Published online by Cambridge University Press: 07 September 2011
Supposons que l'on désigne par x, y deux variables réelles, par i une variable imaginaire, et par f(z), F(z) deux fonctions quelconques de z. Soient de plus
celles des racines de l'équation
dans lesquelles la partie réelle demeure comprise entre les limites x0, X, et le coefficient de entre les limites y0, Y. On aura, en vertu des principes du calcul des résidus,
Le second membre de l'équation (3) est évidemment la somme des fonctions semblables de plusieurs des racines de l'équation (2). Si Ton veut que les différents termes dont se compose cette somme se réduisent aux valeurs particuliéres de la fonction ϕ(z) qui correspondent il suffira de poser
ou, plus généralement,
ψ(z) désignant une fonction de z qui ne devienne pas infinie quand on attribue à la variables une des valeurs z1, z,2, …, zm. Cela posé, on trouvera
Les formules (6) et (7) s'étendent au cas môme oú l'équation (2) aurait des racines égales. Supposons en effet que les racines z1, z2, …, zn deviennent égales entre elles, et désignons par leur valeur commune.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.