Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T23:24:53.083Z Has data issue: false hasContentIssue false

12 - Axonal pathology in patients with multiple sclerosis

Evidence from in vivo proton magnetic resonance spectroscopy

from Section II - Clinical trial methodology

Published online by Cambridge University Press:  05 December 2011

Jeffrey A. Cohen
Affiliation:
Cleveland Clinic
Richard A. Rudick
Affiliation:
Cleveland Clinic
Get access

Summary

The inflammatory response itself is probably partially responsible for some of the acute conduction block in multiple sclerosis (MS). Proton magnetic resonance spectroscopy (1H-MRS(I)) studies of neuroaxonal NA levels have emphasized that axonal disturbance in the brains of patients with MS can be substantial and widespread, encompassing both the lesional and normal appearing white matter and gray matter. The ability to observe axonal disturbance in vivo allows for correlations across time to be made between measures of axonal pathology and measures of clinical disability. The role of glutamate in mediating neuronal, axonal and oligodendrocyte damage in MS is a promising area of investigation enabled by 1H-MRS(I). 1HMRS(I) has an important role to play in the assessment of new treatments for MS that are directed towards either limiting the damage to the neuro-axonal central nervous system (CNS) or to enhancing its recovery after inflammatory damage.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×