Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T09:10:50.776Z Has data issue: false hasContentIssue false

16 - Diversity and Evolution of Squamate Hemipenes

An Overview with Particular Reference to the Origin and Early History of Snakes

from Part V - Anatomical and Functional Morphological Perspectives

Published online by Cambridge University Press:  30 July 2022

David J. Gower
Affiliation:
Natural History Museum, London
Hussam Zaher
Affiliation:
Universidade de São Paulo
Get access

Summary

Squamate hemipenes have yielded much systematic data, but there have been few, if any, attempts to infer changes across the lizard–snake transition. We assess external morphology of hemipenes of major extant squamate lineages. Summarizing information across Squamata from mostly published data is challenging because of (i) patchy coverage, (ii) uncertainty as to whether described organs are fully everted or inflated, (iii) interpreting mixed text, photographs and drawings, (iv) non-standardized terminology, (v) shifting views of squamate phylogeny. However, we provide suggestions towards a unified terminology for hemipenial morphology, and score 24 lineages for 10 traits. We infer likely ancestral states as follows. (1) Ancestral toxicoferan: slightly bilobed hemipenis; simple, flared sulcus spermaticus; lack of spines; possibly flounce-like transverse flanges on body. (2) Ancestral snake: simple, flared sulcus with closely spaced, symmetrical lips; lack of spines; lack of lobular calyces; possibly unilobed hemipenis. (3) Ancestral alethinophidian: moderately to deeply bilobed hemipenis; lobular flounces; lack of spines; centripetal, bifurcate sulcus reaching tips of lobes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gredler, M. L., Larkins, C. E., Leal, F. , et al., Evolution of external genitalia: insights from reptilian development. Sexual Development, 8 (2014), 31133126.Google Scholar
Gredler, M. L., Developmental and Evolutionary origins of the amniote phallus. Integrative and Comparative Biology, 56 (2016), 694704.Google Scholar
Sanger, T. J., Gredler, M. L., and Cohn, M. J., Resurrecting embryos of the tuatara, Sphenodon punctatus, to resolve vertebrate phallus evolution. Biology Letters, 11 (2015), 20150694.Google Scholar
Dowling, H. G. and Savage, D. E., A guide to the snake hemipenis: a survey of basic structure and systematic characteristics. Zoologica, 45 (1960), 1728.Google Scholar
Leal, F. and Cohn, M. J., Development of hemipenes in the Ball Python snake Python regius . Sexual Development, 9 (2014), 620.CrossRefGoogle ScholarPubMed
Raynaud, A. and Pieau, C.. Embryonic development of the genital system. In Gans, C., Billett, F., eds., Biology of the Reptilia (New York: John Wiley and Sons, 1985), pp. 149300.Google Scholar
Arnold, E. N.. Variation in the cloacal and hemipenial muscles of lizards and its bearing on their relationships. In Ferguson, M. W. J., ed., The Structure, Development and Evolution of Reptiles (Symposium of the Zoological Society of London 52) (London: Academic Press, 1984), pp. 4785.Google Scholar
Cope, E. D., The classification of the Ophidia. Transactions of the American Philosophical Society, 18 (1895), 186219.Google Scholar
Cope, E. D., On the hemipenes of the Sauria. Proceedings of the Academy of Natural Sciences of Philadelphia, 48 (1896), 461467.Google Scholar
Böhme, W., Zur Genitalmorphologie der Sauria: funktionelle un stammesgeschichtliche Aspekte. Bonner Zoologische Monographien, 27 (1988), 1176.Google Scholar
Zaher, H., Hemipenial morphology of the South American xenodontine snakes, with a proposal for a monophyletic Xenodontinae and a reappraisal of colubroid hemipenes. Bulletin of the American Museum of Natural History, (1999), 1168.Google Scholar
Myers, C. W. and Cadle, J. E., On the snake hemipenis, with notes on Psomophis and techniques of eversion: a response to Dowling. Herpetological Review, 34 (2003), 295302.Google Scholar
Zaher, H. and Prudente, A. L. C., Hemipenes of Siphlophis (Serpentes, Xenodontinae) and techniques of hemipenial preparation in snakes: a response to Dowling. Herpetological Review, 34 (2003), 302307.Google Scholar
Nunes, P. M., Curcio, F. F., Roscito, J. G., and Rodrigues, M. T., Are hemipenial spines related to limb reduction? A spiny discussion focused on gymnophthalmid lizards (Squamata: Gymnophthalmidae). Anatomical Record, 297 (2014), 482495.Google Scholar
Manzani, P. R. and Abe, A. S., Sobre dois métodos de preparo do hemipênis de serpentes. Memórias do instituto Butantan, 50 (1988), 1520.Google Scholar
Pesantes, O. S., A method for preparing the hemipenis of preserved snakes. Journal of Herpetology, 28 (1994), 9395.Google Scholar
Branch, W. R., Hemipenial morphology of african snakes: a taxonomic review. Part 1. Scolecophidia and Boidae. Journal of Herpetology, 20 (1986), 185299.CrossRefGoogle Scholar
Branch, W. R., Hemipeneal morphology of platynotan lizards. Journal of Herpetology, 16 (1982), 1638.CrossRefGoogle Scholar
Zhang, F., Studies on morphological characters of hemipenes of the Chinese lizards [in Chinese]. Acta Herpetologica Sinica, 5 (1986), 254259.Google Scholar
Zhang, F., Hu, S. Q., and Zhao, E. M., Comparative studies and phylogenetic discussions on hemipenial morphology of the Chinese Colubrinae (Colubridae). Acta Herpetologica Sinica, 3 (1984), 2344.Google Scholar
Dowling, H. G. and Duellman, W. E., Systematic Herpetology: A Synopsis of Families and Higher Categories (New York: HISS Publications, 1978).Google Scholar
McCann, C., The hemipenis in reptiles. Journal of the Bombay Natural History Society, 46 (1946), 347368.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar
Zaher, H., Grazziotin, F. G., Cadle, J. E., et al., Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American xenodontines: a revised classification and descriptions of new taxa. Papéis Avulsos de Zoologia (São Paulo), 49 (2009), 115153.Google Scholar
Uetz, P., Freed, P., Aguilar, R., and Hošek, J.. The Reptile Database. www.reptile-database.org2021 (accessed 1 May 2021)Google Scholar
Savage, J. M., On terminology for the description of the hemipenes of squamate reptiles. Herpetological Journal, 7 (1997), 2325.Google Scholar
Klaver, C. and Böhme, W., Phylogeny and classification of the Chamaeleonidae (Sauria) with special reference to hemipenis morphology. Bonner Zoologische Monographien, 22 (1986), 164.Google Scholar
Harvey, M. B., Ugueto, G. N., and Gutberlet, R. L., Review of teiid morphology with a revised taxonomy and phylogeny of the Teiidae (Lepidosauria: Squamata). Zootaxa, 3459 (2012), 1156.CrossRefGoogle Scholar
Böhme, W., Zur systematischen Stellung der Amphisbanen (Reptilia: Squamata), mit besonderer Berücksichtigung der Morphologie des Hemipenis. Journal of Zoological Systematics and Evolutionary Research, 27 (1989), 330337.Google Scholar
Rosenberg, H. I., Cavey, M. J., and Gans, C., Morphology of the hemipenes of some Amphisbaenia (Reptilia: Squamata). Canadian Journal of Zoology, 69 (1991), 359368.Google Scholar
Ziegler, T. and Böhme, W., Genitalstrukturenund Paarungsbiologie bei squamaten Reptilien, speziell den Platynota, mit Bemerkungen zur Systematik. Mertensiella, 8 (1997), 1210.Google Scholar
Parra, V., Nunes, P. M., and Torres-Carvajal, O., Systematics of Pholidobolus lizards (Squamata, Gymnophthalmidae) from southern Ecuador, with descriptions of four new species. ZooKeys, 954 (2020), 109156.Google Scholar
Arnold, E. N., Relationships of the Palaearctic lizards assigned to the genera Lacerta, Algyroides and Psammodromus (Reptilia: Lacertidae). Bulletin of the British Museum (Natural History), Zoology, 25 (1973), 289366.Google Scholar
Brennan, I. G. and Bauer, A. M., Notes on hemipenial morphology and its phylogenetic implications in the Pygopodidae Boulenger, 1884. Bonn Zoological Bulletin, 66 (2017), 1528.Google Scholar
Myers, C. W., Rivas Fuenmayor, G., and Jadin, R. C., New species of lizards from Auyantepui and La Escalera in the Venezuelan Guayana, with notes on ‘microteiid’ hemipenes (Squamata: Gymnophthalmidae). American Museum Novitates, 3660 (2009), 131.Google Scholar
Sánchez-Martínez, P. M., Ramírez-Pinilla, M. P., Meneses-Pelayo, E., and Nunes, P. M., Hemipenial morphology of nine South American species of Mabuya (Scincidae: Lygosominae) with comments on the morphology of the family. Anatomical Record, 11 (2020), 29172930.Google Scholar
Cadle, J. E., Hemipenial morphology in the North American snake genus Phyllorhynchus (Serpentes: Colubridae), with a review of and comparisons with natricid hemipenes. Zootaxa, 3092 (2011), 125.Google Scholar
Myers, C. W. and Campbell, J. A., A new genus and species of colubrid snake from the Sierra Madre del Sur of Guerrero, Mexico. American Museum Novitates, 2708 (1981), 120.Google Scholar
Arnold, E. N., The hemipenis of lacertid lizards (Reptilia: Lacertidae): structure, variation and systematic implications. Journal of Natural History, 20 (1986), 12211257.CrossRefGoogle Scholar
Avery, D. F. and Tanner, W. W., Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters. Science Bulletin, Brigham Young University, 12 (1971), 179.Google Scholar
Al-ma’Ruf, A. Y., Sari, R. P., Mostofa, I., et al., Morphology and histology of paryphasmata and hemibaculum of Varanus salvator based on sexual maturity. Open Veterinary Journal, 11 (2021), 330336.Google Scholar
Smith, M. A., The Fauna of British India, including Ceylon and Burma. Reptilia and Amphibia . Vol. II. Sauria. (London: Taylor and Francis, 1935).Google Scholar
Shea, G. M. and Reddacliff, G. L., Ossifications in the hemipenes of varanids. Journal of Herpetology, 20 (1986), 566568.Google Scholar
Werner, Y. L., Are hemipenial ‘ossifications’ of Gekkonidae and Varanidae ossified? Israel Journal of Zoology, 35 (1988), 99100.Google Scholar
Graboski, R., Arredondo, J. C., Grazziotin, F. G., et al., Molecular phylogeny and hemipenial diversity of South American species of Amerotyphlops (Typhlopidae, Scolecophidia). Zoologica Scripta, 48 (2019), 139156.Google Scholar
Jadin, R. C. and King, R. B., Ontogenetic effects on snake hemipenial morphology. Journal of Herpetology, 46 (2012), 393395.CrossRefGoogle Scholar
Böhme, W., über das Stachelepithel am Hemipenis lacertider Eidechsen und seine systematische Bedeutung. Journal of Zoological Systematics and Evolutionary Research, 9 (1971), 187223.Google Scholar
De-Lima, A. K. S., Paschoaletto, I. P., Pinho, L. O., et al., Are hemipenial traits under sexual selection in Tropidurus lizards? Hemipenial development, male and female genital morphology, allometry and coevolution in Tropidurus torquatus (Squamata: Tropiduridae). PLoS ONE, 14 (2019), e0219053.Google Scholar
Zaher, H. and Prudente, A. L. C., Intraspecific variation of the hemipenis in Siphlophis and Tripanurgos . Journal of Herpetology, 33 (1999), 698702.Google Scholar
Arnold, E. N., Why copulatory organs provide so many useful taxonomic characters: the origin and maintenance of hemipenial differences in lacertid lizards (Reptilia: Lacertidae). Biological Journal of the Linnean Society, 29 (1986), 263281.Google Scholar
Arnold, E. N., Arribas, O., and Carranza, S., Systematics of the palaearctic and oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa, 1430 (2007), 186.Google Scholar
Glaw, F., Kosuch, J., Henkel, F.-W., et al., Genetic and morphological variation of the leaf-tailed gecko Uroplatus fimbriatus from Madagascar, with description of a new giant species. Salamandra, 42 (2006), 129144.Google Scholar
Greer, A. E., The relationships of the lizard genera Anelytropsis and Dibamus . Journal of Herpetology, 19 (1985), 116156.Google Scholar
Streicher, J. W. and Wiens, J. J., Phylogenomic analyses of more than 4000 loci resolve the origin of snakes among lizard families. Biology Letters, 13 (2017), 20170393.Google Scholar
Darevsky, I. S., Two new species of the worm-like lizard Dibamus (Sauria: Dibamidae) with remarks on the distribution and ecology of Dibamus in Vietnam. Asiatic Herpetological Research, 4 (1992), 112.Google Scholar
Das, M. and Purkayastha, J., Insight into the hemipnenial morphology of five species of Hemidactylus Oken, 1817 (Reptilia: Gekkonidae) of Guwahati, Assam, India. Hamadryad, 36 (2012), 3237.Google Scholar
Lyu, Z.-T., Lin, C.-Y., Ren, J.-L., et al., Review of the Gekko (Japonigekko) subpalmatus complex (Squamata, Sauria, Gekkonidae), with description of a new species from China. Zootaxa, 4951 (2021), 236258.CrossRefGoogle ScholarPubMed
Dowling, H. G. and Gibson, F. W., The hemipenis of the Onion-Tail gecko Thecadactylus rapicaudus (Houttuyn). Herpetological Review, 3 (1971), 110.Google Scholar
Purkayastha, J., Das, M., Bauer, A. M., et al., Notes on the Hemidactylus bowringii complex (Reptilia: Gekkonidae) in India, and a change to the national herpetofaunal list. Hamadryad, 35 (2010), 2027.Google Scholar
Rösler, H. and Böhme, W., Peculiarities of the hemipenes of the gekkonid lizard genera Aristelliger Cope, 1861 and Uroplatus Duméril, 1806. Proceedings of the 13th Congress of the Societas Europaea Herpetologica (Bonn: SEH, 2006).Google Scholar
Rösler, H., Bauer, A., Heinicke, M. P., et al., Phylogeny, taxonomy, and zoogrography of the genus Gekko Laurenti, 1768 with the revalidation of G. reevesii Gray, 1831 (Sauria: Gekkonidae). Zootaxa, 2989 (2011), 1–50.Google Scholar
Linkem, C. W., Diesmos, A. C., and Brown, R. M., Molecular systematics of the Philippine forest skinks (Squamata: Scincidae: Sphenomorphus): testing morphological hypotheses of interspecific relationships. Zoological Journal of the Linnean Society, 163 (2011), 12171243.Google Scholar
Vergilov, V. S., Zlatkov, B., and Tzankov, N. D., Hemipenial differentiation in the closely related congeners Ablepharus kitaibelii (Bibron & Bory de Saint-Vincent, 1833) and Ablepharus budaki Göçmen, Kumlutas & Tosunoglu, 1996. Herpetozoa, 30 (2017), 3948.Google Scholar
Bhilala, A. K., Ashaharraza, K., Ingle, M., et al., Records of Günther’s gracile skink, Riopa guentheri (Peters, 1879) (Reptilia: Scincidae: Lygosominae) from Central India. Records of the Zoological Survey of India, 121 (2021), 4753.Google Scholar
Greer, A. E., A phylogenetic subdivision of Australian skinks. Records of the Australian Museum, 32 (1979), 339371.Google Scholar
Noble, G. K. and Bradley, H. T., The mating behavior of lizards; its bearing on the theory of sexual selection. Annals of the New York Academy of Sciences, 35 (1933), 25100.Google Scholar
Greer, A. E., The Biology and Evolution of Scincid lizards. www.academia.edu/35305801/The_Biology_and_Evolution_of_Scincid_Lizards.doc: Academia (2007).Google Scholar
Domergue, C. A., Observations sur les hémipênis des ophidiens et sauriens de Madagascar (1). Bulletin de l’Académie Malgache, [1963] (1963), 2133.Google Scholar
Lang, M., Generic relationships within Cordyliformes (Reptilia : Squamata). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, 61 (1991), 121188.Google Scholar
Presch, W., Descriptions of the hemipenial morphology in eight species of microteiid lizards (Family Teiidae, Subfamily Gymnophthalmidae). Herpetologica, 34 (1978), 108112.Google Scholar
Rodrigues, M. T., Recoder, R., Teixeira, M. Jr., et al., A morphological and molecular study of Psilops, a replacement name for the Brazilian microteiid lizard genus Psilophthalmus Rodrigues 1991 (Squamata, Gymnophthalmidae), with the description of two new species. Zootaxa, 4286 (2017), 451482.Google Scholar
Myers, C. W. and Donnelly, M. A., The summit herpetofauna of Auyantepui, Venezuela: report from the Robert G. Goelet American Museum–Terramar expedition. Bulletin of the American Museum of Natural History, 308 (2008), 1147.Google Scholar
da Silva, M. B., de Lima-Filho, G. R., Cronemberger, Á. A., et al., Description of the hemipenial morphology of Tupinambis quadrilineatus Manzani and Abe, 1997 (Squamata, Teiidae) and new records from Piauí, Brazil. ZooKeys, 361 (2013), 6172.Google Scholar
Nunes, P. M.. Morfologia hemipeniana dos lagartos microteídeos e suas implicações nas relações filogenéticas da família Gymnophthalmidae (Teiioidea: Squamata). Vols. I and II. (São Paulo, Universidade de São Paulo, 2011).Google Scholar
Ribeiro-Júnior, M. A., Sánchez-Martínez, P. M., de Lima Moraes, L. J. C., et al., Uncovering hidden species diversity of alopoglossid lizards in Amazonia, with the description of three new species of Alopoglossus (Squamata: Gymnophthalmoidea). Journal of Zoological Systematics and Evolutionary Research, 59 (2021), 13221356.CrossRefGoogle Scholar
Hernández Morales, C., Sturaro, M. J., Nunes, P. M., et al., A species-level total evidence phylogeny of the microteiid lizard family Alopoglossidae (Squamata: Gymnophthalmoidea). Cladistics, 36 (2020), 301321.Google Scholar
Arribas, O. J., Hemipenial morphology and microornamentation in Iberolacerta Arribas, 1997 (Squamata: Lacertidae). Butlletí de la Societat Catalana d’herpetologia, 24 (2017), 1223.Google Scholar
Klemmer, K., Untersuchungen zur Osteologie und Taxonomie der europäischen Mauereidechsen. Abhandlungen der Senckenberg Gesellschaft für Naturforschung, 496 (1957), 156.Google Scholar
Pinna, P. H., Mendonça, A. F., Bocchiglieri, A., and Fernandes, D. S., A new two-pored Amphisbaena Linnaeus from the endangered Brazilian Cerrado biome (Squamata: Amphisbaenidae). Zootaxa, 2569 (2010), 4454.Google Scholar
Thomas, R. and Hedges, S. B., Two new species of Amphisbaena (Reptilia: Squamata: Amphisbaenidae) from the Tiburon Peninsula of Haiti. Caribbean Journal of Science, 42 (2006), 208219.Google Scholar
Böhme, W. and Ziegler, T., A review of iguanian and anguimorph lizard genitalia (Squamata: Chamaeleonidae; Varanoidea, Shinisauridae, Xenosauridae, Anguidae) and their phylogenetic significance: comparisons with molecular data sets. Journal of Zoological Systematics and Evolutionary Research, 47 (2009), 189202.Google Scholar
Glaw, F., Köhler, J., Hawlitschek, O., et al., Extreme miniaturization of a new amniote vertebrate and insights into the evolution of genital size in chameleons. Scientific Reports, 11 (2021), 2522.Google Scholar
Glaw, F., Vences, M., Ziegler, T., et al., Species distinctness and biogeography of the dwarf chameleons Brookesia minima, B. peyrierasi and B. tuberculata (Reptilia: Chamaeleonidae): evidence from hemipenial and external morphology. Journal of Zoology, London, 247 (1999), 225238.Google Scholar
Hughes, D. F., Kusamba, C., Behangana, M., and Greenbaum, E., Integrative taxonomy of the Central African forest chameleon, Kinyongia adolfifriderici (Sauria: Chamaeleonidae), reveals underestimated species diversity in the Albertine Rift. Zoological Journal of the Linnean Society, 181 (2017), 400438.Google Scholar
Raxworthy, C. J. and Nussbaum, R. A., Systematics, speciation and biogeography of the dwarf chameleons ( Brookesia ; Reptilia, Squamata, Chamaeleontidae) of northern Madagascar. Journal of Zoology, London, 235 (1995), 525558.Google Scholar
Rosenberg, H. I., Bauer, A. M., and Russell, A. P., External morphology of the developing hemipenes of the dwarf chameleon, Bradypodion pumilum (Reptilia: Chamaeleonidae). Canadian Journal of Zoology, 67 (1989), 884890.Google Scholar
Deepak, V., Khandekar, A., Chaitanya, R., and Karanth, P., Descriptions of two new endemic and cryptic species of Sitana Cuvier, 1829 from peninsular India. Zootaxa, 4434 (2018), 327365.Google Scholar
Maduwage, K. and Silva, A., Hemipeneal morphology of Sri Lankan dragon lizards (Sauria: Agamidae). Ceylon Journal of Science (Biological Sciences), 41 (2012), 111123.Google Scholar
Deepak, V., Tillack, F., Kar, N. B., et al., A new species of Sitana (Squamata: Agamidae) from the Deccan Peninsula Biogeographic Zone of India. Zootaxa, 4948 (2021), 261274.Google Scholar
D’Angiolella, A. B., Klaczko, J., Rodrigues, M. T., and Avila-Pires, L. J., Hemipenial morphology and diversity in South American anoles (Squamata: Dactyloidae). Canadian Journal of Zoology, 94 (2016), 251256.Google Scholar
Köhler, G., Batista, A., Vesely, M., et al., Evidence for the recognition of two species of Anolis formerly referred to as A. tropidogaster (Squamata: Dactyloidae). Zootaxa, 3348 (2012), 123.Google Scholar
Blanc, C.-P., Reptiles Sauriens Iguanidae. Faune de Madagascar, 45 (1977), 1195.Google Scholar
Dowling, H. G., Majupuria, T. C., and Gibson, F. W., Hemipenial morphology of the tree lizard, Plica plica (Linnaeus). Herpetological Review, 3 (1971), 9192.Google Scholar
Quipildor, M., Quinteros, A. S., and Lobo, F., Structure, variation, and systematic implications of the hemipenes of liolaemid lizards (Reptilia: Liolaemidae). Canadian Journal of Zoology, 96 (2018), 987995.Google Scholar
Thomas, R. and Hedges, S. B., New anguid lizard (Diploglossus) from Cuba. Copeia, 1998 (1998), 97103.Google Scholar
Card, W. and Kluge, A. G., Hemipeneal skeleton and varanid lizard systematics. Journal of Herpetology, 29 (1995), 275280.Google Scholar
Weijola, V., Donnellan, S. C., and Lindqvist, C., A new blue-tailed Monitor lizard (Reptilia, Squamata, Varanus) of the Varanus indicus group from Mussau Island, Papua New Guinea. ZooKeys, 568 (2016), 129154.Google Scholar
Harrington, S. M. and Reeder, T. W., Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biological Journal of the Linnean Society, 121 (2017), 379394.Google Scholar
Zaher, H. and Smith, K. T., Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas. Biology Letters, 16 (2020), 20200735.Google Scholar
McDowell, S. B., A catalogue of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop Museum, Part I. Scolecophidia. Journal of Herpetology, 8 (1974), 157.Google Scholar
Myers, C. W. and Trueb, L., The hemipenis of an anomalepidid snake. Herpetologica, 23 (1967), 235238.Google Scholar
Fabrezi, M., Marcus, A., and Scrocchi, G., Contribución al conocimiento de los Leptotyphlopidae de Argentina. I. Leptotyphlops weyrauchi y Leptotyphlops albipuncta . Cuadernos de Herpetología, 1 (1985), 120.Google Scholar
Orejas-Miranda, B. R., Descripción del hemipenis de Leptotyphlops munoai Orejas-Miranda, 1961. Comunicaciones Zoologicas del Museo de Historia Natural de Montevideo, 97 (1962), 19.Google Scholar
Robb, J., The internal anatomy of Typhlops Schneider (Reptilia). Australian Journal of Zoology, 8 (1960), 181-216.Google Scholar
Robb, J., The generic status of the Australasian typhlopids (Reptilia: Squamata). Annals and Magazine of Natural History, 13 (1966), 106108.Google Scholar
Peters, J. A. and Orejas-Miranda, B. R., Notes on the hemipenis of several taxa in the family Leptotyphlopidae. Herpetologica, 26 (1970), 320324.Google Scholar
Broadley, D. G. and Wallach, V., A revision of the genus Leptotyphlops in northeastern Africa and southwestern Arabia (Serpentes: Leptotyphlopidae). Zootaxa, 1408 (2007), 178.Google Scholar
Ferreira, A. C., Klaczko, J., and Martins, A., Hemipenial morphology of Epictia vellardi (Laurent, 1984) (Leptotyphlopidae, Serpentes) with the proposition and discussion of two general hemipenial patterns within the genus Epictia . Zoomorphology, 140 (2020), 143150.Google Scholar
Martins, A., Koch, C., Pinto, R., et al., From the inside out: Discovery of a new genus of threadsnakes based on anatomical and molecular data, with discussion of the leptotyphlopid hemipenial morphology. Journal of Zoological Systematics and Evolutionary Research, 57 (2019), 840863.CrossRefGoogle Scholar
Pinto, R. and Curcio, F. F., On the generic identity of Siagonodon brasiliensis, with the description of a new leptotyphlopid from central Brazil (Serpentes: Leptotyphlopidae). Copeia, 2011 (2011), 5363.Google Scholar
Wallach, V., Morphological review and taxonomic status of the Epictia phenops species group of Mesoamerica, with description of six new species and discussion of South American Epictia albifrons, E. goudotii, and E. tenella (Serpentes: Leptotyphlopidae: Epictinae). Mesoamerican Herpetology, 3 (2016), 216374.Google Scholar
Wynn, A. H., Reynolds, R. P., Buden, D. W., et al., The unexpected discovery of blind snakes (Serpentes: Typhlopidae) in Micronesia: two new species of Ramphotyphlops from the Caroline Islands. Zootaxa, 3172 (2012), 3954.Google Scholar
Passos, P., Caramaschi, U., and Pinto, R. R., Redescription of Leptotyphlops koppesi Amaral, 1954, and description of a new species of the Leptotyphlops dulcis group from Central Brazil (Serpentes: Leptotyphlopidae). Amphibia–Reptilia, 27 (2006), 347357.Google Scholar
Passos, P., Caramaschi, U., and Pinto, R. R., Rediscovery and redescription of Leptotyphlops salgueiroi Amaral, 1954 (Squamata, Serpentes, Leptotyphlopidae). Boletim do Museu Nacional, 520 (2005), 110.Google Scholar
Pyron, R. A. and Wallach, V., Systematics of the blindsnakes (Serpentes: Scolecophidia: Typhlopoidea) based on molecular and morphological evidence. Zootaxa, 3829 (2014), 181.Google Scholar
Thomas, R., The relationships of Antillean Typhlops (Serpentes: Typhlopidae) and the description of three new Hispaniolan species. Biogeography of the West Indies, 1989 (1989), 409432.Google Scholar
Thomas, R.. Systematics of the Antillean Blind Snakes of the Genus Typhlops (Serpentes: Typhlopidae). (LSU Historical Dissertations and Theses 1976).Google Scholar
Wynn, A. H. and Leviton, A. E., Two new species of blind snake, genus Typhlops (Reptilia: Typhlopidae), from the Philippine archipelago. Proceedings of the Biological Society of Washington, 106 (1993), 3445.Google Scholar
Dixon, J. and Hendricks, F. S., The wormsnakes (family Typhlopidae) of the Neotropics, exclusive of the Antilles. Zoologische Verhandelungen, 173 (1979), 139.Google Scholar
Curcio, F. F., Nunes, P. M., Argolo, A. J. S., et al., Taxonomy of the South American dwarf boas of the genus Tropidophis Bibron, 1840, with the description of two new species from the Atlantic forest (Serpentes: Tropidophiidae). Herpetological Monographs, 26 (2012), 80121.CrossRefGoogle Scholar
Gibson, F. W., The ‘quadrifurcate’ hemipenis of Tropidophis . Herpetological Review, 2 (1970), 2930.Google Scholar
McDowell, S. B., A catalogue of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop Museum. Part II. Anilioidea and Pythoninae. Journal of Herpetology, 9 (1975), 179.Google Scholar
Smith, M. A., The fauna of British India, Ceylon and Burma, including the whole of the Indo-Chinese sub-region. Reptilia and Amphibia. Vol III. – Serpentes. (London: Taylor and Francis, 1943).Google Scholar
Gower, D. J. and Wickramasinghe, J. L. M., Recharacterization of Rhinophis dorsimaculatus Deraniyagala, 1941 (Serpentes: Uropeltidae), including description of new material. Zootaxa, 4158 (2016), 203212.Google Scholar
Cyriac, V. P., Narayanan, S., Sampaio, F. L., et al., A new species of Rhinophis Hemprich, 1820 (Serpentes: Uropeltidae) from the Wayanad region of peninsular India. Zootaxa, 4778 (2020), 329342.Google Scholar
Pyron, R. A., Ganesh, S. R., Sayyed, A., et al., A catalogue and systematic overview of the shield-tailed snakes (Serpentes: Uropeltidae). Zoosystema, 38 (2016), 453506.Google Scholar
Gower, D. J. and Maduwage, K., Two new species of Rhinophis Hemprich (Serpentes: Uropeltidae) from Sri Lanka. Zootaxa, 2881 (2011), 5168.Google Scholar
Stuebing, R., A new species of Cylindrophis (Serpentes: Cylindrophiidae) from Sarawak, Western Borneo. Raffles Bulletin of Zoology, 42 (1994), 967–73.Google Scholar
Underwood, G., A Contribution to the Classification of Snakes (London: British Museum of Natural History , 1967).Google Scholar
Vidal, N., Delmas, A.-S., and Hedges, S. B.. The higher-level relationships of alethinophidian snakes inferred from seven nuclear and mitochondrial genes. In Henderson, R. W., Powell, R., eds., Biology of the Boas and Pythons (Eagle Mountain , Utah: Eagle Mountain Publishing, 2007), pp. 2733.Google Scholar
Dowling, H. G.. The Neartic snake fauna. In Dowling, H. G., ed., 1974 Yearbook of Herpetology (New York: HISS Publications, 1974), pp. 191202.Google Scholar
Böhme, W. and Sieling, U., Zum Zusammenhang zwischen Genital Struktur, Paarungsverhalten und Fortpflanzungserfolg bei squamaten Reptilien: erste Ergehnisse. Herpetofauna, 15 (1993), 1523.Google Scholar
Kluge, A. G., Aspidites and the phylogeny of pythonine snakes. Records of the Australian Museum, 19 (1993), 177.Google Scholar
Domergue, C. A., Observations sur les pénis des ophidiens (deuxième partie). Bulletin de la Société des Sciences Naturelles et Physiques du Maroc, 42 (1962), 87105.Google Scholar
Hoge, A. R., A new genus and species of Boinae from Brazil. Xenoboa cropanii, gen. nov., sp. nov. Memorias do Instituto Butantan, 25 (1953), 2734.Google Scholar
Kluge, A. G., Calabaria and the phylogeny of erycine snakes. Zoological Journal of the Linnean Society, 107 (1993), 293351.Google Scholar
Branch, W. R., Hemipenes of the Madagascan boas Acrantophis and Sanzinia, with a review of hemipenial morphology in the Boinae. Journal of Herpetology, 15 (1981), 9199.Google Scholar
McDowell, S. B., A catalogue of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop Museum. Part III. Boinae and Acrochordoidea (Reptilia, Serpentes). Journal of Herpetology, 13 (1979), 192.Google Scholar
Passos, P. and Fernandes, R., Revision of the Epicrates cenchria complex (Serpentes: Boidae). Herpetological Monographs, 22 (2008), 130.Google Scholar
Andonov, K., Natchev, N., Kornilev, Y. V., and Tzankov, N., Does sexual selection influence ornamentation of hemipenes in Old World snakes? Anatomical Record, 300 (2017), 16801694.Google Scholar
Bogert, C. M., The variations and affinities of the dwarf boas of the genus Ungaliophis . American Museum Novitates, 2340 (1968), 126.Google Scholar
Deepak, V., Ruane, S., and Gower, D. J., A new subfamily of colubroid fossorial snakes from the Western Ghats of peninsular India. Journal of Natural History, 52 (2019), 29192934.Google Scholar
Zaher, H., Murphy, R. W., Arredondo, J. C., et al., Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PLoS ONE, 14 (2019), e0216148.Google Scholar
Myers, C. W., A new genus and new tribe for Enicognathus melanauchen Jan, 1863, a neglected South American snake (Colubridae: Xenodontinae), with taxonomic notes on some Dipsadinae. American Museum Novitates, 3715 (2011), 133.Google Scholar
Rossman, D. A. and Eberle, W. G., Partition of the genus Natrix, with preliminary observations on evolutionary trends in natricine snakes. Herpetologica, 33 (1977), 3443.Google Scholar
McDowell, S. B., [Review of] Systematic division and evolution of the colubrid snake genus Natrix, with comments on the subfamily Natricinae, by Edmond V. Malnate. Copeia, 1961 (1961), 502506.Google Scholar
Zaher, H., Grazziotin, F. G., Graboski, R., et al., Phylogenetic relationships of the genus Sibynophis (Serpentes: Colubroidea). Papéis Avulsos de Zoologia (São Paulo), 52 (2012), 141149.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×