sansonetti, P. J.. 1989. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci USA. 86: 3867–71CrossRefGoogle ScholarPubMed
Bierne, H., Dramsi, S., M. P. Gratacap et al. 2000. The invasion protein InIB from Listeria monocytogenes activates PLC-gamma1 downstream from PI 3-kinase. Cell Microbiol. 2: 465–76CrossRefGoogle ScholarPubMed
Bierne, H., Gouin, E., Roux, P., Caroni, P., Yin, H. L., and Cossart, P.. 2001. A role for cofilin and LIM kinase in Listeria-induced phagocytosis. J Cell Biol. 155: 101–12CrossRefGoogle ScholarPubMed
Braun, L., Nato, F., Payrastre, B., Mazie, J. C., and Cossart, P.. 1999. The 213-amino-acid leucine-rich repeat region of the Listeria monocytogenes InlB protein is sufficient for entry into mammalian cells, stimulation of PI 3-kinase and membrane ruffling. Mol Microbiol. 34: 10–23CrossRefGoogle ScholarPubMed
Braun, L., Ghebrehiwet, B., and Cossart, P.. 2000. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J. 19: 1458–66CrossRefGoogle ScholarPubMed
Bubb, M. R., Yarmola, E. G., Gibson, B. G., and Southwick, F. S.. 2003. Depolymerization of actin filaments by profilin. Effects of profilin on capping protein function. J Biol Chem. 278: 24629–35CrossRefGoogle ScholarPubMed
Burridge, K., and Wennerberg, K.. 2004. Rho and Rac take center stage. Cell. 116: 167–79CrossRefGoogle ScholarPubMed
Cabanes, D., Dehoux, P., Dussurget, O., Frangeul, L., and Cossart, P.. 2002. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol. 10: 238–45CrossRefGoogle ScholarPubMed
Caldwell, J. E., Waddle, J. A., Cooper, J. A., Hollands, J. A., Casella, S. J., and Casella, J. F.. 1989. ATPcDNAs encoding the beta subunit of cap Z, the actin-capping protein of the Z line of muscle. J Biol Chem. 264: 12648–52Google Scholar
Cameron, L. A., Footer, M. J., Oudenaarden, A., and Theriot, J. A.. 1999. Motility of ActA protein-coated microspheres driven by actin polymerization. Proc Natl Acad Sci USA. 96: 4908–13CrossRefGoogle ScholarPubMed
Camilli, A., Goldfine, H., and Portnoy, D. A.. 1991. Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent. J Exp Med. 173: 751–4CrossRefGoogle ScholarPubMed
Camilli, A., Tilney, L. G., and Portnoy, D. A.. 1993. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol. 8: 143–57CrossRefGoogle ScholarPubMed
Chico-Calero, I., Suarez, M., Gonzalez-Zorn, B.et al. 2002. Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci USA. 99: 431–6CrossRefGoogle ScholarPubMed
Cicchetti, G., Maurer, P., Wagener, P., and Kocks, C.. 1999. Actin and phosphoinositide binding by the ActA protein of the bacterial pathogen Listeria monocytogenes. J Biol Chem. 274: 33616–26CrossRefGoogle ScholarPubMed
Cooper, J. A., and Pollard, T. D.. 1985. Effect of capping protein on the kinetics of actin polymerization. Biochemistry. 24: 793–9CrossRefGoogle ScholarPubMed
Cossart, P., and Sansonetti, P. J.. 2004. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science. 304: 242–8CrossRefGoogle ScholarPubMed
Cossart, P., Vicente, M. F., Mengaud, J., Baquero, F., Perez-Diaz, J. C., and Berche, P.. 1989. Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect Immun. 57: 3629–36Google ScholarPubMed
Cossart, P., Pizarro-Cerda, J., and Lecuit, M.. 2003. Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol. 13: 23–31CrossRefGoogle ScholarPubMed
Dabiri, G. A., Sanger, J. M., Portnoy, D. A., and Southwick, F. S.. 1990. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc Natl Acad Sci USA. 87: 6068–72CrossRefGoogle ScholarPubMed
David, V., Gouin, E., Troys, M. V.et al. 1998. Identification of cofilin, coronin, Rac and capZ in actin tails using a Listeria affinity approach. J Cell Sci. 111 (19): 2877–84Google ScholarPubMed
Hostos, E. L., Bradtke, B., Lottspeich, F., Guggenheim, R., and Gerisch, G.. 1991. Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G protein beta subunits. EMBO J. 10: 4097–104Google ScholarPubMed
Decatur, A. L., and Portnoy, D. A.. 2000. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science. 290: 992–5CrossRefGoogle ScholarPubMed
Dold, F. G., Sanger, J. M., and Sanger, J. W.. 1994. Intact alpha-actinin molecules are needed for both the assembly of actin into the tails and the locomotion of Listeria monocytogenes inside infected cells. Cell Motil Cytoskeleton. 28: 97–107CrossRefGoogle ScholarPubMed
Domann, E., Wehland, J., Rohde, M.et al. 1992. A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J. 11: 1981–90Google ScholarPubMed
Dramsi, S., and Cossart, P.. 2003. Listeriolysin O-mediated calcium influx potentiates entry of Listeria monocytogenes into the human Hep-2 epithelial cell line. Infect Immun. 71: 3614–18CrossRefGoogle ScholarPubMed
Dussurget, O., Pizarro-Cerda, J., and Cossart, P.. 2004. Molecular determinants of Listeria monocytogenes virulence. A Rev Microbiol. 58: 587–610CrossRefGoogle ScholarPubMed
Gandhi, A. J., Perussia, B., and Goldfine, H.. 1993. Listeria monocytogenes phosphatidylinositol (PI)-specific phospholipase C has low activity on glycosyl-PI-anchored proteins. J Bacteriol. 175: 8014–17CrossRefGoogle ScholarPubMed
Geoffroy, C., Gaillard, J. L., Alouf, J. E., and Berche, P.. 1987. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect Immun. 55: 1641–6Google ScholarPubMed
Glomski, I. J., Gedde, M. M., Tsang, A. W., Swanson, J. A., and Portnoy, D. A.. 2002. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol. 156: 1029–38CrossRefGoogle ScholarPubMed
Glomski, I. J., Decatur, A. L., and Portnoy, D. A.. 2003. Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun. 71: 6754–65CrossRefGoogle ScholarPubMed
Goetz, M., Bubert, A., Wang, G.et al. 2001. Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc Natl Acad Sci USA. 98: 12221–6CrossRefGoogle ScholarPubMed
Goldfine, H., and Wadsworth, S. J.. 2002. Macrophage intracellular signaling induced by Listeria monocytogenes. Microbes Infect. 4: 1335–43CrossRefGoogle ScholarPubMed
Goldfine, H., Johnston, N. C., and Knob, C.. 1993. Nonspecific phospholipase C of Listeria monocytogenes: activity on phospholipids in Triton X-100-mixed micelles and in biological membranes. J Bacteriol. 175: 4298–306CrossRefGoogle ScholarPubMed
Goode, B. L., Wong, J. J., Butty, A. C.et al. 1999. Coronin promotes the rapid assembly and cross-linking of actin filaments and may link the actin and microtubule cytoskeletons in yeast. J Cell Biol. 144: 83–98CrossRefGoogle Scholar
Gouin, E., Welch, M. D., and Cossart, P.. 2005. Actin-based motility of intracellular pathogens. Curr Op Microbiol. (In press).
Grogan, A., Reeves, E., Keep, N.et al. 1997. Cytosolic phox proteins interact with and regulate the assembly of coronin in neutrophils. J Cell Sci. 110 (24): 3071–81Google ScholarPubMed
Ireton, K., Payrastre, B., Chap, H.et al. 1996. A role for phosphoinositide 3-kinase in bacterial invasion. Science. 274: 780–2.CrossRefGoogle ScholarPubMed
Ireton, K., Payrastre, B., and Cossart, P.. 1999. The Listeria monocytogenes protein InlB is an agonist of mammalian phosphoinositide 3-kinase. J Biol Chem. 274: 17025–32CrossRefGoogle ScholarPubMed
Jacquet, C., Doumith, M., Gordon, J. I., Martin, P. M., Cossart, P., and Lecuit, M.. 2004. A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J Infect Dis. 189: 2094–100CrossRefGoogle ScholarPubMed
Kang, F., Laine, R. O., Bubb, M. R., Southwick, F. S., and Purich, D. L.. 1997. Profilin interacts with the Gly-Pro-Pro-Pro-Pro-Pro sequences of vasodilator-stimulated phosphoprotein (VASP): implications for actin-based Listeria motility. Biochemistry. 36: 8384–92CrossRefGoogle ScholarPubMed
Kathariou, S., Metz, P., Hof, H., and Goebel, W.. 1987. Tn916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes. J Bacteriol. 169: 1291–7CrossRefGoogle ScholarPubMed
Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H., and Cossart, P.. 1992. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell. 68: 521–31CrossRefGoogle ScholarPubMed
Kocks, C., Hellio, R., Gounon, P., Ohayon, H., and Cossart, P.. 1993. Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly. J Cell Sci. 105 (3): 699–710Google ScholarPubMed
Kocks, C., Marchand, J. B., Gouin, E.et al. 1995. The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively. Mol Microbiol. 18: 413–23CrossRefGoogle ScholarPubMed
Kussel-Andermann, P., El-Amraoui, A., Safuddine, S.et al. 2000. Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO J. 19: 6020–9CrossRefGoogle ScholarPubMed
Laine, R. O., Phaneuf, K. L., Cunningham, C. C., Kwiatkowski, D., Azuma, T., and Southwick, F. S.. 1998. Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of Listeria monocytogenes in host cells. Infect Immun. 66: 3775–82Google ScholarPubMed
Larson, L., S. Arnaudeau, B. Gibson et al. (2005). Gelsolin mediates calcium-dependent disassembly of Listeria actin tails. Submitted.CrossRef
Lasa, I., David, V., Gouin, E., Marchand, J. B., and Cossart, P.. 1995. The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator. Mol Microbiol. 18: 425–36CrossRefGoogle ScholarPubMed
Lasa, I., Gouin, E., Goethals, M.et al. 1997. Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J. 16: 1531–40CrossRefGoogle ScholarPubMed
Laurent, V., Loisel, T. P., Harbeck, B.et al. 1999. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J Cell Biol. 144: 1245–58CrossRefGoogle ScholarPubMed
Lecuit, M., Dramsi, S., Gottardi, C., Fedor-Chaiken, M., Gumbiner, B., and Cossart, P.. 1999. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18: 3956–63CrossRefGoogle ScholarPubMed
Lecuit, M., Vandormael-Pournin, S., Lefort, J.et al. 2001. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science. 292: 1722–5CrossRefGoogle ScholarPubMed
Lecuit, M., Nelson, D. M., Smith, S. D.et al. 2004. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. Proc Natl Acad Sci USA. 101: 6152–7CrossRefGoogle ScholarPubMed
Loisel, T. P., Boujemaa, R., Pantaloni, D., and Carlier, M. F.. 1999. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature. 401: 613–16CrossRefGoogle ScholarPubMed
Lorber, B. 1997. Listeriosis. Clin Infect Dis. 24: 1–9; [quiz] 10–1CrossRefGoogle ScholarPubMed
Machner, M. P., Urbanke, C., Barzik, M.et al. 2001. ActA from Listeria monocytogenes can interact with up to four Ena/VASP homology 1 domains simultaneously. J Biol Chem. 276: 40096–103CrossRefGoogle ScholarPubMed
Marino, M., Banerjee, M., Jonquieres, R., Cossart, P., and Ghosh, P.. 2002. GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands. EMBO J. 21: 5623–34CrossRefGoogle ScholarPubMed
Marino, M., Banerjee, M., Copp, J.et al. 2004. Characterization of the calcium-binding sites of Listeria monocytogenes InlB. Biochem Biophys Res Commun. 316: 379–86CrossRefGoogle ScholarPubMed
Marx, J. 2003. Cell biology. How cells step out. Science. 302: 214–16CrossRefGoogle ScholarPubMed
Mengaud, J., Braun-Breton, C., and Cossart, P.. 1991. Identification of phospha-tidylinositol-specific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor? Mol Microbiol. 5: 367–72
Mishima, M., and Nishida, E.. 1999. Coronin localizes to leading edges and is involved in cell spreading and lamellipodium extension in vertebrate cells. J Cell Sci. 112 (17): 2833–42Google ScholarPubMed
Mourrain, P., Lasa, I., Gautreau, A., Gouin, E., Pugsley, A., and Cossart, P.. 1997. ActA is a dimer. Proc Natl Acad Sci USA. 94: 10034–9CrossRefGoogle ScholarPubMed
Portnoy, D. A., Jacks, P. S., and Hinrichs, D. J.. 1988. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med. 167: 1459–71CrossRefGoogle ScholarPubMed
Purich, D. L., and Southwick, F. S.. 1997. ABM-1 and ABM-2 homology sequences: consensus docking sites for actin-based motility defined by oligoproline regions in Listeria ActA surface protein and human VASP. Biochem Biophys Res Commun. 231: 686–91CrossRefGoogle ScholarPubMed
Repp, H., Pamukci, Z., Koschinski, A.et al. 2002. Listeriolysin of Listeria monocytogenes forms Ca2+-permeable pores leading to intracellular Ca2+ oscillations. Cell Microbiol. 4: 483–91CrossRefGoogle ScholarPubMed
Robbins, J. R., Barth, A. I., Marquis, H., Hostos, E. L., Nelson, W. J., and Theriot, J. A.. 1999. Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J Cell Biol. 146: 1333–50CrossRefGoogle ScholarPubMed
Rosenblatt, J., Agnew, B. J., Abe, H., Bamburg, J. R., and Mitchison, T. J.. 1997. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J Cell Biol. 136: 1323–32CrossRefGoogle ScholarPubMed
Samarin, S., Romero, S., Kocks, C., Didry, D., Pantaloni, D., and Carlier, M. F.. 2003. How VASP enhances actin-based motility. J Cell Biol. 163: 131–42CrossRefGoogle ScholarPubMed
Sanger, J. M., Sanger, J. W., and Southwick, F. S.. 1992. Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes. Infect Immun. 60: 3609–19Google ScholarPubMed
Schubert, W. D., Urbanke, C., Ziehm, T.et al. 2002. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell. 111: 825–36CrossRefGoogle Scholar
Seveau, S., Bierne, H., Giroux, S., Prevost, M. C., and Cossart, P.. 2004. Role of lipid rafts in E-cadherin- and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells. J Cell Biol. 166: 743–53CrossRefGoogle ScholarPubMed
Sidhu, G., W. Li, E. Bishai, N. Laryngakis, T. Balla, and F. S. Southwick. 2006. Phosphoinositide-3-kinase is required for intracellular Listeria monocytogenes actin-based motility and filopod formation. Submitted.
Skoble, J., Portnoy, D. A., and Welch, M. D.. 2000. Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J Cell Biol. 150: 527–38CrossRefGoogle ScholarPubMed
Skoble, J., Auerbuch, V., Goley, E. D., Welch, M. D., and Portnoy, D. A.. 2001. Pivotal role of VASP in Arp2/3 complex-mediated actin nucleation, actin branch-formation, and Listeria monocytogenes motility. J Cell Biol. 155: 89–100CrossRefGoogle ScholarPubMed
Smith, G. A., Marquis, H., Jones, S., Johnston, N. C., Portnoy, D. A., and Goldfine, H.. 1995. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun. 63: 4231–7Google ScholarPubMed
Smith, G. A., Theriot, J. A., and Portnoy, D. A.. 1996. The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J Cell Biol. 135: 647–60CrossRefGoogle ScholarPubMed
Sousa, S., Cabanes, D., El-Amraoui, A., Petit, C., Lecuit, M., and Cossart, P.. 2004. Unconventional myosin VIIa and vezatin, two proteins crucial for Listeria entry into epithelial cells. J Cell Sci. 117: 2121–30CrossRefGoogle ScholarPubMed
Southwick, F. S., and Purich, D. L.. 1994. Arrest of Listeria movement in host cells by a bacterial ActA analogue: implications for actin-based motility. Proc Natl Acad Sci USA. 91: 5168–72CrossRefGoogle ScholarPubMed
Southwick, F. S., and Purich, D. L.. 1996. Intracellular pathogenesis of listeriosis. N Engl J Med. 334: 770–6CrossRefGoogle ScholarPubMed
Steffen, P., Schafer, D. A., David, V., Gouin, E., Cooper, J. A., and Cossart, P.. 2000. Listeria monocytogenes ActA protein interacts with phosphatidylinositol 4,5-bisphosphate in vitro. Cell Motil Cytoskeleton. 45: 58–663.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Suzuki, T., Miki, H., Takenawa, T., and Sasakawa, C.. 1998. Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J. 17: 2767–76CrossRefGoogle ScholarPubMed
Theriot, J. A., Mitchison, T. J., Tilney, L. G., and Portnoy, D. A.. 1992. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature. 357: 257–60CrossRefGoogle ScholarPubMed
Tilney, L. G., and Portnoy, D. A.. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol. 109: 1597–608CrossRefGoogle ScholarPubMed
Vazquez-Boland, J. A., Kocks, C., Dramsi, S.et al. 1992. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun. 60: 219–30Google ScholarPubMed
Viel, A. 1999. Alpha-actinin and spectrin structures: an unfolding family story. FEBS Lett. 460: 391–4CrossRefGoogle ScholarPubMed
Wadsworth, S. J., and Goldfine, H.. 1999. Listeria monocytogenes phospholipase C-dependent calcium signaling modulates bacterial entry into J774 macrophage-like cells. Infect Immun. 67: 1770–8Google ScholarPubMed
Zuckert, W. R., Marquis, H., and Goldfine, H.. 1998. Modulation of enzymatic activity and biological function of Listeria monocytogenes broad-range phospholipase C by amino acid substitutions and by replacement with the Bacillus cereus ortholog. Infect Immun. 66: 4823–31Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×