Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T06:49:29.175Z Has data issue: false hasContentIssue false

6 - An Introduction to Diagrammatic Soergel Bimodules

Published online by Cambridge University Press:  25 November 2023

David Jordan
Affiliation:
University of Edinburgh
Nadia Mazza
Affiliation:
Lancaster University
Sibylle Schroll
Affiliation:
Universität zu Köln
Get access

Summary

This chapter is a survey of the category of diagrammatic Soergel bimodules and the main results about these representations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Achar, Pramod N., Makisumi, Shotaro, Riche, Simon, and Williamson, Geordie. 2017 (Mar.). Free-monodromic mixed tilting sheaves on flag varieties. arXiv: 1703.05843.Google Scholar
[2]Be˘ilinson, A., and Bernstein, J. 1981. Localisation de g-modules. C. R. Acad. Sci. Paris Se´r. I Math., 292(1), 1518.Google Scholar
[3]Bowman, Chris, Cox, Anton, and Hazi, Amit. 2020 (May). Path isomorphisms between quiver Hecke and diagrammatic Bott-Samelson endomorphism algebras. arXiv:2005.02825.Google Scholar
[4]Brylinski, J.-L. and Kashiwara, M. 1981. Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math., 64(3), 387410.Google Scholar
[5]Elias, Ben. 2016. The two-color Soergel calculus. Compos. Math., 152(2), 327398.Google Scholar
[6]Elias, Ben, and Khovanov, Mikhail. 2010. Diagrammatics for Soergel categories. Int. J. Math. Math. Sci., Art. ID 978635, 58.Google Scholar
[7]Elias, Ben, and Williamson, Geordie. 2013 (Mar.). Soergel bimodules and Kazhdan-Lusztig conjectures. www.maths.usyd.edu.au/u/geordie/aarhus/.Google Scholar
[8]Elias, Ben, and Williamson, Geordie. 2014. The Hodge theory of Soergel bimodules. Ann. of Math. (2), 180(3), 10891136.Google Scholar
[9]Elias, Ben, and Williamson, Geordie. 2016. Soergel calculus. Represent. Theory, 20, 295374.Google Scholar
[10]Elias, Ben, Makisumi, Shotaro, Thiel, Ulrich, and Williamson, Geordie. 2020. Introduction to Soergel bimodules. RSME Springer Series, vol. 5. Springer, Cham.Google Scholar
[11]Humphreys, James E. 2008. Representations of semisimple Lie algebras in the BGG category O. Graduate Studies in Mathematics, vol. 94. American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
[12]Jensen, Lars Thorge, and Williamson, Geordie. 2017. The p-canonical basis for Hecke algebras. Pages 333–361 of: Categorification and higher representation theory. Contemp. Math., vol. 683. Amer. Math. Soc., Providence, RI.CrossRefGoogle Scholar
[13]Libedinsky, Nicolas. 2008. Sur la cate´gorie des bimodules de Soergel. J. Algebra, 320(7), 26752694.Google Scholar
[14]Riche, Simon, and Williamson, Geordie. 2018. Tilting modules and the p-canonical basis. Aste´risque, ix+184.Google Scholar
[15]Soergel, Wolfgang. 1990. Kategorie O, perverse Garben und Moduln u¨ber den Koinvarianten zur Weylgruppe. J. Amer. Math. Soc., 3(2), 421445.Google Scholar
[16]Soergel, Wolfgang. 2000. On the relation between intersection cohomology and representation theory in positive characteristic. J. Pure Appl. Algebra, 152(1–3), 311–335. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998).CrossRefGoogle Scholar
[17]Soergel, Wolfgang. 2007. Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln u¨ber Polynomringen. J. Inst. Math. Jussieu, 6(3), 501525.Google Scholar
[18]Williamson, Geordie. 2012 (Dec.). Soergel bimodules and representation theory. www.maths.usyd.edu.au/u/geordie/sydney/.Google Scholar
[19]Williamson, Geordie. 2017. Schubert calculus and torsion explosion. J. Amer. Math. Soc., 30(4), 1023–1046. With a joint appendix with Alex Kontorovich and Peter J. McNamara.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×