Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-pf7kn Total loading time: 0 Render date: 2025-06-22T07:28:44.354Z Has data issue: false hasContentIssue false

Who Wins Domineering on Rectangular Boards?

Published online by Cambridge University Press:  29 May 2025

Richard Nowakowski
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

ABSTRACT. Using mostly elementary considerations, we find out who wins the game of Domineering on all rectangular boards of width 2, 3, 5, and 7. We obtain bounds on other boards as well, and prove the existence of polynomial-time strategies for playing on all boards of width 2, 3, 4, 5, 7, 9, and 11. We also comment briefly on toroidal and cylindrical boards.

1. Introduction

Domineering or Crosscram is a game invented by Goran Andersson and introduced to the public in [1]. Two players, say Vera and Hepzibah, have vertical and horizontal dominoes respectively. They start with a board consisting of some subset of the square lattice and take turns placing dominoes until one of them can no longer move. For instance, the 2 x 2 board is a win for the first player, since whoever places a domino there makes another space for herself while blocking the other player's moves.

A beautiful theory of combinatorial games of this kind, where both players have perfect information, is expounded in [2; 3]. Much of its power comes from dividing a game into smaller subgames, where a player has to choose which subgame to make a move in. Such a combination is called a disjunctive sum. In Domineering this happens by dividing the remaining space into several components, so that each player must choose in which component to place a domino.

Each game is either a win for Vera, regardless of who goes first, or Hepzibah regardless of who goes first, or the first player regardless of who it is, or the second regardless of who it is. These correspond to a value G which is positive, negative, fuzzy, or zero, i.e.,or. (By convention Vera and Hepzibah are the left and right players, and wins for them are positive and negative respectively.) However, we will often abbreviate these values as G = V, H, 1st, or 2nd. We hope this will not confuse the reader too much.

In this paper, we find who wins Domineering on all rectangles, cylinders, and tori of width 2, 3, 5, and 7. We also obtain bounds on boards of width 4, 7, 9, and 11, and partial results on many others. We also comment briefly on toroidal and cylindrical boards.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×