Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T09:13:39.662Z Has data issue: false hasContentIssue false

11 - The conceptual structure account: A cognitive model of semantic memory and its neural instantiation

from Part VI - Conceptual Models of Semantics

Published online by Cambridge University Press:  14 September 2009

Kirsten I. Taylor
Affiliation:
University of Cambridge, England; University Hospital Basel, Switzerland
Helen E. Moss
Affiliation:
University of Cambridge, England
Lorraine K. Tyler
Affiliation:
University of Cambridge, England
John Hart
Affiliation:
University of Texas, Dallas
Michael A. Kraut
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

The work described in this chapter is motivated by the conviction that a cognitive theory of semantic memory is best suited to investigate the functional and neural bases of the semantic memory system. The advantage of this approach is that detailed hypotheses about the structure and function of the semantic system can be formulated and then tested in behavioral experiments with healthy individuals and neurologically impaired patients. The challenge is then to identify the neural correlates of these experimentally validated cognitive structures and processes, i.e. their neural substrates and mechanisms. The cognitive model provides a detailed framework for this investigation which, when combined with the appropriate functional–neuroanatomical technique, provides the potential to meet this challenge.

The first part of this chapter describes the Conceptual Structure Account (CSA), a cognitive model developed at the Centre for Speech, Language and the Brain. We will present the results of neuropsychological studies with patients and healthy volunteers that have tested the main claims of this model. The CSA has been the driving force in the generation of hypotheses on the neural organization of semantic memory. In the second part of this chapter, we will describe our attempts to investigate the neural instantiation of the CSA using functional imaging techniques. In particular, we will concentrate on our recent research efforts which have combined the hypotheses of the CSA with those of a hierarchical model of object processing in the ventral temporal lobe, developed in nonhuman primates, to guide the fine-grained testing of neural systems involved in semantic memory of objects (Bright et al., 2005; Moss et al., 2005; Tyler et al., 2004).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barense, M. D., Bussey, T. J., Lee, A. C. H., Rogers, T. T., Hodges, J. R., Saksida, L. M., Murray, E. A., and Graham, K. S. (2005). Feature ambiguity influences performance on novel object discriminations in patients with damage to perirhinal cortex. Cognitive Neuroscience Society – 2005 Annual Meeting Program, p. 129.Google Scholar
Basso, A., Captiani, E., and Laiacona, M. (1988). Progressive language impairment without dementia: a case with isolated category specific semantic impairment. Journal of Neurology, Neurosurgery & Psychiatry, 51: 1201–7.CrossRefGoogle Scholar
Beauchamp, M. S., Argall, B. D., Bodurka, J., Duyn, J. H., and Martin, A. (2004a). Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nature Neuroscience, 7: 1190–2.CrossRefGoogle Scholar
Beauchamp, M. S., Lee, K. E., Argall, B. D., and Martin, A. (2004b). Integration of auditory and visual information about objects in superior temporal sulcus. Neuron, 41: 809–23.CrossRefGoogle Scholar
Bonda, E., Petrides, M., Ostry, D., and Evans, A. (1996). Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 16: 3737–44.CrossRefGoogle ScholarPubMed
Bright, P., Moss, H., and Tyler, L. K. (2004). Unitary versus multiple semantics: PET studies of word and picture processing. Brain and Language, 89: 417–32.CrossRefGoogle Scholar
Bright, P., Moss, H. E., Stamatakis, E. A., and Tyler, L. K. (2005). The anatomy of object processing: The role of anteromedial temporal cortex. Quarterly Journal of Experimental Psychology, 58B: 361–77.CrossRefGoogle Scholar
Buckley, M. J. and Gaffan, D. (1998). Perirhinal cortex ablation impairs visual object identification. Journal of Neuroscience, 18: 2268–75.CrossRefGoogle ScholarPubMed
Buckley, M. J., Booth, M. C. A., Rolls, E. T., and Gaffan, D. (2001). Selective perceptual impairments after perirhinal cortex ablation. Journal of Neuroscience, 21: 9824–36.CrossRefGoogle ScholarPubMed
Bunn, E. M., Tyler, L. K., and Moss, H. E. (1998). Category-specific semantic deficits: the role of familiarity and property type reexamined. Neuropsychology, 12: 367–79.CrossRefGoogle ScholarPubMed
Bussey, T. J. and Saksida, L. M. (2002). The organization of visual object representations: a connectionist model of effects of lesions in perirhinal cortex. European Journal of Neuroscience, 15: 355–64.CrossRefGoogle ScholarPubMed
Bussey, T. J., Saksida, L. M., and Murray, E. A. (2002). Perirhinal cortex resolves feature ambiguity in complex visual discriminations. European Journal of Neuroscience, 15: 365–74.CrossRefGoogle ScholarPubMed
Bussey, T. J., Saksida, L. M., and Murray, E. A. (2003). Impairments in visual discrimination after perirhinal cortex lesions: testing “declarative” vs. “perceptual–mnemonic” views of perirhinal cortex function. European Journal of Neuroscience, 17: 649–60.CrossRefGoogle ScholarPubMed
Bussey, T. J., Saksida, L. M., and Murray, E. A. (2005). The perceptual–mnemonic/feature conjunction model of perirhinal cortex function. The Quarterly Journal of Experimental Psychology, 58B: 269–82.CrossRefGoogle Scholar
Cappa, S. F., Perani, D., Schnur, T., Tettamanti, M., and Fazio, F. (1998). The effects of semantic category and knowledge on lexical–semantic access: a PET study. NeuroImage, 8: 350–9.CrossRefGoogle ScholarPubMed
Caramazza, A., Hillis, A. E., Rapp, B. C., and Romani, C. (1990). The multiple semantics hypothesis: multiple confusions?Cognitive Neuropsychology, 7: 161–89.CrossRefGoogle Scholar
Caramazza, A. and Mahon, B. Z. (2003). The organization of conceptual knowledge: the evidence from category-specific semantic deficits. Trends on Cognitive Sciences, 7: 325–74.CrossRefGoogle ScholarPubMed
Caramazza, A. and Mahon, B. Z. (2005). The organisation of conceptual knowledge in the brain: the future's past and some future directions. Cognitive Neuropsychology, 22: 1–25.Google Scholar
Caramazza, A. and Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: the animate–inanimate distinction. Journal of Cognitive Neuroscience, 10: 1–34.CrossRefGoogle ScholarPubMed
Chao, L. L., Haxby, J. V., and Martin, A. (1999). Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature Neuroscience, 2: 913–19.CrossRefGoogle ScholarPubMed
Cree, G. S. and McRae, K. (2003). Analyzing the factors underlying the structure and computation of the meaning of Chipmunk, Cherry, Chisel, Cheese, and Cello (and many other such concrete nouns). Journal of Experimental Psychology: General, 132: 162–201.Google Scholar
Damasio, A. R. (1989a). The brain binds entities and events by multiregional activation from convergence zones. Neural Computation, 1: 123–32.CrossRefGoogle Scholar
Damasio, A. R. (1989b). Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition, 33: 25–62.CrossRefGoogle Scholar
Damasio, H., Grabowski, T. J., Tranel, D., Hichwa, R. D., and Damasio, A. R. (1996). A neural basis for lexical retrieval. Nature, 380: 499–505.CrossRefGoogle ScholarPubMed
Damasio, H., Tranel, D., Grabowski, T., Adolphs, R., and Damasio, A. (2004). Neural systems behind word and concept retrieval. Cognition, 92: 179–229.CrossRefGoogle ScholarPubMed
Renzi, E. and Lucchelli, F. (1994). Are semantic systems separately represented in the brain? The case of living category impairment. Cortex, 30: 3–25.CrossRefGoogle ScholarPubMed
Devlin, J. T., Gonnerman, L. M., Andersen, E. S., and Seidenberg, M. S. (1998). Category-specific semantic deficits in focal and widespread brain damage: a computational account. Journal of Cognitive Neuroscience, 10: 77–94.CrossRefGoogle ScholarPubMed
Devlin, J. T., Russell, R. P., Davis, M. H., Price, C. J., Wilson, J., Moss, H. E., Matthews, P. M., and Tyler, L. K. (2000). Susceptibility-induced loss of signal: comparing PET and fMRI on semantic task. NeuroImage, 11: 589–600.CrossRefGoogle ScholarPubMed
Devlin, J. T., Moore, C. J., Mummery, C. J., Gorno-Tempini, M. L., Phillips, J. A., Noppeney, U., Frackowiak, R. S. J., Friston, K. J., and Price, C. J. (2002a). Anatomic constraints on cognitive theories of category specificity. NeuroImage, 15: 675–85.CrossRefGoogle Scholar
Devlin, J. T., Russell, R. P., Davis, M. H., Price, C. J., Moss, H. E., Fadili, M. J., and Tyler, L. K. (2002b). Is there an anatomical basis for category-specificity? Semantic memory studies in PET and fMRI. Neuropsychologia, 40: 54–75.CrossRefGoogle Scholar
Durrant-Peatfield, M., Tyler, L. K., Moss, H. E., and Levy, J. (1997). The distinctiveness of form and function in category structure: a connectionist model. In Shafto, M. G. and Langley, P. (eds.), Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society. Mahwah, NJ: Erlbaum, pp. 193–8.Google Scholar
Eacott, M. J., Machin, P. E., and Gaffan, E. A. (2001). Elemental and configural visual discrimination learning following lesions to perirhinal cortex in the rat. Behavioural Brain Research, 124: 55–70.CrossRefGoogle ScholarPubMed
Ewbank, M. P., Schluppeck, D., and Andrews, T. J. (2005). fMR-adaptation reveals a distributed representation of inanimate objects and places in human visual cortex. NeuroImage, 28: 268–79.CrossRefGoogle ScholarPubMed
Fiez, J. A., Raichle, M. E., Balota, D., Tallal, P., and Peterson, S. E. (1996). PET activation of posterior temporal regions during passive auditory word presentation and verb generation. Cerebral Cortex, 6: 1–10.CrossRefGoogle Scholar
Forde, E. M. E. and Humphreys, G. W. (1999). Category-specific recognition impairments: a review of important case studies and influential theories. Aphasiology, 13: 169–93.CrossRefGoogle Scholar
Funnell, E. (1995). Objects and properties: a study of the breakdown of semantic memory. Memory, 3: 497–581.CrossRefGoogle ScholarPubMed
Funnell, E. and Sheridan, J. (1992). Categories of knowledge: unfamiliar aspects of living and non-living things. Cognitive Neuropsychology, 9: 135–53.CrossRefGoogle Scholar
Gainotti, G. (2000). What the locus of brain lesion tells us about the nature of the cognitive defect underlying category-specific disorders: a review. Cortex, 36: 539–59.CrossRefGoogle ScholarPubMed
Garrard, P., Patterson, K., Watson, P. C., and Hodges, J. R. (1998). Category specific semantic loss in dementia of Alzheimer's type: functional–anatomical correlations from cross-sectional analyses. Brain, 121: 633–46.CrossRefGoogle ScholarPubMed
Gonnerman, L. M., Andersen, E. S., Devlin, J. T., Kempler, D., and Seidenberg, M. S. (1997). Double dissociation of semantic categories in Alzheimer's disease. Brain and Language, 57: 254–79.CrossRefGoogle ScholarPubMed
Greer, M., van Casteren, M., McClellan, S., Moss, H. E., Rodd, J., Rogers, T., and Tyler, L. K. (2001). The emergence of semantic categories from distributed featural representations. In Moore, J. D. and Stenning, K. (eds.), Proceedings of the 23rd Annual Conference of the Cognitive Science Society. London: Lawrence Erlbaum Associates, pp. 358–63.Google Scholar
Hart, J. and Gordon, B. (1992). Neural subsystems for object knowledge. Nature, 359: 60–4.CrossRefGoogle ScholarPubMed
Hart, J., Berndt, R. S., and Caramazza, A. (1985). Category-specific naming deficit following cerebral infarction. Nature, 316: 439–40.CrossRefGoogle ScholarPubMed
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schuten, J. L., and Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293: 2425–30.CrossRefGoogle ScholarPubMed
Higuchi, S. and Miyashita, Y. (1996). Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions. Proceedings of the National Academy of Sciences USA, 93: pp. 739–43.CrossRefGoogle ScholarPubMed
Hillis, A. E. and Caramazza, A. (1991). Category-specific naming and comprehension impairment: A double dissocation. Brain, 114: 2081–94.CrossRefGoogle Scholar
Humphreys, G. W., Riddoch, M. J., and Quinlan, P. (1988). Cascade processes in picture identification. Cognitive Neuropsychology, 5: 67–103.CrossRefGoogle Scholar
Keil, F. (1986). The acquisition of natural kinds and artifact terms. In Demoupoulous, W. and Marras, A. (eds.), Language Learning and Concept Acquisition: Foundational Issues, Norwood, NJ: Ablex, 133–53.Google Scholar
Laiacona, M., Capitani, E., and Barbarotto, R. (1997). Semantic category dissocations: a longitudinal study of two cases. Cortex, 33: 441–61.CrossRefGoogle Scholar
Lavenex, P. and Amaral, D. G. (2000). Hippocampal–neocortical interaction: a hierarchy of associativity. Hippocampus, 10: 420–30.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Lee, A. C., Bussey, T. J., Murray, E. A., Saksida, L. M., Epstein, R. A., Kapur, N., Hodges, J. R., and Graham, K. S. (2005). Perceptual deficits in amnesia: challenging the medial temporal lobe “mnemonic” view. Neuropsychologia, 43: 1–11.CrossRefGoogle ScholarPubMed
Lerner, Y., Hendler, T., Ben-Bashat, D., Harel, M., and Malach, R. (2001). A hierarchical axis of object processing stages in the human visual cortex. Cerebral Cortex, 11: 287–97.CrossRefGoogle ScholarPubMed
Malt, B. C. and Smith, E. (1984). Correlated properties in natural categories. Journal of Verbal Learning and Verbal Behaviour, 23: 250–69.CrossRefGoogle Scholar
Marslen-Wilson, W. D. and Tyler, L. K. (1997). Dissociating types of mental computation. Nature, 387: 592–4.CrossRefGoogle ScholarPubMed
Martin, A. (2001). Functional neuroimaging of semantic memory. In Cabeza, R. and Kingstone, A. (eds.), Handbook of Functional Neuroimaging of Cognition. Cambridge, MA: MIT Press, pp. 153–86.Google Scholar
Martin, A. and Chao, L. L. (2001). Semantic memory and the brain: structure and processes. Current Opinion in Neurobiology, 11: 194–201.CrossRefGoogle ScholarPubMed
Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L., and Ungerleider, L. G. (1995). Discrete cortical regions associated with knowledge of color and knowledge of action. Science, 379: 649–52.Google Scholar
Martin, A., Ungerleider, L. G., and Haxby, J. V. (2000). Category-specificity and the brain: the sensory-motor model of semantic representations of objects. In Gazzaniga, M. S. (ed.), The Cognitive Neurosciences. Cambridge, MA: MIT Press, pp. 1023–36.Google Scholar
Martin, Q., Wiggs, C. L., Ungerleider, L. G., and Haxby, J. V. (1996). Neural correlates of category-specific knowledge. Nature, 379: 649–52.CrossRefGoogle ScholarPubMed
Masson, M. (1995). A distributed memory model of semantic priming. Journal of Experimental Psychology Learning, Memory, and Cognition, 21: 3–23.CrossRefGoogle Scholar
McRae, (2004). Semantic memory: Some insights from feature-based connectionist attractor networks. In B. H. Ross (ed.), Psychology of Learning and Motivation, vol. 45. Amsterdam: Elsevier, pp. 41–86.Google Scholar
McRae, K. and Cree, G. S. (2002). Factors underlying category-specific semantic deficits. In Forde, E. M. E. and Humphreys, G. (eds.), Category-specificity in Mind and Brain. East Sussex: Psychology Press, pp. 211–50.Google Scholar
McRae, K., Cree, G. S., Seidenberg, M. S., and McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, Instruments, & Computers, 37: 547–59.CrossRefGoogle ScholarPubMed
McRae, K., Cree, G. S., Westmacott, R., and Sa, V. R. (1999). Further evidence for feature correlations in semantic memory. Canadian Journal of Experimental Psychology, 53: 360–73.CrossRefGoogle ScholarPubMed
McRae, K., Sa, V., and Seidenberg, M. S. (1993). Semantic priming and the structure of semantic memory. Journal of Clinical and Experimental Neuropsychology, 15: 385–6.Google Scholar
McRae, K., Sa, V. R., and Seidenberg, M. S. (1997). On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology: General, 126: 99–130.CrossRefGoogle ScholarPubMed
Mishkin, M., Ungerleider, L. G., and Macko, K. A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neurosciences, 6: 414–17.CrossRefGoogle Scholar
Moore, C. J. and Price, C. J. (1999). A functional neuroimaging study of the variables that generate category-specific object processing differences. Brain, 122: 943–62.CrossRefGoogle ScholarPubMed
Moss, H. E., Rodd, J. M., Stamatakis, E. A., Bright, P., and Tyler, L. K. (2005). Anteromedial temporal cortex supports fine-grained differentiation among objects. Cerebral Cortex, 15: 616–27.CrossRefGoogle ScholarPubMed
Moss, H. E. and Tyler, L. K. (1997). A category-specific impairment for non-living things in a case of progressive aphasia. Brain and Language, 60: 55–8.Google Scholar
Moss, H. E. and Tyler, L. K. (2000). A progressive category-specific semantic deficit for non-living things. Neuropsychologia, 38: 60–82.CrossRefGoogle ScholarPubMed
Moss, H. E., Tyler, L. K., and Devlin, J. (2002). The emergence of category specific deficits in a distributed semantic system. In Forde, E. and Humphreys, G. W. (eds.), Category-Specificity in Brain and Mind. Sussex: Psychology Press, pp. 115–48.Google Scholar
Moss, H. E., Tyler, L. K., Durrant-Peatfield, M., and Bunn, E. M. (1998). “Two eyes of a see-through”: Impaired and intact semantic knowledge in a case of selective deficit for living things. Neurocase, 4: 291–310.Google Scholar
Moss, H. E., Tyler, L. K., and Jennings, F. (1997). When leopards lose their spots: Knowledge of visual properties in category-specific deficits for living things. Cognitive Neuropsychology, 14: 901–50.CrossRefGoogle Scholar
Mummery, C. J., Patterson, K., Hodges, J. R., and Wise, R. J. (1996). Generating “tiger” as an animal name or a word beginning with T: differences in brain activation. Proceedings of the Royal Society, London B. Biological Science, 263: pp. 989–95.CrossRefGoogle ScholarPubMed
Mummery, C. J., Patterson, K., Wise, R. J. S., Vandenbergh, R., Price, C. J., and Hodges, J. R. (1999). Disrupted temporal lobe connections in semantic dementia. Brain, 122: 61–73.CrossRefGoogle ScholarPubMed
Murray, E. A. and Bussey, T. J. (1999). Perceptual–mnemonic functions of the perirhinal cortex. Trends in Cognitive Sciences, 3: 142–51.CrossRefGoogle ScholarPubMed
Murray, E. A., Bussey, T. J., Hampton, R. R., and Saksida, L. M. (2000). The parahippocampal region and object identification. Annals of the New York Academy of Sciences, 911: 166–74.CrossRefGoogle ScholarPubMed
Murray, E. A., Malkova, L., and Goulet, S. (1998). Crossmodal associations, intramodal associations, and object identification in macaque monkeys. In Milner, A. D. (ed.), Comparative Neuropsychology. Oxford: Oxford University Press, pp. 51–69.CrossRefGoogle Scholar
Murray, E. A. and Richmond, B. J. (2001). Role of perirhinal cortex in object perception, memory, and associations. Current Opinion in Neurobiology, 11: 188–93.CrossRefGoogle ScholarPubMed
Parker, A. and Gaffan, D. (1998). Lesions of the primate rhinal cortex cause deficits in flavour–visual associative memory. Behavioral Brain Research, 93: 99–105.CrossRefGoogle ScholarPubMed
Perani, D., Cappa, S., Bettinardi, V., Bressi, S., Gorno-Tempini, M.-L., Matarrese, M., and Fazio, F. (1995). Different neural systems for the recognition of animals and man-made tools. NeuroReport, 6: 1637–41.CrossRefGoogle ScholarPubMed
Pexman, P. M., Lupker, S. J., and Hino, Y. (2002). The impact of feedback semantics in visual word recognition: number-of-features effects in lexical decision and naming tasks. Psychonomic Bulletin & Review, 9: 542–9.CrossRefGoogle ScholarPubMed
Pexman, P. M., Holyk, G. G., and Monfils, M. H. (2003). Number-of-features effects and semantic processing. Memory and Cognition, 31: 842–55.CrossRefGoogle ScholarPubMed
Phillips, J. A., Noppeney, U., Humphreys, G. W., and Price, C. J. (2002). Can segregation within the semantic system account for category-specific deficits?Brain, 125: 2067–80.CrossRefGoogle ScholarPubMed
Pilgrim, L. K., Fadili, J., Fletcher, P., and Tyler, L. K. (2002). Overcoming confounds of stimulus blocking: an event-related fMRI design of semantic processing. NeuroImage, 16: 713–23.CrossRefGoogle ScholarPubMed
Plaut, D. C. and Shallice, T. (1993). Perseverative and semantic influences on visual object naming errors in optic aphasia: a connectionist account. Journal of Cognitive Neuroscience, 5: 89–117.CrossRefGoogle ScholarPubMed
Randall, B., Moss, H. E., Rodd, J. M., Greer, M., and Tyler, L. K. (2004). Distinctiveness and correlation in conceptual structure: behavioral and computational studies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30: 393–406.Google ScholarPubMed
Raposo, A., Stamatakis, E. A., Moss, H. E., and Tyler, L. K. (2004). Interactions between processing demands and conceptual structure in object recognition: an event-related fMRI study. Journal of Cognitive Neruoscience, 16: Suppl.: B82.Google Scholar
Rogers, T. T., Hocking, J., Mechelli, A., Patterson, K., and Price, C. (2005). Fusiform activation to animals is driven by the process, not the stimulus. Journal of Cognitive Neuroscience, 17: 434–45.CrossRefGoogle Scholar
Rosch, E. (1978). Principles of categorization. In E. Rosch and B. B. Lloyd, (eds.), Cognition and Categorization. Hillsdale, NJ: Erlbaum, pp. 27–48.Google Scholar
Sacchett, C. and Humphreys, G. W. (1992). Calling a squirrel a squirrel but a canoe a wigwam: a category-specific deficit for artefactual objects and body parts. Cognitive Neuropsychology, 9: 73–86.CrossRefGoogle Scholar
Sakai, K. and Miyashita, Y. (1991). Neural organization for the long-term memory of paired associates. Nature, 354: 152–5.CrossRefGoogle ScholarPubMed
Sartori, G. and Job, R. (1988). The oyster with four legs: a neuropsychological study on the interaction of visual and semantic information. Cognitive Neuropsychology, 5: 105–32.CrossRefGoogle Scholar
Sartori, G., Job, R., Miozzo, M., Zago, S., and Marchiori, G. (1993). Category-specific form knowledge in a patient with herpes simplex virus encephalitis. Journal of Clinical and Experimental Neuropsychology, 15: 280–99.CrossRefGoogle Scholar
Sheridan, J. and Humphreys, J. W. (1993). A verbal semantic category-specific recognition deficit. Cognitive Neuropsychology, 10: 143–84.CrossRefGoogle Scholar
Sigala, N. and Logothetis, N. K. (2002). Visual categorization shapes feature selectivity in the primate temporal cortex. Nature, 415: 318–20.CrossRefGoogle ScholarPubMed
Simmons, W. K. and Barsalou, L. W. (2003). The similarity-in-topography principle: reconciling theories of conceptual deficits. Cognitive Neuropsychology, 20: 451–86.CrossRefGoogle ScholarPubMed
Squire, L. R., Stark, C. E. L., and Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27: 279–306.CrossRefGoogle ScholarPubMed
Suzuki, W. A. and Amaral, D. G. (1994). Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. The Journal of Comparative Neurology, 350: 497–533.CrossRefGoogle ScholarPubMed
Tanaka, K. (1993). Neuronal mechanisms of object recognition. Science, 262: 685–8.CrossRefGoogle ScholarPubMed
Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review of Neuroscience, 19: 109–39.CrossRefGoogle ScholarPubMed
Taylor, K. I., Moss, H., Randall, B., and Tyler, L. K. (2004). The interplay between distinctiveness and intercorrelation in the automatic activation of word meaning (abstract). Abstracts of the Psychonomic Society, 9: 109.Google Scholar
Taylor, K. I., Moss, H. E., Stamatakis, E., and Tyler, L. K. (2006). Binding crossmodal object features in perirhinal cortex. Proceedings of the National Academy of Sciences, USA, 103(21), 8239–44.Google Scholar
Tranel, D., Damasio, H., and Damasio, A. R. (1997). A neural basis for the retrieval of conceptual knowledge. Neuropsychologia, 35: 1319–27.CrossRefGoogle ScholarPubMed
Tsunoda, K., Yamane, Y., Nishizaki, M., and Tanifuji, M. (2001). Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nature Neuroscience, 4: 832–8.CrossRefGoogle ScholarPubMed
Tyler, L. K. and Moss, H. E. (2001). Towards a distributed account of conceptual knowledge. Trends in Cognitive Sciences, 5: 244–52.CrossRefGoogle ScholarPubMed
Tyler, L. K., Moss, H. E., Durrant-Peatfield, M. R., and Levy, J. P. (2000a). Conceptual structure and the structure of concepts: a distributed account of category-specific deficits. Brain and Language, 75: 195–231.CrossRefGoogle Scholar
Tyler, L. K., Voice, J. K., and Moss, H. E. (2000b). The interaction of meaning and sound in spoken word recognition. Psychological Bulletin & Review, 7: 320–6.CrossRefGoogle Scholar
Tyler, L. K., Bright, P., Dick, E., Tavares, P., Pilgrim, L., Fletcher, P., Greer, M., and Moss, H. (2003a). Do semantic categories activate distinct cortical regions? Evidence for a distributed neural semantic system. Cognitive Neuropsychology, 20: 54–61.CrossRefGoogle Scholar
Tyler, L. K., Stamatakis, E. A., Dick, E., Bright, P., Fletcher, P., and Moss, H. (2003b). Objects and their actions: evidence for a neurally distrubuted semantic system. NeuroImage, 18: 542–57.CrossRefGoogle Scholar
Tyler, L. K., Stamatakis, E. A., Bright, P., Acres, K., Abdallah, S., Rodd, J. M., and Moss, H. E. (2004). Processing objects at different levels of specificity. Journal of Cognitive Neuroscience, 16: 351–62.CrossRefGoogle ScholarPubMed
Tyler, L. K., Marslen-Wilson, W. D., and Stamatakis, E. A. (2005). Differentiating lexical form, meaning and structure in the neural language system. Proceedings of the National Academy of Sciences, 102: 8375–80.CrossRefGoogle ScholarPubMed
Ungerleider, L. G. and Mishkin, M. (1982). Two cortical visual systems. In Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W. (eds.), Analysis of Visual Behavior. Cambridge, MA: MIT Press, pp. 549–86.Google Scholar
Warrington, E. K. and McCarthy, R. (1983). Category specific access dysphasia. Brain, 106: 859–78.CrossRefGoogle ScholarPubMed
Warrington, E. K. and McCarthy, R. (1987). Categories of knowledge: further fractionations and an attempted integration. Brain, 110: 1273–96.CrossRefGoogle ScholarPubMed
Warrington, E. K. and Shallice, T. (1984). Category-specific semantic impairment. Brain, 107: 829–53.CrossRefGoogle Scholar
Wise, R., Chollet, F., Hadar, U., Friston, K., Hoffner, E., and Frackowiak, R. (1991). Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain, 114: 1803–17.CrossRefGoogle ScholarPubMed
Zannino, G. D., Perri, R., Carlesimo, G. A., Pasqualettin, P., and Caltagirone, C. (2002). Category-specific impairment in patients with Alzheimer's disease as a function of disease severity: a cross-sectional investigation. Neuropsychologia, 40: 2268–79.CrossRefGoogle ScholarPubMed
Zeki, S., Watson, J. D., Lueck, C. J., Fristn, K. J., Kennard, C., and Frackowiak, R. S. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11: 641–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×