Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T11:43:47.379Z Has data issue: false hasContentIssue false

10 - Using Comparative Genomics to Resolve the Origin and Early Evolution of Snakes

from Part III - Genomic Perspectives

Published online by Cambridge University Press:  30 July 2022

David J. Gower
Affiliation:
Natural History Museum, London
Hussam Zaher
Affiliation:
Universidade de São Paulo
Get access

Summary

Despite recent advances, key events in snake evolution have remained difficult to resolve, including their position in the squamate tree and several ingroup relationships. Comparative genomics has unrealised potential for phylogenetic inference and may advance understanding of snake evolution. This chapter reviews the history of snake molecular phylogenetics up to the current genomics revolution. This work has often corroborated phylogenetic inferences from morphology but also discovered relationships not previously considered or supported. We discuss properties of snake nuclear genomes, considering their potential for phylogenetic inference. Using data from 30 available squamate genomes, we provide preliminary examples applying both cumulative and non-cumulative frequency coding to genome size, GC content, and 14 repetitive element characteristics. Cumulative frequency coding outperforms non-cumulative coding and recovers most, but not all, well-known snake clades. We describe how the relationships of some snake lineages remains poorly supported despite their inclusion in large genomic-scale datasets, and suggest possible avenues of future research using comparative genomics.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kerkkamp, H. M. I., Manjunatha Kini, R., Pospelov, A. S., et al., Snake genome sequencing: Results and future prospects. Toxins (Basel), 8 (2016), 360.CrossRefGoogle ScholarPubMed
Degnan, J. H. and Rosenberg, N. A., Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology and Evolution, 24 (2009), 332–40.Google Scholar
Zhang, C., Rabiee, M., Sayyari, E., and Mirarab, S., ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19 (2018), 153.Google Scholar
Streicher, J. W. and Wiens, J. J., Phylogenomic analyses reveal novel relationships among snake families. Molecular Phylogenetics and Evolution, 100 (2016), 160169.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.CrossRefGoogle ScholarPubMed
Huson, D. H., Rupp, R., and Scornavacca, C., Phylogenetic Networks: Concepts, Algorithms and Applications (Cambridge: Cambridge University Press, 2010).CrossRefGoogle Scholar
Brandley, M. C., Warren, D. L., Leaché, A. D., and McGuire, J. A., Homoplasy and clade support. Systematic Biology, 58 (2009), 184198.Google Scholar
Boore, J. L. and Fuerstenberg, S. I., Beyond linear sequence comparisons: the use of genome-level characters for phylogenetic reconstruction. Philosophical Transactions of the Royal Society London B, 363 (2008), 14451451.Google Scholar
Boore, J. L.,The use of genome-level characteristics for phylogenetic reconstruction. Trends in Ecology and Evolution, 21 (2006), 439446.Google Scholar
Kellaway, C. H. and Williams, F. E., The serological and blood relationships of some common Australian snakes. Australian Journal of Experimental Biology and Medical Science, 8 (1931), 123132.CrossRefGoogle Scholar
Bond, G. C., Serological Studies of the Reptilia: I. Hemagglutinins and hemagglutinogens of snake blood. The Journal of Immunology, 36 (1939), 19.Google Scholar
Bond, G. C. and Sherwood, N. P., Serological studies of the Reptilia: II. The hemolytic property of snake serum. The Journal of Immunology, 36 (1939), 1116.Google Scholar
George, D. W. and Dessauer, H. C., Immunological correspondence of transferrins and the relationships of colubrid snakes. Comparative Biochemistry and Physiology, 33 (1970), 617627.CrossRefGoogle ScholarPubMed
Cohen, E., Immunological studies of the serum proteins of some reptiles. The Biological Bulletin, 109(1955), 394403.Google Scholar
Crawford, N. G., Faircloth, B. C., McCormack, J. E., et al., More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biology Letters, 8 (2012), 783–6.Google Scholar
Field, D. J., Gauthier, J. A., King, B. L., et al., Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles. Evolution & Development, 16 (2014), 189196.Google Scholar
Pearson, D. D., Serological and immuno-electrophoretic comparisons among species of snakes. Bulletin of the Serological Museum 36 (1966), 8.Google Scholar
Dessauer, H. C., Fox, W., and Ramírez, J. R., Preliminary attempt to correlate paper-electrophoretic migration of hemoglobins with phylogeny in Amphibia and Reptilia. Archives of Biochemistry and Biophysics, 71 (1957), 1116.Google Scholar
Dessauer, H. C., Molecular approach to the taxonomy of colubrid snakes. Herpetologica, 23 (1967), 148155.Google Scholar
Dowling, H. G., Hemipenes and other characters in colubrid classification. Herpetologica, 2(1967), 138142.Google Scholar
Underwood, G. L., A Contribution to the Classification of Snakes (London: British Museum (Natural History), 1967).Google Scholar
Mao, S. -H. and Dessauer, H. C., Selectively neutral mutations, transferrins and the evolution of natricine snakes. Comparative Biochemistry and Physiology Part A: Physiology, 40 (1971), 669680.Google Scholar
Mao, S. -H., Chen, B. -Y., and Chang, H. -M., The evolutionary relationships of sea snakes suggested by immunological cross-reactivity of transferrins. Comparative Biochemistry and Physiology Part A: Physiology, 57 (1977), 403406.CrossRefGoogle Scholar
Lawson, R. and Dessauer, H. C., Electrophoretic evaluation of the colubrid genus Elaphe (Fitzinger). Isozyme Bulletin, 14 (1981), 83.Google Scholar
Dowlings, H. G., Highton, R., Maha, G. C., and Maxson, L. R., Biochemical evaluation of colubrid snake phylogeny. Journal of Zoology, 201 (1983), 309329.Google Scholar
Cadle, J. E., Dessauer, H. C., Gans, C., and Gartside, D. F., Phylogenetic relationships and molecular evolution in uropeltid snakes (Serpentes: Uropeltidae): allozymes and albumin immunology. Biological Journal of the Linnean Society, 40 (1990), 293320.Google Scholar
Slowinski, J. B., A phylogenetic analysis of the New World coral snakes (Elapidae: Leptomicrurus, Micruroides, and Micrurus) based on allozymic and morphological characters. Journal of Herpetology, 29 (1995), 325338.Google Scholar
Cadle, J. E. (1988). Phylogenetic relationships among advanced snakes: a molecular perspective. University of California Publications in Zoology, 119 (1988), 177.Google Scholar
Feldman, C. R. and Spicer, G. S. (2002). Mitochondrial variation in sharp-tailed snakes (Contia tenuis): Evidence of a cryptic species. Journal of Herpetology, 36 (2002), 648.Google Scholar
Kraus, F. and Brown, W. M., Phylogenetic relationships of colubroid snakes based on mitochondrial DNA sequences. Zoological Journal of the Linnean Society, 122 (1998), 455487.CrossRefGoogle Scholar
Slowinski, J. B. and Keogh, J. S., Phylogenetic relationships of elapid snakes based on cytochrome b mtDNA sequences. Molecular Phylogenetics and Evolution, 15 (2000), 157164.Google Scholar
Burbrink, F. T., Lawson, R., and Slowinski, J. B., Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution, 54 (2000), 21072118.Google Scholar
Funk, D. J. and Omland, K. E., Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34 (2003), 397423.Google Scholar
Rubinoff, D. and Holland, B. S., Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Systematic Biology, 54 (2005), 952961.Google Scholar
Lawson, R., Slowinski, J. B., Crother, B. I., and Burbrink, F. T., Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 37 (2005), 581601.Google Scholar
Wiens, J. J., Kuczynski, C. A., Smith, S. A., et al., Branch lengths, support, and congruence: Testing the phylogenomic approach with 20 nuclear loci in snakes. Systematic Biology, 57 (2008), 420431.CrossRefGoogle ScholarPubMed
Kubatko, L. S., Gibbs, H. L., and Bloomquist, E. W., Inferring species-level phylogenies and taxonomic distinctiveness using multilocus data in Sistrurus rattlesnakes. Systematic Biology, 60 (2011), 393409.Google Scholar
Sanders, K. L., Lee, M. S. Y., Mumpuni, T. Bertozzi, and Rasmussen, A. R., Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae). Molecular Phylogenetics and Evolution, 66 (2013), 575591.CrossRefGoogle ScholarPubMed
Streicher, J. W. and Ruane, S., Phylogenomics of snakes. In eLS . Chichester: John Wiley & Sons Ltd, 2018, DOI: 10.1002/9780470015902.a0027476).Google Scholar
Faircloth, B. C., McCormack, J. E., Crawford, N. G., et al., Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology, 61 (2012), 717726.Google Scholar
Lemmon, A. R., Emme, S. A., and Lemmon, E. M., Anchored hybrid enrichment for massively high-throughput phylogenomics. Systematic Biology, 61 (2012), 727–44.Google Scholar
Singhal, S., Grundler, M., Colli, G., and Rabosky, D. L., Squamate conserved loci (SqCL): A unified set of conserved loci for phylogenomics and population genetics of squamate reptiles. Molecular Ecology Resources, 17 (2017), e12e24.CrossRefGoogle ScholarPubMed
Karin, B. R., Gamble, T., and Jackman, T. R., Optimizing phylogenomics with rapidly evolving long exons: Comparison with anchored hybrid enrichment and ultraconserved element. Molecular Biology and Evolution, 37 (2020), 904922.Google Scholar
Chen, X., Lemmon, A. R., Lemmon, E. M., Pyron, R. A., and Burbrink, F. T., Using phylogenomics to understand the link between biogeographic origins and regional diversification in ratsnakes. Molecular Phylogenetics and Evolution, 111 (2017), 206218.Google Scholar
Castoe, T. A., Spencer, C. L., and Parkinson, C. L., Phylogeographic structure and historical demography of the western diamondback rattlesnake (Crotalus atrox): A perspective on North American desert biogeography. Molecular Phylogenetics and Evolution, 42 (2007), 193212.Google Scholar
Schield, D. R., Card, D. C., Hales, N. R., et al., The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes. Genome Research, 29 (2019), 590601.CrossRefGoogle ScholarPubMed
Singhal, S., Colston, T. J., Grundler, M. R., et al., Congruence and conflict in the higher-level phylogenetics of squamate reptiles: An expanded phylogenomic perspective. Systematic Biology, 70 (2021), 542557.Google Scholar
Sims, G. E., Jun, S. -E., Wu, G. A., and Kim, S. -H., Whole-genome phylogeny of mammals: Evolutionary information in genic and nongenic regions. Proceedings of the National Academy of Sciences USA, 106 (2009), 177717082.CrossRefGoogle ScholarPubMed
Castoe, T. A., de Koning, A. P. J., K. T. Hall, et al., The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proceedings of the National Academy of Sciences USA, 110 (2013), 2064520650.Google Scholar
Giorgianni, M. W., Dowell, N. L., Griffin, S., et al., The origin and diversification of a novel protein family in venomous snakes. Proceedings of the National Academy of Sciences USA, 117 (2020), 1091110920.CrossRefGoogle ScholarPubMed
Pasquesi, G. I. M., Adams, R. H., Card, D. C., et al., Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nature Communications, 9 (2018), 2774.Google Scholar
Gilbert, C., Meik, J. M., Dashevsky, D., et al., Endogenous hepadaviruses, bornaviruses and circoviruses in snakes. Proceedings of the Royal Society B, 281 (2014), 1122.Google Scholar
Augstenová, B., Johnson Pokorná, M., Altmanová, M., et al., ZW, XY, and yet ZW: Sex chromosome evolution in snakes even more complicated. Evolution, 72 (2018), 17011707.CrossRefGoogle Scholar
Palvildis, P., Jensen, J. D., Stephan, W., and Stamatakis, A., A critical assessment of storytelling: gene ontology categories and the importance of validating genome scans. Molecular Biology and Evolution, 29 (2012), 32373248.Google Scholar
Archie, J. W., Methods for coding variable morphological features for numerical taxonomic analysis. Systematic Zoology, 34 (1985), 326345.Google Scholar
Thorpe, R. S., Coding morphometric characters for constructing distance Wagner networks. Evolution, 38 (1984), 244255.Google Scholar
Freudenstein, J. V., Characters, states and homology. Systematic Biology, 54 (2005), 965973.CrossRefGoogle ScholarPubMed
Yin, W., Wang, Z-J., Li, Q-Y., et al., Evolutionary trajectories of snake genes and genomes revealed by comparative analyses of five-pacer viper. Nature Communications, 7 (2016), 13107.CrossRefGoogle ScholarPubMed
Li, J. -T., Gao, Y. -D., Xie, L. , et al., Comparative genomics investigation of high elevation adaptation in ectothermic snakes. Proceedings of the National Academy of Sciences USA, 115 (2018), 84068411.Google Scholar
Card, D. C., Adams, R. H., Schield, D. R., et al., Genomic basis of convergent island phenotypes in boa constrictors. Genome Biology and Evolution, 11 (2019), 31233143.CrossRefGoogle ScholarPubMed
Organ, C. L., Godínez Moreno, R., and Edwards, S. V., Three tiers of genome evolution in reptiles. Integrative and Comparative Biology, 48 (2008), 494504.Google Scholar
Kriegs, J. O., Churalov, G., Kiefmann, M., et al., Retrotransposed elements as archives for the evolutionary history of placental mammals. PLoS Biology, 4 (2006), e91.CrossRefGoogle Scholar
Vitales, D., Garcia, S., and Dodsworth, S., Reconstructing phylogenetic relationships based on repeat sequence similarities. Molecular Phylogenetics and Evolution, 147 (2020), 106766.CrossRefGoogle ScholarPubMed
Smith, E. N. and Gutberlet, R. L. Jr., Generalized frequency coding: A method of preparing polymorphic multistate characters for phylogenetic analysis. Systematic Biology, 50 (2001), 156169.Google Scholar
Wiens, J. J., Character analysis in morphological phylogenetics: problems and solutions. Systematic Biology, 50 (2001), 689699.CrossRefGoogle ScholarPubMed
Lawing, A. M., Meik, J. M., and Schargel, W. E., Coding meristic characters for phylogenetic analysis: A comparison of step-matrix gap weighting and generalized frequency coding. Systematic Biology, 57 (2008), 167173.Google Scholar
Wiens, J. J., Polymorphic characters in phylogenetic systematics. Systematic Biology, 44 (1995), 482500.Google Scholar
Schliep, K. P., Phangorn: phylogenetic analysis in R. Bioinformatics, 27 (2011), 592593.Google Scholar
R Development Core Team, R: A Language and Environment for Statistical Computing (Vienna: R Foundation for Statistical Computing, 2019).Google Scholar
Jukes, T. H. and Cantor, C. R., Evolution of protein molecules. In Munro, H. N., ed. Mammalian protein metabolism. Volume 3 (New York: Academic Press, 1969), pp. 21132.Google Scholar
Murphy, J. C. and Sanders, K. L., First molecular evidence for the phylogenetic placement of the enigmatic snake genus Brachyorrhos (Serpentes: Caenophidia). Molecular Phylogenetics and Evolution, 61 (2011), 953957.Google Scholar
Lawson, R., Slowinski, J. B., and Burbrink, F. T., A molecular approach to discerning the phylogenetic placement of the enigmatic snake Xenophidion schaeferi among the Alethinophidia. Journal of Zoology, 263 (2004), 285294.Google Scholar
Deepak, V., Ruane, S., and Gower, D. J., A new subfamily of fossorial colubroid snakes from the Western Ghats of peninsular India. Journal of Natural History, 52 (2018), 29192934.Google Scholar
Heise, P. J., Maxson, L. R., Dowling, H. G., and Hedges, S. B., Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes. Molecular Biology and Evolution, 12 (1995), 259265.Google Scholar
Dowling, H. G., Hass, C. A., Hedges, S. B., and Highton, R., Snake relationships revealed by slow evolving proteins: a preliminary survey. Journal of Zoology, 240 (1996), 128.Google Scholar
Slowinski, J. B. and Lawson, R., Snake phylogeny: evidence from nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution, 24 (2002), 194202.Google Scholar
Pyron, R. A., Burbrink, F. T., Colli, G. R., et al., The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Molecular Phylogenetics and Evolution, 58 (2011), 329342.Google Scholar
Pyron, R. A., Kandambi, H. K. D., Hendry, C. R., et al., Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka. Molecular Phylogenetics and Evolution, 66 (2013), 969978.Google Scholar
Wiens, J. J., Hutter, C. R., Mulcahy, D. G., et al., Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters, 8 (2012), 10431046.Google Scholar
Figueroa, A., McKelvy, A. D., Grismer, L. L., Bell, C. D., and Lailvaux, S. P., A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. PloS ONE, 11 (2016), e0161070.CrossRefGoogle ScholarPubMed
Zaher, H., Murphy, R. W., Arredondo, J. C., et al., Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PloS ONE, 14 (2019), e0216148.Google Scholar
Zheng, Y. and Wiens, J. J., Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution, 94 (2016), 537547.Google Scholar
Miralles, A., Marin, L., Markus, D., et al., Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications. Journal of Evolutionary Biology, 31 (2018), 17821793.CrossRefGoogle ScholarPubMed
Pyron, R. A., R. A., Burbrink, F. T., and Wiens, J. J., A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13 (2013), 93.Google Scholar
Rokas, A. and Carroll, S. B., Bushes in the tree of life. PLoS Biology, 4 (2006), e352.Google Scholar
Estes, R. K., de Queiroz, K., and Gauthier, J., Phylogenetic relationships within Squamata. In Estes, R. and Pregill, G., eds., Phylogenetic Relationships of the Lizard Families (Stanford: Stanford University Press 1988), pp.119281.Google Scholar
Saint, K. M., Austin, C. C., Donnellan, S. C., and Hutchinson, M. N., C-mos, a nuclear marker useful for squamate phylogenetic analysis. Molecular Phylogenetics and Evolution, 10 (1998), 259263.Google Scholar
Townsend, T. M., Larson, A., Louis, E., and Macey, J. R., Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology, 53 (2004), 735757.CrossRefGoogle ScholarPubMed
Vidal, N. and Hedges, S. B., The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. Comptes Rendus Biologies, 328 (2005), 10001008.Google Scholar
Streicher, J. W. and Wiens, J. J., Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biology Letters, 13 (2017), 20170393.Google Scholar
Siegel, D. S., Miralles, A., and Aldridge, R. D., R. D., Controversial snake relationships supported by reproductive anatomy. Journal of Anatomy, 218 (2011), 342348.Google Scholar
Schield, D. R., Card, D. C., Adams, R. H., et al., Incipient speciation with biased gene flow between two lineages of the Western Diamondback Rattlesnake (Crotalus atrox). Molecular Phylogenetics and Evolution, 83 (2015), 213223.Google Scholar
Williams, T. A., Szöllosi, G. J., Spang, A., et al., Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proceedings of the National Academy of Sciences USA, 114 (2017), E4602–4611.Google Scholar
Ruane, S. and Austin, C. C., Phylogenomics using formalin-fixed and 100+ year-old intractable natural history specimens. Molecular Ecology Resources, 17 (2017), 10031008.Google Scholar
Ruane, S., New data from old specimens. Copeia (in press).Google Scholar
Feigin, C. Y., Newton, A. H., Doronina, L., et al., Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nature Ecology and Evolution, 2 (2018), 182192.Google Scholar
Shibata, H., Chijiwa, T., Oda-Ueda, N., et al., The habu genome reveals accelerated evolution of venom protein genes. Scientific Reports, 8 (2018), 11300.Google Scholar
Adler, K., Contributions to the History of Herpetology, Volume 3 (Vancouver: Society for the Study of Amphibians and Reptiles, 1012), 564 pp.Google Scholar
Thorpe, R. S., Garth Underwood (1919–2002): A vision of reptile systematics. Herpetological Review, 34 (2003), 67.Google Scholar
Liner, E. A. and Cole, C. J., Herbert C. Dessauer. Copeia, 2003 (2003), 195199.CrossRefGoogle Scholar
Bradnam, K. R., Fass, J. N., Alexandrov, A., et al., Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience, 2 (2013), 2047-217x-2-10.Google Scholar
McGlothlin, J. W., Chuckalovcak, J. P., Janes, D. E., et al., Parallel evolution of tetrodotoxin resistance in three voltage-gated sodium channel genes in the garter snake Thamnophis sirtalis . Molecular Biology and Evolution, 31 (2014), 28362846.Google Scholar
Ullate-Agote, A., Milinkovitch, M. C., and Tzikia, A. C., The genome sequence of the corn snake (Pantherophis guttatus), a valuable resource for EvoDevo studies in squamates. International Journal of Developmental Biology, 58 (2014), 881888.Google Scholar
Earl, S. T. H., Birrell, G. W., Wallis, T. P., et al., Post-translational modification accounts for the presence of varied forms of nerve growth factor in Australian elapid snake venoms. Proteomics, 6 (2006), 65546665.Google Scholar
Kishida, T., Go, Y., Tatsumoto, S., et al., Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes. Proceedings of the Royal Society B, 286 (2019), 2019.1828.Google ScholarPubMed
Peng, C., Ren, J-L., Deng, C., et al., The genome of Shaw’s seasnake (Hydrophis curtus) reveals secondary adaptation to its marine environment. Molecular Biology and Evolution, 37 (2020), 17441760.Google ScholarPubMed
Suryamohan, K., Krishnankutty, S. P., Guillory, J., et al., The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins. Nature Genetics, 52 (2020), 106117.Google Scholar
Vonk, F. J., Casewell, N. R., Henkel, C. V., et al., The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proceedings of the National Academy of Sciences USA, 110 (2013), 2065120656.Google Scholar
Aird, S. D., Arora, J., Barua, A., et al., Population genomic analysis of a pitviper reveals microevolutionary forces underlying venom chemistry. Genome Biology and Evolution, 9 (2018), 26402649.Google Scholar
van Hoek, M. L., Prickett, M. D., Settlage, R. E., et al., The Komodo dragon (Varanus komodoensis) genome and identification of innate immunity genes and clusters. BMC Genomics, 20 (2019), 684.CrossRefGoogle ScholarPubMed
Georges, A., Li, Q., Lian, J., et al., High-coverage sequencing and annotate assembly of the genome of the Australian dragon lizard Pogona vitticeps . GigaScience, 4 (2015), 45.Google Scholar
Alföldi, J., Di Palma, F., Grabherr, M., et al., The genome of the green anole lizards and a comparative analysis with birds and mammals. Nature, 477 (2011), 587591.CrossRefGoogle Scholar
Liu, Y., Zhou, Q., Wang, Y., et al., Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration. Nature Communications, 6 (2015), 10033.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×