Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T07:53:08.678Z Has data issue: false hasContentIssue false

3 - Spectral Representation of Birth–Death Processes

Published online by Cambridge University Press:  08 October 2021

Manuel Domínguez de la Iglesia
Affiliation:
Universidad Nacional Autónoma de México
Get access

Summary

This chapter is devoted to the spectral analysis of birth–death processes on nonnegative integers, which are the most basic and important continuous-time Markov chains. These processes will be characterized by an infinitesimal operator which is a tridiagonal matrix whose spectrum is always contained in the negative real line (including 0). The Karlin–McGregor integral representation formula of the transition probability functions of the process is obtained in terms of orthogonal polynomials with respect to a probability measure with support inside a positive real interval. Although many of the results are similar or equivalent to those of discrete-time birth–death chains, the methods and techniques are quite different. The chapter gives an extensive collection of examples related to orthogonal polynomials, including the M/M/k queue for any k servers, the continuous-time Ehrenfest and Bernoulli–Laplace urn models, a genetics model of Moran and linear birth–death processes. As in the case of discrete-time birth–death chains, the Karlin–McGregor formula is applied to the probabilistic aspects of birth–death processes, such as processes with killing, recurrence, absorption, the strong ratio limit property, the limiting conditional distribution, the decay parameter, quasi-stationary distributions and bilateral birth–death processes on the integers.

Type
Chapter
Information
Orthogonal Polynomials in the Spectral Analysis of Markov Processes
Birth-Death Models and Diffusion
, pp. 146 - 253
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×