Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-9f75d Total loading time: 0 Render date: 2025-12-08T10:01:41.820Z Has data issue: false hasContentIssue false

Section 3 - Techniques: How To Do

Published online by Cambridge University Press:  28 April 2018

Christoph Lees
Affiliation:
Imperial College London
Wilfried Gyselaers
Affiliation:
Hasselt Universiteit, Belgium
Get access

Information

Type
Chapter
Information
Maternal Hemodynamics , pp. 101 - 140
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Laurent, S, Cockcroft, J, Van Bortel, L, et al. Expert Consensus Document on Arterial Stiffness: methodological issues and clinical applications. Eur Heart J 2006;27:2588–605.CrossRefGoogle ScholarPubMed
Green, D. Point: flow-mediated dilation does reflect nitric oxide-mediated endothelial function. J Appl Physiol 2005; 99:12331234; discussion 1237–8.10.1152/japplphysiol.00601.2005CrossRefGoogle ScholarPubMed
Verma, S, Buchanan, MR, Anderson, TJ. Endothelial function testing as a biomarker of vascular disease. Circulation 2003;108:2054–9.CrossRefGoogle ScholarPubMed
Harris, RA, Nishiyama, SK, Wray, DW, and Richardson, RS. Ultrasound Assessment of Flow-Mediated Dilation. Hypertension 2010;55:1075–85, originally published April 14, 2010.Google ScholarPubMed
Savvidou, MD, Kametas, NA, Donald, AE, Nicolaides, KH. Non-invasive assessment of endothelial function in normal pregnancy. Ultrasound Obstet Gynecol 2000;15:502–7.10.1046/j.1469-0705.2000.00131.xCrossRefGoogle ScholarPubMed
Savvidou, MD, Hingorani, AD, Tsikas, D, Frölich, JC, Vallance, P, Nicolaides, KH. Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia.The Lancet, 2003;361(9368):1511–17.10.1016/S0140-6736(03)13177-7CrossRefGoogle ScholarPubMed
Wilkinson, I, Webb, D. Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications. Br J ClinPharmacol 2001;52:631–46.Google ScholarPubMed
Whitney, RJ. The measurement of volume changes in human limbs. J Physiol (Lond). 1953;121:127.10.1113/jphysiol.1953.sp004926CrossRefGoogle ScholarPubMed
Benjamin, N, Calver, A, Collier, J, Robinson, B, Vallance, P, Webb, D. Measuring forearm blood flow and interpreting the responses to drugs and mediators. Hypertension 1995;25:918–23.CrossRefGoogle ScholarPubMed
Hausvater, A, Giannone, T, Sandoval, YH, et al. The association between preeclampsia and arterial stiffness. J Hypertens. 2012; 30:1733.10.1097/HJH.0b013e32834e4b0fCrossRefGoogle ScholarPubMed
Panza, JA, Epstein, SE, Quyyumi, AA. Circadian variation in vascular tone and its relation to alpha sympathetic vasoconstriction. N Engl J Med 1991;325:986–90.10.1056/NEJM199110033251402CrossRefGoogle Scholar
Horváth, IG1, Németh, A, Lenkey, Z, et al. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens 2010;28:2068–75.10.1097/HJH.0b013e32833c8a1aCrossRefGoogle ScholarPubMed
London, GM, Blacher, J, Pannier, B et al. Arterial wave reflections and survival in end-stage renal failure. Hypertension 2001;38:434–8.CrossRefGoogle ScholarPubMed
Khalil, A, Jauniaux, E, Cooper, D, Harrington, K. Pulse wave analysis in normal pregnancy: a prospective longitudinal study. PLoS ONE 2009; 4: e613410.1371/journal.pone.0006134CrossRefGoogle ScholarPubMed
van Leeuwen-Segarceanu, EM, Tromp, WF, Bos, WJ, Vogels, OJ, Groothoff, JW, van der Lee, JH.Comparison of two instruments measuring carotid-femoral pulse wave velocity: Vicorder versus SphygmoCor. J Hypertens 2010;28: 1687–91.10.1097/HJH.0b013e32833a8b83CrossRefGoogle ScholarPubMed
Karamanoglu, M, O’Rourke, MF, Avolio, AP, et al. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J 1993;14:160167.10.1093/eurheartj/14.2.160CrossRefGoogle ScholarPubMed
Chen-Huan, C, Nevo, E, Fetics, B, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Circulation 1997;95:1827–36.Google Scholar
Khalil, A, Garcia-Mandujano, R, Maiz, N, Elkhouli, M, Nicolaides, KH. Longitudinal changes in maternal hemodynamics in a population at risk for pre-eclampsia. Ultrasound Obstet Gynecol 2014;44:197204.CrossRefGoogle Scholar
Khalil, A, Akolekar, R, Syngelaki, A, Elkhouli, M, Nicolaides, KH. Maternal hemodynamics at 11–13 weeks’ gestation and risk of pre-eclampsia. Ultrasound Obstet Gynecol 2012;40:2834.CrossRefGoogle ScholarPubMed
Khalil, A, Garcia-Mandujano, R, Chiriac, R, Akolekar, R, Nicolaides, KH. Maternal hemodynamics at 11–13 weeks’ gestation in gestational diabetes mellitus. Fetal Diagn Ther 2012;31:216–20.10.1159/000336692CrossRefGoogle ScholarPubMed
Hwang, MH, Yoo, JK, Kim, HK, et al. Validity and reliability of aortic pulse wave velocity and augmentation index determined by the new cuff-based SphygmoCorXcel. J Hum Hypertens 2014;28:475–81.10.1038/jhh.2013.144CrossRefGoogle Scholar
Park, CM, Korolkova, O, Davies, JE, et al. Arterial pressure: agreement between a brachial cuff-based device and radial tonometry. J Hypertens. 2014;32(4):865–72.CrossRefGoogle ScholarPubMed
Praciano De Sousa, PC, GurgelAlves, JA, Bezerra, ME, et al. Brachial artery flowmediated dilation and pulsatility index change as independent predictors for hypertensive disorders in the second trimester of pregnancy. Eur J ObstetGynecolReprod Biol. 2016;200: 94–7.Google Scholar
Iacobaeus, C, Kahan, T, Jörneskog, G, Bremme, K, Thorsell, M, Andolf, E. Fetal growth is associated with first-trimester maternal vascular function. Ultrasound Obstet Gynecol. 2016 Oct;48(4):483–90.10.1002/uog.15863CrossRefGoogle ScholarPubMed
Brewster, S, Floras, J, Zinman, B, Retnakaran, R. Endothelial function in women with and without a history of glucose intolerance in pregnancy. J Diabetes Res. 2013;2013:382670.Google ScholarPubMed
Lampinen, KH, Rönnback, M, Groop, PH, Kaaja, RJ. A relationship between insulin sensitivity and vasodilation in women with a history of preeclamptic pregnancy.Hypertension. 2008;52(2):394401.10.1161/HYPERTENSIONAHA.108.113423CrossRefGoogle ScholarPubMed
Agatisa, PK, Ness, RB, Roberts, JM, Costantino, JP, Kuller, LH, McLaughlin, MK.Impairment of endothelial function in women with a history of preeclampsia: an indicator of cardiovascular risk. Am J Physiol Heart Circ Physiol. 2004;286(4):H138993.10.1152/ajpheart.00298.2003CrossRefGoogle ScholarPubMed
Savvidou, MD, Kaihura, C, Anderson, JM, Nicolaides, KH. Maternal arterial stiffness in women who subsequently develop pre-eclampsia. Berger, JS, ed. PLoS ONE. 2011;6(5):e18703.Google Scholar
Macedo, ML, Luminoso, D, Savvidou, MD, McEniery, CM, Nicolaides, KH. Maternal wave reflections and arterial stiffness in normal pregnancy as assessed by applanation tonometry. Hypertension. 2008;51:1047–51.10.1161/HYPERTENSIONAHA.107.106062CrossRefGoogle ScholarPubMed
Kaihura, C, Savvidou, MD, Anderson, JM, McEniery, CM, Nicolaides, KH. Maternal arterial stiffness in pregnancies affected by preeclampsia. Am J Physiol Heart Circ. 2009;297(2):H759H764.10.1152/ajpheart.01106.2008CrossRefGoogle ScholarPubMed
Stea, F, Bozec, E, Millasseau, S, Khettab, H, Boutouyrie, P, Laurent, S. Comparison of the Complior Analyse device with Sphygmocor and Complior SP for pulse wave velocity and central pressure assessment.J Hypertens. 2014;32(4):873–80.CrossRefGoogle ScholarPubMed
Everett, TR, Mahendru, A, McEniery, CM, Lees, CC, Wilkinson, IB. A comparison of SphygmoCor and Vicorder devices for measuring aortic pulse wave velocity in pregnancy. Artery Research, 2012;6(2):92–6.10.1016/j.artres.2012.01.003CrossRefGoogle Scholar
Lan, P, Keehn, L, Milne, L, McNeill, K, Chowienczyk, P, Sinha, MD. Pulse wave analysis and the risk of early-onset pre-eclampsia. Pregnancy Hypertension. 2016;5:1:26.10.1016/j.preghy.2014.10.054CrossRefGoogle Scholar

References

Pang, CC. Measurement of body venous tone. J Pharmacol Toxicol Methods. 2000;44(2):341–60.10.1016/S1056-8719(00)00124-6CrossRefGoogle ScholarPubMed
Pang, CC. Autonomic control of the venous system in health and disease: effects of drugs. Pharmacol Ther. 2001;90(2–3):179230.10.1016/S0163-7258(01)00138-3CrossRefGoogle ScholarPubMed
Gelman, S. Venous function and central venous pressure: a physiologic story. Anesthesiology. 2008;108(4):735–48.10.1097/ALN.0b013e3181672607CrossRefGoogle ScholarPubMed
Lui, EY, Steinman, AH, Cobbold, RS, Johnston, KW. Human factors as a source of error in peak Doppler velocity measurement. J Vasc Surg. 2005;42(5):972–9.CrossRefGoogle ScholarPubMed
Gyselaers, W, Molenberghs, G, Van Mieghem, W, Ombelet, W. Doppler measurement of renal interlobar vein impedance index in uncomplicated and preeclamptic pregnancies. Hypertens Pregnancy. 2009;28(1):2333.CrossRefGoogle ScholarPubMed
Teichgraber, UK, Gebel, M, Benter, T, Manns, MP. Effect of respiration, exercise, and food intake on hepatic vein circulation. J Ultrasound Med. 1997;16(8):549–54.10.7863/jum.1997.16.8.549CrossRefGoogle ScholarPubMed
Kinsella, SM, Lohmann, G. Supine hypotensive syndrome. Obstet Gynecol. 1994;83(5 Pt 1):774–88.Google ScholarPubMed
Verbeke, G MG. Linear Mixed Models for Longitudinal Data. 2nd edn. New York: Springer; 2001.Google Scholar
Laenen, A, Vangeneugden, T, Geys, H, Molenberghs, G. Generalized reliability estimation using repeated measurements. Br J Math Stat Psychol. 2006; 59(Pt 1):113–31.10.1348/000711005X66068CrossRefGoogle ScholarPubMed
SAS Institute Inc. SAS/IML software: Changes and enhancements through release. 1995. Cary, NC.Google Scholar
Gyselaers, W, Mullens, W, Tomsin, K, Mesens, T, Peeters, L. Role of dysfunctional maternal venous hemodynamics in the pathophysiology of pre-eclampsia: a review. Ultrasound Obstet Gynecol. 2011;38(2):123–9.10.1002/uog.9061CrossRefGoogle ScholarPubMed
Gyselaers, W, Molenberghs, G, Mesens, T, Peeters, L. Maternal hepatic vein Doppler velocimetry during uncomplicated pregnancy and pre-eclampsia. Ultrasound Med Biol. 2009;35(8):1278–83.10.1016/j.ultrasmedbio.2009.03.014CrossRefGoogle ScholarPubMed
Tomsin, K, Mesens, T, Molenberghs, G, Gyselaers, W. Venous pulse transit time in normal pregnancy and preeclampsia. Reprod Sci. 2012;19(4):431–6.CrossRefGoogle ScholarPubMed
Staelens, AS, Tomsin, K, Oben, J, Mesens, T, Grieten, L, Gyselaers, W. Improving the reliability of venous doppler flow measurements: relevance of combined ECG, training and repeated measures. Ultrasound Med Biol. 2014;40(7):1722–8.CrossRefGoogle ScholarPubMed
Mesens, T, Tomsin, K, Molenberghs, G, Gyselaers, W. Reproducibility and repeatability of maternal venous Doppler flow measurements in renal interlobar and hepatic veins. Ultrasound Obstet Gynecol. 2010;36(1):120–1.10.1002/uog.7648CrossRefGoogle ScholarPubMed
Gyselaers, W. Hemodynamics of the maternal venous compartment: a new area to explore in obstetric ultrasound imaging. Ultrasound Obstet Gynecol. 2008;32(5):716–7.10.1002/uog.6113CrossRefGoogle ScholarPubMed
Spentzouris, G, Zandian, A, Cesmebasi, A, et al. The clinical anatomy of the inferior vena cava: a review of common congenital anomalies and considerations for clinicians. Clin Anat. 2014;27(8):1234–43.10.1002/ca.22445CrossRefGoogle ScholarPubMed
Kruskal, JB, Newman, PA, Sammons, LG, Kane, RA. Optimizing Doppler and color flow US: application to hepatic sonography. Radiographics. 2004;24(3):657–75.10.1148/rg.243035139CrossRefGoogle ScholarPubMed
Helenon, O, Correas, JM, Chabriais, J, Boyer, JC, Melki, P, Moreau, JF. Renal vascular Doppler imaging: clinical benefits of power mode. Radiographics. 1998;18(6):1441–54; discussion 55–7.10.1148/radiographics.18.6.9821193CrossRefGoogle ScholarPubMed
Bateman, GA, Cuganesan, R. Renal vein Doppler sonography of obstructive uropathy. AJR Am J Roentgenol. 2002;178(4):921–5.10.2214/ajr.178.4.1780921CrossRefGoogle ScholarPubMed
Mesens, T, Tomsin, K, Oben, J, Staelens, A, Gyselaers, W. Maternal venous hemodynamics assessment for prediction of preeclampsia should be longitudinal. J Matern Fetal Neonatal Med. 2015;28(3):311–5.CrossRefGoogle ScholarPubMed

References

Singh, S, Goyal, A. The origin of echocardiography: a tribute to Inge Edler. Tex Heart Inst J. 2007;34(4):431–8.Google Scholar
Oxborough, D. A practical approach to transthoracic echocardiography. Brit J Cardiac Nurs. 2008;3:163–9.Google Scholar
Regitz-Zagrosek, V, Blomstrom Lundqvist, C, Borghi, C, et al. ESC Guidelines on the management of cardiovascular diseases during pregnancy: the Task Force on the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC). Eur Heart J. 2011;32(24):3147–97.Google ScholarPubMed
Teichholz, LE, Kreulen, T, Herman, MV, Gorlin, R. Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol. 1976;37(1):711.10.1016/0002-9149(76)90491-4CrossRefGoogle ScholarPubMed
Kronik, G, Slany, J, Mosslacher, H. Comparative value of eight M-mode echocardiographic formulas for determining left ventricular stroke volume. A correlative study with thermodilution and left ventricular single-plane cineangiography. Circulation. 1979;60(6):1308–16.10.1161/01.CIR.60.6.1308CrossRefGoogle ScholarPubMed
van Oppen, AC, Stigter, RH, Bruinse, HW. Cardiac output in normal pregnancy: a critical review. Obstet Gynecol. 1996;87(2):310–8.Google ScholarPubMed
Feigenbaum, H. Role of M-mode technique in today’s echocardiography. J Am Soc Echocardiogr. 2010;23(3):240–57; 335–7.10.1016/j.echo.2010.01.015CrossRefGoogle ScholarPubMed
Melchiorre, K, Sharma, R, Thilaganathan, B. Cardiac structure and function in normal pregnancy. Curr Opin Obstet Gynecol. 2012;24(6):413–21.10.1097/GCO.0b013e328359826fCrossRefGoogle ScholarPubMed
McNamara, H, Barclay, P, Sharma, V. Accuracy and precision of the ultrasound cardiac output monitor (USCOM 1A) in pregnancy: comparison with three-dimensional transthoracic echocardiography. Br J Anaesth. 2014;113(4):669–76.CrossRefGoogle ScholarPubMed
Poppas, A, Shroff, SG, Korcarz, CE, et al. Serial assessment of the cardiovascular system in normal pregnancy. Role of arterial compliance and pulsatile arterial load. Circulation. 1997;95(10):2407–15.10.1161/01.CIR.95.10.2407CrossRefGoogle ScholarPubMed
Dey, I, Sprivulis, P. Emergency physicians can reliably assess emergency department patient cardiac output using the USCOM continuous wave Doppler cardiac output monitor. Emerg Med Australas. 2005;17(3):193–9.10.1111/j.1742-6723.2005.00722.xCrossRefGoogle ScholarPubMed
Marik, PE. Noninvasive cardiac output monitors: a state-of the-art review. J Cardiothorac Vasc Anesth. 2013;27(1):121–34.10.1053/j.jvca.2012.03.022CrossRefGoogle ScholarPubMed
Mahendru, AA, Everett, TR, Wilkinson, IB, Lees, CC, McEniery, CM. A longitudinal study of maternal cardiovascular function from preconception to the postpartum period. J Hypertens. 2014;32(4):849–56.10.1097/HJH.0000000000000090CrossRefGoogle ScholarPubMed
Jhanji, S, Dawson, J, Pearse, RM. Cardiac output monitoring: basic science and clinical application. Anaesthesia. 2008;63(2):172–81.10.1111/j.1365-2044.2007.05318.xCrossRefGoogle ScholarPubMed
Staelens, AS, Bertrand, PB, Vonck, S, Malbrain, MLNG, Gyselaers, W. Non-invasive methods for maternal cardiac output monitoring. Fetal Matern Med Rev. 2015:117.Google Scholar
Wallenburg, HC. Maternal haemodynamics in pregnancy. Fetal Matern Med Rev. 1990;2(01):4566.CrossRefGoogle Scholar
Keren, H, Burkhoff, D, Squara, P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293(1):H5839.10.1152/ajpheart.00195.2007CrossRefGoogle ScholarPubMed
Easterling, TR, Benedetti, TJ, Carlson, KL, Watts, DH. Measurement of cardiac output in pregnancy by thermodilution and impedance techniques. Br J Obstet Gynaecol. 1989;96(1):67–9.10.1111/j.1471-0528.1989.tb01578.xCrossRefGoogle ScholarPubMed
Dyson, KS, Shoemaker, JK, Arbeille, P, Hughson, RL. Model flow estimates of cardiac output compared with Doppler ultrasound during acute changes in vascular resistance in women. Exp Physiol. 2010;95(4):561–8.10.1113/expphysiol.2009.050815CrossRefGoogle Scholar
Rang, S, de Pablo Lapiedra, B, van Montfrans, GA, Bouma, BJ, Wesseling, KH, Wolf, H. Modelflow: a new method for noninvasive assessment of cardiac output in pregnant women. Am J Obstet Gynecol. 2007;196(3):235 e1–8.10.1016/j.ajog.2006.10.896CrossRefGoogle ScholarPubMed
Elvan-Taspinar, A, Uiterkamp, LA, Sikkema, JM, et al. Validation and use of the Finometer for blood pressure measurement in normal, hypertensive and pre-eclamptic pregnancy. J Hypertens. 2003;21(11):2053–60.Google ScholarPubMed
Gibbons, RJ, Balady, GJ, Beasley, JW, et al. ACC/AHA Guidelines for Exercise Testing. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). J Am Coll Cardiol. 1997;30(1):260311.Google Scholar
Meah, VL, Cockcroft, J, Stöhr, EJ. Maternal cardiac twist pre-pregnancy: potential as a novel marker of pre-eclampsia. Fetal Matern Med Rev. 2013;24(4):289–95.10.1017/S0965539513000156CrossRefGoogle Scholar
Armstrong, WF, Ryan, T. Feigenbaum’s Echocardiography. 7th edn: Lippincott Williams & Wilkins; 2009.Google Scholar
Lorenz, CH, Walker, ES, Morgan, VL, Klein, SS, Graham, TP, Jr. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson. 1999;1(1):721.CrossRefGoogle ScholarPubMed
La Gerche, A, Claessen, G, Van de Bruaene, A, et al. Cardiac MRI: a new gold standard for ventricular volume quantification during high-intensity exercise. Circ Cardiovasc Imaging. 2013;6(2):329–38.Google ScholarPubMed
Jakovljevic, DG, Nunan, D, Donovan, G, Hodges, LD, Sandercock, GR, Brodie, DA. Comparison of cardiac output determined by different rebreathing methods at rest and at peak exercise. Eur J Appl Physiol. 2008;102(5):593–9.10.1007/s00421-007-0631-4CrossRefGoogle ScholarPubMed
Peyton, PJ, Bailey, M, Thompson, BR. Reproducibility of cardiac output measurement by the nitrous oxide rebreathing technique. J Clin Monit Comput. 2009;23(4):233–6.10.1007/s10877-009-9187-7CrossRefGoogle ScholarPubMed
Schutte, AE, Huisman, HW, Van Rooyen, JM, Oosthuizen, W, Jerling, JC. Sensitivity of the Finometer device in detecting acute and medium-term changes in cardiovascular function. Blood Press Monit. 2003;8(5):195201.10.1097/00126097-200310000-00004CrossRefGoogle ScholarPubMed

References

Scholten, RR, Sep, S, Peeters, L, Hopman, MT, Lotgering, FK, Spaanderman, ME. Prepregnancy low-plasma volume and predisposition to preeclampsia and fetal growth restriction. Obstet Gynecol. 2011;117(5):1085–93.CrossRefGoogle ScholarPubMed
Donckers, J, Scholten, RR, Oyen, WJ, Hopman, MT, Lotgering, FK, Spaanderman, ME. Unexplained first trimester recurrent pregnancy loss and low venous reserves. Hum Reprod. 2012;27(9):2613–8.10.1093/humrep/des245CrossRefGoogle ScholarPubMed
Freis, ED, Kenny, JF. Plasma Volume, Total Circulating Protein, and “Available Fluid” Abnormalities in Preeclampsia and Eclampsia. J Clin Invest. 1948;27(2):283–9.10.1172/JCI101945CrossRefGoogle ScholarPubMed
Salas, SP, Marshall, G, Gutierrez, BL, Rosso, P. Time course of maternal plasma volume and hormonal changes in women with preeclampsia or fetal growth restriction. Hypertension. 2006;47(2):203–8.10.1161/01.HYP.0000200042.64517.19CrossRefGoogle ScholarPubMed
Gallery, ED, Hunyor, SN, Gyory, AZ. Plasma volume contraction: a significant factor in both pregnancy-associated hypertension (pre-eclampsia) and chronic hypertension in pregnancy. Q J Med. 1979;48(192):593602.Google ScholarPubMed
Welker, H. Bestimmungen der Menge des Körperblutes und der Blutfärbekraft, sowie Bestimmungen von Zahl, Maass, Oberfläche und Volumen des einzelnen Blutkörpercherns beim Thier und beim Menschen. Präger Vrtljschr. 1854.Google Scholar
Von Vierordt, KH. Das Abhängigkeitsgesetz der mittleren Kreislaufszeiten von den mittleren Puls-Frequenzen der Tierarten. Arch. f. physiol. Heilk. N. F. 1858;2:527.Google Scholar
Phillips, RA, Yeomans, A, Dole, VP, Farr, LE, Van Slyke, DD, Hogan, D. Estimation of blood volume from change in blood specific gravity following a plasma infusion. J Clin Invest. 1946;25:261–9.10.1172/JCI101704CrossRefGoogle ScholarPubMed
Valentin, G. Versuche über die in dem thierischen Körper enthaltene Blutmenge. Repert f Anat u Physiol. 1838;3:281.Google Scholar
Erlanger, J. Blood volume and its regulation. Physiol Rev. 1921;1:177.10.1152/physrev.1921.1.2.177CrossRefGoogle Scholar
Brown, MA, Mitar, DA, Whitworth, JA. Measurement of plasma volume in pregnancy. Clin Sci (Lond). 1992;83(1):2934.10.1042/cs0830029CrossRefGoogle ScholarPubMed
Haneda, K, Horiuchi, T. A method for measurement of total circulating blood volume using indocyanine green. Tohoku J Exp Med. 1986;148(1):4956.10.1620/tjem.148.49CrossRefGoogle ScholarPubMed
International Committee for Standardization in Haematology. Recommended methods for measurement of red-cell and plasma volume: International Committee for Standardization in Haematology. J Nucl Med. 1980;21(8):793800.Google Scholar
Walker, WG, Ross, RS, Hammond, JD. Study of the relationship between plasma volume and transcapillary protein exchange using I 131-labeled albumin and I 125-labeled globulin. Circ Res. 1960;8:1028–40.10.1161/01.RES.8.5.1028CrossRefGoogle ScholarPubMed
Dubick, MA, Wade, CE. A review of the efficacy and safety of 7.5% NaCl/6% dextran 70 in experimental animals and in humans. J Trauma. 1994;36(3):323–30.10.1097/00005373-199403000-00007CrossRefGoogle ScholarPubMed
van Kreel, BK, van Beek, E, Spaanderman, ME, Peeters, LL. A new method for plasma volume measurements with unlabeled dextran-70 instead of 125I-labeled albumin as an indicator. Clin Chim Acta. 1998;275(1):7180.10.1016/S0009-8981(98)00080-1CrossRefGoogle ScholarPubMed
Najean, Y, Dresch, C, Ardaillou, N, Bernard, J. Iron metabolism – a study of different kinetic models in normal conditions. Am J Physiol. 1967;213(2):533–46.10.1152/ajplegacy.1967.213.2.533CrossRefGoogle ScholarPubMed
Ricketts, C, Cavill, I. Measurement of plasma volume using 59Fe-labelled transferrin. J Clin Pathol. 1978;31(2):196–8.10.1136/jcp.31.2.196CrossRefGoogle ScholarPubMed
Tschaikowsky, K, Meisner, M, Durst, R, Rugheimer, E. Blood volume determination using hydroxyethyl starch: a rapid and simple intravenous injection method. Crit Care Med. 1997;25(4):599606.10.1097/00003246-199704000-00008CrossRefGoogle ScholarPubMed
Vricella, LK, Louis, JM, Chien, E, Mercer, BM. Blood volume determination in obese and normal-weight gravidas: the hydroxyethyl starch method. Am J Obstet Gynecol. 2015;213(3):408 e1–6.10.1016/j.ajog.2015.05.021CrossRefGoogle ScholarPubMed
Soens, MA, Birnbach, DJ, Ranasinghe, JS, van Zundert, A. Obstetric anesthesia for the obese and morbidly obese patient: an ounce of prevention is worth more than a pound of treatment. Acta Anaesthesiol Scand. 2008;52(1):619.10.1111/j.1399-6576.2007.01483.xCrossRefGoogle ScholarPubMed
Forster, H, Wicarkzyk, C, Dudziak, R. Determination of the plasma elimination of hydroxyethyl starch and dextran using improved analytical methods. Infusionsther Klin Ernahr. 1981;8(2):8894.Google ScholarPubMed
De Lorenzo, A, Deurenberg, P, Andreoli, A, Sasso, GF, Palestini, M, Docimo, R. Multifrequency impedance in the assessment of body water losses during dialysis. Ren Physiol Biochem. 1994;17(6):326–32.Google ScholarPubMed
De Lorenzo, A, Candeloro, N, Andreoli, A, Deurenberg, P. Determination of intracellular water by multifrequency bioelectrical impedance. Ann Nutr Metab. 1995;39(3):177–84.10.1159/000177860CrossRefGoogle ScholarPubMed
Valensise, H, Andreoli, A, Lello, S, Magnani, F, Romanini, C, De Lorenzo, A. Multifrequency bioelectrical impedance analysis in women with a normal and hypertensive pregnancy. Am J Clin Nutr. 2000;72(3):780–3.10.1093/ajcn/72.3.780CrossRefGoogle ScholarPubMed
da Silva, EG, Carvalhaes, MA, Hirakawa, HS, Peracoli, JC. Bioimpedance in pregnant women with preeclampsia. Hypertens Pregnancy. 2010;29(4):357–65.10.3109/10641950903116523CrossRefGoogle ScholarPubMed
Yasuda, R, Takeuchi, K, Funakoshi, T, Maruo, T. Bioelectrical impedance analysis in the clinical management of preeclamptic women with edema. J Perinat Med. 2003;31(4):275–80.10.1515/JPM.2003.038CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×