Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:29:51.493Z Has data issue: false hasContentIssue false

11 - An Analytic Approach to Isometric Foldings

from Part III - Algebra, Topology, and Analysis in Origami

Published online by Cambridge University Press:  06 October 2020

Thomas C. Hull
Affiliation:
Western New England University
Get access

Summary

In this chapter, tools from analysis are brought to bear on flat foldings of high-dimensional Euclidean space. The exposition follows the work of Dacorogna, Marcellini, and Paolini from 2008, who discovered that high-dimensional flat folding maps, which they call rigid maps, can be solutions to certain Dirichlet partial differential equations. This approach offers a different proof of the Recovery Theorem from Lawrence and Spingarn (1989), and the folding maps that result from Dirichlet problems can sometimes have crease patterns that exhibit interesting self-similarity.

Type
Chapter
Information
Origametry
Mathematical Methods in Paper Folding
, pp. 217 - 228
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×