Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T02:47:40.691Z Has data issue: false hasContentIssue false

9 - Other analogs to Mars: high-altitude, subsurface, desert, and polar environments

Published online by Cambridge University Press:  06 July 2010

Peter T. Doran
Affiliation:
University of Illinois, Chicago
W. Berry Lyons
Affiliation:
Ohio State University
Diane M. McKnight
Affiliation:
University of Colorado, Boulder
Get access

Summary

Abstract

The McMurdo Dry Valleys detailed in previous chapters represent one environment for life thought to have existed on Mars among many. This chapter illustrates other potential habitats and their significance: (1) high-altitude lakes subjected to rapid climate change in the Andes provide analogy to the Noachian/Hesperian transition on Mars; (2) Río Tinto, Spain, where conditions are reminiscent of Meridiani Planum, unravels an underground anaerobic chemoautotroph biosphere that could resemble a modern refuge for life on Mars; (3) the High Arctic hosts gullies analogous to those observed on Mars, whose fresh deposits could provide access to traces of past and/or present underground oases; it is also in this polar environment that the Haughton-Mars Project helps answer long-standing questions, revisiting classical assumptions, and sometimes reshaping our thinking on many issues in planetary science and astrobiology, in particular in relation to Mars; (4) the search for microbial life in the arid soils of the Atacama desert and its robotic detection characterize what role aridity plays in the distribution of life and how to search for evidence of rare and scattered biosignatures.

Introduction

Because of its geology and climate evolution, Mars is likely to have developed a diversity of potential habitats for life over time. The main ingredients for habitability (i.e., water, energy, and nutrients) were present early, as demonstrated by the Spirit and Opportunity rovers at Gusev crater and Meridiani Planum (Knoll et al., 2005; Des Marais et al.,2005, 2008).

Type
Chapter
Information
Life in Antarctic Deserts and other Cold Dry Environments
Astrobiological Analogs
, pp. 258 - 305
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M., Brenner, M. W., and Kelts, K. R. (1997). A 3500 14C yr high-resolution record of water-level changes in Lake Titicaca, Bolivia/Peru. Quaternary Research, 47, 169–180.CrossRefGoogle Scholar
Acs, E., Cabrol, N. A., Grigorszky, I., et al. (2003). Similarities and dissimilarities in biodiversity of three high-altitude mountain lakes (Andes, Bolivia). In 6th Hungarian Ecological Congress, ed. , M.Dombos, and Lakner, G.. Godollo, Hungary: St. Stephan University, Publishers, 305 pp.Google Scholar
Amils, R., González-Toril, E., Fernández-Remolar, D., et al. (2007). Extreme environments as Mars terrestrial analogs: the Río Tinto case. Planetary and Space Science, 55, 370–381.CrossRefGoogle Scholar
Amundsen, H., Steele, A., Fogel, M., et al. (2004). Life in a Mars analogue: microbial activity associated with carbonate cemented lava breccia from NW Spitsbergen. Geochimica et Cosmochimica Acta, 68(11, Suppl. 1), A804.Google Scholar
Andersen, D. (2004). Perennial springs in the Canadian High Arctic: analogues of hydrothermal systems on Mars. Ph.D. thesis. McGill University, Montreal, Canada.Google Scholar
Andersen, D. T., Pollard, W. H., McKay, C. P., and Heldmann, J. (2002). Cold springs in permafrost on Earth and Mars. Journal of Geophysical Research, 107, 1–7.CrossRefGoogle Scholar
Apostolopoulos, D., Pedersen, L., Shamah, B., et al. (2001). Robotic Antarctic meteorite search: outcome, In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Seoul, Korea, pp. 4174–4179.Google Scholar
Arvidson, R. E., Anderson, R. C., Barlett, P., et al. (2004). Localization and physical properties experiments conducted by Spirit at Gusev crater. Science, 305, 821–824.CrossRefGoogle ScholarPubMed
Atreya, S. K., Mahaffy, P. R., and Wong, A. S. (2007). Methane and related trace species on Mars: origin, loss, implications for life and habitability. Planetary and Space Science, 55, 358–369.CrossRefGoogle Scholar
Bagaley, D. R. (2006). Uncovering bacterial diversity on and below the surface of a hyper-arid environment, the Atacama Desert, Chile. M. S. thesis, Louisiana State University, Baton Rouge, LA.Google Scholar
Baker, V. R. (2005). Picturing a recently active planet. Nature, 434, 280–283.CrossRefGoogle Scholar
Banks, D., Siewers, U., Sletten, R. S., et al. (1999). The thermal springs of Bockfjorden, Svalbard. II. Selected aspects of trace element hydrochemistry. Geothermics, 28(6), 713–728.CrossRefGoogle Scholar
Baucom, P. C. and Rigsby, C. A. (1999). Climate and lake-level history of the northern Altiplano, Bolivia, as recorded in Holocene sediments of the Rio Desaguadero. Journal of Sedimentary Research, 69(3), 597–611.CrossRefGoogle Scholar
Berger, I. A. and Cooke, R. U. (1997). The origin and distribution of salts on alluvial fans in the Atacama Desert, northern Chile. Earth Surface Processes and Landforms, 22, 581–600.3.0.CO;2-4>CrossRefGoogle Scholar
Beschel, R. E. (1963). Sulfur springs at Gypsum Hill. In Jacobsen-McGill Arctic Research Expedition, 1959–1962. Preliminary Report 1961–1962, ed. Muller, F.. Montreal, Canada: McGill University, pp. 183–187.Google Scholar
Bibring, J. P., Langevin, Y., Gendrin, A., et al. (2005). Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science, 307(5715), 1576–1581.CrossRefGoogle ScholarPubMed
Böhlke, J. K., Ericksen, G. E., and Revesz, K. (1997). Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, USA. Chemical Geology, 136, 135–152.CrossRefGoogle Scholar
Bonaccorsi, R. and Stoker, C. (2008). Science results from a Mars drilling simulation (Río Tinto, Spain), and ground truth for remote science observations. Astrobiology, 8(5), 967–985.CrossRefGoogle Scholar
Boynton, W. V., Feldman, W. C., Squyres, S. W., et al. (2002). Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science, 297(5578), 81–85.CrossRefGoogle ScholarPubMed
Bullock, M. A., Stoker, C. R., McKay, C. P., and Zent, A. P. (1994). A coupled soil atmosphere model of H2O2 on Mars. Icarus, 107(1), 142–154.CrossRefGoogle ScholarPubMed
Bunch, P. E. and Cassidy, W. (1972). Petrographic and electron microprobe study of the Monturaqui impactite. Contributions to Mineralogy and Petrology, 36, 95–112.CrossRefGoogle Scholar
Burns, R. G. and Fisher, D. S. (1990). Iron-sulfur mineralogy on Mars: magmatic evolution and chemical weathering products. Journal of Geophysical Research, 95, 14 415–14 421.CrossRefGoogle Scholar
Burns, R. G. and Fisher, D. S. (1993). Rates of oxidative weathering on the surface of Mars. Journal of Geophysical Research, 98(E2), 3365–3372.CrossRefGoogle Scholar
Burt, D. M., Wohletz, K. H., and Knauth, L. P. (2006). Mars and mine dumps. Eos Transactions, AGU, 87(49), 549, doi: 10.1029/2006EO490003.CrossRefGoogle Scholar
Cabrol, N. A. (2006). Habitability and life survival potential on early Mars: clues from the red and the blue planets. Astrobiology Science Conference, Abstract 16.
Cabrol, N. A. and Grin, E. A. (2001). The evolution of lacustrine environments on Mars: is Mars only hydrologically dormant?Icarus, 149, 291–328.CrossRefGoogle Scholar
Cabrol, N. A. and Grin, E. A. (2004). Ancient and recent lakes on Mars. In Water and Life on Mars, ed. Tokano, T.. Berlin: Springer-Verlag, Chapter 10, pp. 181–205.Google Scholar
Cabrol, N. A., Bettis, III, E. A., Glenister, B., et al. (2001a). Nomad Rover field experiment, Atacama Desert (Chile). II. Identification of paleolife evidence using a robotic vehicle: lessons and recommendations for a Mars sample return mission. Journal of Geophysical Research, 106(E4), 7639–7663.CrossRefGoogle Scholar
Cabrol, N. A., Wynn-Williams, D. D., Crawford, D. A., and Grin, E. A. (2001b). Recent aqueous environments in impact crater lakes on Mars 2001: an astrobiological perspective. 2nd Mars Polar Conference Special Issue. Icarus, 154, 98–112.CrossRefGoogle Scholar
Cabrol, N. A., Hock, A. N., Grin, E. A., Kovacs, G. T., and Parazynski, S. (2005a). Can the combination of extremes protect life: clues from altiplanic lakes and implication for early Mars. American Geophysical Union Fall Meeting, Abstract 7353.
Cabrol, N. A., Hock, A. N., Grin, E. A., Kovacs, G. T., and Parazynski, S. (2005b).Combination of environmental extremes in altiplanic lakes and the past habitability of Mars. Salt Lake City Annual Meeting, 37(7), Abstract 90 041.Google Scholar
Cabrol, N. A., Hock, A. N., Sunagua, M., and Grin, E. A. (2006). Evolution of aqueous habitat and life in high-altitude lakes during rapid climate change: astrobiological methods and geo and biosignatures. Lunar and Planetary Science Conference, 37, Abstract 1016.Google Scholar
Cabrol, N. A., Grin, E. A., Kiss, K. T., et al. (2007a). Signatures of habitats and life in Earth's high-altitude lakes: clues to Noachian aqueous environments on Mars. In Geology of Mars, ed. Chapman, M.. Cambridge, UK: Cambridge University Press, Chapter 14, pp. 349–370.CrossRefGoogle Scholar
Cabrol, N. A., Minkley, Jr., E. G., Youngeob, Y., et al. (2007b). Unraveling life's diversity in Earth's highest volcanic lake. Paper presented at 2007 Bioastronomy Conference, Puerto Rico.Google Scholar
Cabrol, N. A., Minkley, Jr., E. G., Youngeob, Y., et al. (2007c). 2006 HLP diving expedition in the highest volcanic lake on earth and characterization of its ecosystem. Paper presented at SPIE Astrobiology Conference, San Diego, CA.Google Scholar
Cabrol, N. A., Wettergreen, D. S., Warren-Rhodes, K., et al. (2007d). Life in the Atacama: searching for life with rovers (science overview). Journal of Geophysical Research, Biogeosciences, 112, G04S02.Google Scholar
Caceres, L., Gómez-Silva., B., Garró, X., et al. (2007). Relative humidity patterns and fog water precipitation in the Atacama Desert and biological implications. Journal of Geophysical Research, Biogeosciences, 112, GO4S14.Google Scholar
Calderón, F., Lüders, A., Wettergreen, D., Teza, J., and Guesalaga, A. (2007). Analysis of high-efficiency solar cells in mobile robot applications. Journal of Solar Energy Engineering, 129(3), 343–346.CrossRefGoogle Scholar
Carr, M. H. (1996). Water on Mars. New York: Oxford University Press.Google Scholar
Christensen, P. R., Bandfield, J. L., Bell, III, J. F., et al. (2003). Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science, 300, 2056–2061.CrossRefGoogle ScholarPubMed
Clark, B. C., Baird, A. K., Weldon, R. J., et al. (1982). Chemical composition of Martian fines. Journal of Geophysical Research, 87(B12), 10 059–10 067.CrossRefGoogle Scholar
Clifford, S. M. (2003). Mars H2O: limits of theoretical modeling and geomorphic interpretation in assessing the present distribution of subsurface H2O on Mars. Lunar and Planetary Science Conference, 34, Abstract 2118.Google Scholar
Clifford, S. M. and Parker, T. J. (2001). The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus, 154, 40–79.CrossRefGoogle Scholar
Cockell, C. S. and Lee, P. (2002). The biology of terrestrial impact craters: a review. Biological Reviews, 77, 279–310.CrossRefGoogle ScholarPubMed
Cockell, C. S. and Raven, J. A. (2004). Zones of photosynthetic potential on Mars and the early Earth. Icarus, 169(2), 300–310.CrossRefGoogle Scholar
Cockell, C. S., Lee, P., Broady, P., et al. (2005). Effects of asteroid and comet impacts on lithophytic habitats: a synthesis. Meteoritics and Planetary Science, 40, 1901–1914.CrossRefGoogle Scholar
Conley, C. A., Ishkhanova, G., McKay, C. P., and Cullings, K. (2006). A preliminary survey of non-lichenized fungi cultured from the hyperarid Atacama Desert of Chile. Astrobiology, 6(4), 521–526.CrossRefGoogle ScholarPubMed
Da Silva, F. and Francis, J. (1991). Volcanoes of the Central Andes. Berlin: Springer-Verlag.Google Scholar
Hon, R. A. (1991). Classification of Martian lacustrine basins. Lunar and Planetary Science Conference, 22, 293–294.Google Scholar
Hon, R. A. (1992). Martian lake basins and lacustrine plains, Earth Moon and Planets, 56(2), 95–122.CrossRefGoogle Scholar
Hon, R. A. (2001). Sedimentary provinces of Mars. Lunar and Planetary Science Conference, 32, Abstract 1361.Google Scholar
Des Marais, D. J. and Farmer, J. D. (1995). The search for extinct life. In An Exobiological Strategy for Mars Exploration, ed. Meyer, M. and Kerridge, J.. NASA Special Publication 530. New York: NASA, pp. 21–25.Google Scholar
Des Marais, D. J., Clark, B. C.Crumpler, L. S., et al. (2005). Astrobiology and the basaltic plains in Gusev crater. Lunar and Planetary Science Conference, 36, Abstract 2353.Google Scholar
Des Marais, D. J. and ,the Athena Science team (2008). MER Spirit assessed potential ancient habitable environments in Gusev crater, Mars (Abstract). Astrobiology Science Conference, April 14–17, 2008, Santa Clara, CA. Astrobiology, 8(2), 433.Google Scholar
Drees, K. P., Neilson, J. W., Betancourt, J. L., et al. (2006). Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Applied and Environmental Microbiology, 72, 7902–7908.CrossRefGoogle ScholarPubMed
Edgett, K. S, Malin, M. C., Williams, R. M. E., and Davis, S. D. (2003). Polar and middle-latitude martian gullies: a view from MGS MOC after two Mars years in the mapping orbit. Lunar and Planetary Science Conference, 34, Abstract 1038.Google Scholar
Ericksen, G. E. (1983). The Chilean nitrate deposits. American Science, 71, 366–375.Google Scholar
Farmer, J. D. and Des Marais, D. J. (1999). Exploring for a record of ancient martian life. Journal of Geophysical Research, 104(E11), 26 977–26 995.CrossRefGoogle ScholarPubMed
Fernández-Remolar, D. C., Prieto-Ballesteros, O., Rodríguez, N., et al. (2005). Río Tinto faulted volcanosedimentary deposits as analog habitats for extant subsurface biospheres on Mars: a synthesis of the MARTE drilling geobiology results. Lunar and Planetary Science Conference, 36, Abstract 1360.Google Scholar
Fernández-Remolar, D. C., Prieto-Ballesteros, O., Rodríguez, N., et al. (2008). Underground habitats found in the Río Tinto Basin: a model for subsurface life habitats on Mars. MARTE Project special issue. Astrobiology, 8(5), 1023–1047.CrossRefGoogle Scholar
Fike, D., Cabrol, N. A., Grin, E. A., et al. (2003). Exploring the limits of life: microbiology and organic geochemistry of the world's highest lake atop the Licancabur volcano (6000 m) and adjacent high altitude lakes. EGS–AGU–EUG Joint Assembly, Nice, France, Abstract 13 201.Google Scholar
Fleming, E. D. and Prufert-Bebout, L. (2009). Characterization of cyanobacteria from a natural high ultraviolet radiation environment in Laguna Blanca, Bolivia. High Lakes Project Special Issue. Journal of Geophysical Research, Biogeosciences, in press.
Formisano, V., Encrenaz, T., Ignatiev, N., and Giuranna, M. (2004). Detection of methane in the atmosphere of Mars. Science, 306, 1758–1761.CrossRefGoogle ScholarPubMed
Golombek, M., Crumpler, L. S., Grant, J. A., et al. (2006). Geology of the Gusev cratered plains from the Spirit rover traverse. Journal of Geophysical Research, 111, doi: 10.1029/2005JE002503.CrossRefGoogle Scholar
González-Toril, E. F., Llobeet-Brossna, E., Casamayor, E. O., Amann, R., and Amils, R. (2003). Microbial ecology of an extreme acidic environment, the Tinto River. Applied and Environmental Microbiology, 69, 4853–4865.CrossRefGoogle ScholarPubMed
Grasby, S. E. (2003). Naturally precipitating vaterite (m-CaCO3) spheres: unusual carbonates in an extreme environment. Geochimica et Cosmochimica Acta, 67, 1659–1666.CrossRefGoogle Scholar
Grasby, S. E, Allen, C. C., Longazo, T. G., et al. (2002). Supraglacial sulfur springs and associated biological activity in the Canadian High Arctic: signs of life beneath the ice. Astrobiology, 3(3), 583–596.CrossRefGoogle Scholar
Grieve, R. A. F. (1988). The Haughton impact structure: summary and synthesis of the results of the HISS project. Meteoritics, 23, 249–254.CrossRefGoogle Scholar
Grosjean, M. (2001). Mid-Holocene climate in the south-central Andes: humid or dry?Science, 292, 2391–2392.CrossRefGoogle ScholarPubMed
Hamon, W. R. (1961). Estimating potential evapotranspiration. In Proceedings of the American Society of Civil Engineering, Journal of Hydology Division, 87(HY3), 107–120.Google Scholar
Hartley, A. J. and Chong, G. (2002). Late Pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology, 30, 43–46.2.0.CO;2>CrossRefGoogle Scholar
Hartley, A. J., Chong, G., Houston, J., and Mather, A. (2005). 150 million years of climatic stability: evidence from the Atacama Desert, northern Chile. Journal of Geological Society, 162, 421–424.CrossRefGoogle Scholar
Hartmann, W. K., Malin, M., McEwen, A., et al. (1999). Evidence for recent volcanism on Mars from crater counts. Nature, 397, 586–589.CrossRefGoogle Scholar
Haynes, Jr., C. V. (2001). Geochronology and climate change of the Pleistocene–Holocene transition in the Darb el Arba'in Desert, Eastern Sahara. Geoarchaeology, 16, 119–141.3.0.CO;2-V>CrossRefGoogle Scholar
Heldmann, J. L. and Mellon, M. T. (2004). Observations of Martian gullies and constraints on potential formation mechanisms. Icarus, 168, 285–304.CrossRefGoogle Scholar
Heldmann, J. L., Pollard, W. H., McKay, C. P., Andersen, D. T., and Toon, O. B. (2005a). Annual development cycle of an icing deposit and associated perennial spring activity on Axel Heiberg Island, Canadian High Arctic. Arctic Antarctic and Alpine Research, 37(1), 127–135.CrossRefGoogle Scholar
Heldmann, J. L., Toon, O. B., Pollard, W. H., et al. (2005b). Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions. Journal of Geophysical Research, 110, E05004, doi: 10.1029/2004JE002261.CrossRefGoogle Scholar
Herman, J. R., Bhartia, P. K., Ziemke, J., Ahmad, Z., and Larko, D. (1996). UV-B increases (1979–1992) from decreases in total ozone. Geophysical Research, Letters, 23, 2117–2120.Google Scholar
Hickey, L. J., Johnson, K. R., and Dawson, M. R. (1988). The stratigraphy, sedimentology, and fossils of the Haughton formation: a post-impact crater-fill, Devon Island, Canada. Meteoritics, 23, 221–231.CrossRefGoogle Scholar
Hock, A. N., Cabrol, N. A., Grin, E. A., Fike, D. A., and Paige, D. A. (2003). 2002 Licancabur Expedition Team: hydrothermal circulation at the world's highest lake? An environmental study of the Licancabur Volcano crater lake as a terrestrial analog to martian paleolakes. Geophysical Research, Abstracts, 5(13 586).
Hock, A. N., Cabrol, N. A., Grin, E. A., and Rothschild, L. (2005a). Ultraviolet radiation and life at high-altitude: Licancabur 2004. NASA Astrobiology Institute 2005 Biennial Meeting, University of Colorado, Boulder, Abstract 1043.Google Scholar
Hock, A. N., Cabrol, N. A., Grin, E. A., et al. (2005b). Mars-relevant conditions at the lakes of Licancabur volcano, Bolivia. 2005 American Geophysical Union Fall Meeting, San Francisco, Abstract P41D-06.Google Scholar
Houston, J. and Hartley, A. J. (2003). The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. International Journal of Climatology, 23, 1453–1464.CrossRefGoogle Scholar
Hustedt, F. (1927). Die Diatomeen der interstadialen Seekreide. International Review of Hydrobiology, 18, 317–320.Google Scholar
Hynek, B. M. (2004). Implications for hydrologic processes on Mars from extensive bedrock outcrops throughout Terra Meridiani. Nature, 431, 156–159.CrossRefGoogle ScholarPubMed
Kiss, K. T., Acs, E., Boris, G., et al. (2004). Habitats extrêmes pour les communautés de diatomées dans les lacs de haute altitude (Laguna Blanca et lac de cratère du volcan Licancabur, Bolivie). 23ème Colloque de l'Association des Diatomistes de Langue Française, Orléans, France, p. 55.Google Scholar
Klein, H. P. (1978). The Viking biological experiments on Mars. Icarus, 34, 666–674.CrossRefGoogle Scholar
Klein, H. P. (1979). The Viking Mission and the search for life on Mars. Review of Geophysics and Space Physics, 17, 1655–1662.CrossRefGoogle Scholar
Klingelhofer, G., Morris, R. V., Berhhardt, B., et al. (2004). Jarosite and hematite at Meridiani Planum from Opportunity's Mossbauer spectrometer. Science, 306, 1741–1745.CrossRefGoogle ScholarPubMed
Knoll, A. H., Carr, M., Clark, B., et al. (2005). An astrobiological perspective on Meridiani Planum. Earth and Planetary Science Letters, 240, 179–189.CrossRefGoogle Scholar
Krasnopolsky, V. A., Bjoraker, G. L., Mumma, M. J., and Jennings, D. E. (1997). High resolution spectroscopy of Mars at 3.7 and 8 mm: a sensitive search for H2O2, H2CO, HCl and CH4 and detection of HDO. Journal of Geophysical Research, 102(E3), 6525–6534.CrossRefGoogle Scholar
Krasnopolsky, V. A., Maillard, J. P., and Owen, T. C. (2004). Detection of methane in the Martian atmosphere: evidence for life?Icarus, 172, 537–547.CrossRefGoogle Scholar
Lauritzen, S. E. and Bottrell, S. (1994). Microbiological activity in thermoglacial karst springs, south Spitsbergen. Geomicrobiology Journal, 12, 161–173.CrossRefGoogle Scholar
Lee, P. (1997). A unique Mars/Early Mars analog on Earth: the Haughton impact structure, Devon Island, Canadian Arctic. In Conference on Early Mars: Geologic and Hydrologic Evolution, Physical and Chemical Environments, and the Implications for Life. Lunar and Planetary Institute Contribution, 916, p. 50.Google Scholar
Lee, P. and McKay, C. P. (2003). Mars: always cold, sometimes wet?Lunar and Planetary Science Conference, 34, Abstract 2127.Google Scholar
Lee, P. and Osinski, G. R. (2005). Haughton-Mars Project: overview of science investigations at the Haughton impact structure, Devon Island, High Arctic. Meteoritics and Planetary Science, 40, 1755–1758.CrossRefGoogle Scholar
Lee, P., Bunch, T. E., Cabrol, N. A., et al. (1998). Haughton: Mars 97. I. Overview of observations at the Haughton impact crater, a unique Mars analog site in the Canadian High Arctic. Lunar and Planetary Science Conference, 38, Abstract 1973.Google Scholar
Lee, P., Rice, Jr., J., Bunch, T. E., et al. (1999). Possible analogs for small valleys on Mars at the Haughton impact crater site, Devon Island, Canadian High Arctic. Lunar and Planetary Science Conference, 30, Abstract 2033.Google Scholar
Lee, P., Cockell, C., Marinova, M., McKay, C., and Rice, Jr., J. W. (2001). Snow and ice melt slope flow features on Devon Island, Nunavut, Arctic Canada, as possible analogs for recent slope flow features on Mars. Lunar and Planetary Science Conference, 32, Abstract 1809.Google Scholar
Lee, P., McKay, C., and Matthews, J. (2002). Gullies on Mars: clues to their formation timescale from possible analogs from Devon Island, Nunavut, Arctic Canada. Lunar and Planetary Science Conference, 33, Abstract 2050.Google Scholar
Lee, P., Cockell, C., and McKay, C. (2004). Gullies on Mars: origin by snow and ice melting and potential for life based on possible analogs from Devon Island, High Arctic. Lunar and Planetary Science Conference, 35, Abstract 2122.Google Scholar
Lee, P., Boucher, M., Desportes, C., et al. (2005). Mars, always cold, sometimes wet: new constraints on Mars denudation rates and climate evolution from analog studies at Haughton Crater, Devon Island, High Arctic. Lunar and Planetary Science Conference, 36, Abstract 2270.Google Scholar
Lee, P., Gass, B. J., Osinski, G. O., et al. (2006). Gullies on Mars: fresh gullies in dirty snow, Devon Island, High-Arctic, as end-member analog. Lunar and Planetary Science Conference, 37, Abstract 1818.Google Scholar
Leistel, J. M., Marcoux, E., and Duchamps, Y. (1998). The volcano-hosted massive sulphide deposits of the Iberian Pyrite Belt: review and preface to the thematic issue. Mineralium Deposita, 33, 82–97.CrossRefGoogle Scholar
Lester, E. D., Satomi, M., and Ponce, A. (2007). Microflora of extreme arid Atacama Desert soils. Soil Biology and Biochemistry, 39, 704–708.CrossRefGoogle Scholar
López-Archilla, A. I., Marín, I., Gonzáles, A., and Amils, R. (2001). Microbial community composition and ecology of an acidic aquatic environment. Microbial Ecology 41, 20–35.Google ScholarPubMed
Lyons, J. R., Manning, C., and Nimmo, F. (2005). Formation of methane on Mars by fluid-rock interaction in the crust. Geophysical Research, Letters, 32, L13201.CrossRefGoogle Scholar
Maier, R. M. (2000). Biogeochemical cycling. In Environmental Microbiology, ed. , R. M.Maier, , Pepper, I. L., and Gerba, C. P.. San Diego, CA: Academic Press, Chapter 14.Google Scholar
Malin, M. C. and Edgett, K. S. (2000). Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288(5475), 2330–2335.CrossRefGoogle ScholarPubMed
Malin, M. C. and Edgett, K. S. (2003). Evidence for persistent flow and aqueous sedimentation on early Mars. Science, 302(5652), 1931–1934.CrossRefGoogle ScholarPubMed
Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., and Noe Dobrea, E. Z. (2006). Present-day impact cratering impact and contemporary gully activity on Mars. Science, 314(5805), 1573–1577.CrossRefGoogle ScholarPubMed
Max, M. D. and Clifford, S. M. (2000). The state of potential distribution and biological implications of methane in the martian crust. Journal of Geophysical Research, 105, 4165–4171.CrossRefGoogle Scholar
McKay, C. P., Clow, S. S., Wharton, Jr., R. A., and Squyres, S. W. (1985). Thickness of ice on perenially frozen lakes. Nature, 313, 561–562.CrossRefGoogle Scholar
McKay, C. P., Friedman, E. I., Gómez-Silva, B., et al. (2003). Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observation including the El Niño of 1997–1998. Astrobiology, 3(2), 393–406.CrossRefGoogle ScholarPubMed
Mellon, M. T. and Jakosky, B. M. (1995). The distribution and behavior of martian ground ice during past and present epochs. Journal of Geophysical Research, 100, 11 781–11 799.CrossRefGoogle Scholar
Messerli, B., Grosjean, M., Bonani, G., et al. (1993). Climate change and dynamics of natural resources in the Altiplano of northern Chile during late glacial and Holocene time: first synthesis. Mountain Research and Development, 13(2), 117–127.CrossRefGoogle Scholar
Michalski, G., Savarino, J., Böhlke, J. K., and Thiemens, M. (2002). Determination of the total oxygen isotopic composition of nitrate and the calibration of delta 17O nitrate reference material. Analytical Chemistry, 74, 4989–4993.CrossRefGoogle ScholarPubMed
Michalski, G., Böhlke, J. K., and Thiemens, M. (2004). Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass independent oxygen isotopic compositions. Geochimica et Cosmochimica Acta, 68, 4023–4028.CrossRefGoogle Scholar
Moore, J. M., Janke, D. R., Clow, G. D., et al. (1995). The circum-Chryse region as a possible example of a hydrologic cycle on Mars: geologic evidence and theoretical evaluation. Journal of Geophysical Research, 100, 5433–5448.CrossRefGoogle Scholar
Morris, R. L., Berthold, R., and Cabrol, N. (2007). Diving at extreme altitude: dive planning and execution during the 2006 High-Lakes science expedition. In Diving for Science: Proceedings of 26th AAUS Scientific Symposium, ed. Pollock, N. W. and Godfrey, J. M.. Dauphin Island, AL: American Academy of Underwater Sciences.Google Scholar
Mumma, M. J., Novak, R. E., Hewagama, T., et al. (2005). Absolute abundances of methane and water on Mars: spatial maps. Bulletin of the American Astronomical Society, 37, 669–670.Google Scholar
Murray, J. B., Muller, J.-P., Neukum, G., et al. (2005). Evidence from the Mars Express high resolution stereo camera for a frozen sea close to Mars' equator. Nature, 434, 352–356.CrossRefGoogle ScholarPubMed
Navarro-Gonzalez, R., Rainey, F. A., Molina, P., et al. (2003). Mars-like soils in the Atacama Desert, Chile and the dry limit of microbial life. Science, 302, 1018–1021.CrossRefGoogle ScholarPubMed
Navarro-Gonzalez, R., Navarro, K. F., Rosa, J., et al. (2006). The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Proceedings of the National Academy of Sciences of the USA, 103, 16 089–16 094.CrossRefGoogle ScholarPubMed
Omelon, C. R., Pollard, W. H., and Marion, G. M. (2001). Seasonal formation of ikaite (CaCO3·6H2O) in saline spring discharge at Expedition Fiord, Canadian High Arctic: assessing conditional constraints for natural crystal growth. Geochimica et Cosmochimica Acta, 65, 1429–1437.CrossRefGoogle Scholar
Omelon, C. R., Pollard, W. H., and Andersen, D. T. (2006). A geochemical evaluation of perennial spring activity and associated mineral precipitates at Expedition Fjord, Axel Heiberg Island, Canadian High Arctic. Applied Geochemistry, 21, 1–15.CrossRefGoogle Scholar
Osinski, G. R. and Lee, P. (2005). Intra-crater sedimentary deposits at the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics and Planetary Science, 40, 1887–1899.CrossRefGoogle Scholar
Osinski, G. R., Spray, J. G., and Lee, P. (2001). Impact-induced hydrothermal activity within the Haughton impact structure, Arctic Canada; generation of a transient, warm, wet oasis. Meteoritics and Planetary Science, 36, 731–745.CrossRefGoogle Scholar
Osinski, G. R., Lee, P., Parnell, J., Spray, J. G., and Baron, M. (2005a). A case study of impact-induced hydrothermal activity: the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics and Planetary Science, 40, 1859–1877.CrossRefGoogle Scholar
Osinski, G. R., Lee, P., Spray, J. G., et al. (2005b). Geological overview and cratering model of the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics and Planetary Science, 40, 1759–1776.CrossRefGoogle Scholar
Osinski, G. R., Spray, J. G., and Lee, P. (2005c). Impactites of the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics and Planetary Science, 40, 1789–1812.CrossRefGoogle Scholar
Oze, C. and Sharma, M. (2005). Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophysical Research Letters, 32, L10203.CrossRefGoogle Scholar
Parnell, J., Bowden, S., Lee, P., Osinski, G. R., and Cockell, C. S. (2005). Application of organic geochemistry to detect signatures of organic matter in the Haughton impact structure. Meteoritics and Planetary Science, 40, 1879–1885.CrossRefGoogle Scholar
Parro, V., Fernández-Calvo, P., Rodríguez Manfredi, J. A., et al. (2008). SOLID2: an antibody array-based life detector instrument in a Mars drilling simulation Experiment (MARTE). Astrobiology, 8(5), 987–999.CrossRefGoogle Scholar
Pellenbarg, R. E., Max, M. D., and Clifford, S. M. (2003). Methane and carbon dioxide hydrates on Mars: potential origins, distribution, detection, and implications for future in situ resource utilization. Journal of Geophysical Research, Planets, 108(E4), 231–235.Google Scholar
Perreault, N., Andersen, D. T., Pollard, W. H., Greer, C. W., and Whyte, L. G. (2007). Culture independent analyses of microbial biodiversity in cold saline perennial springs in the Canadian High Arctic. Applied and Environmental Microbiology, 73(5), 1532–1543.CrossRefGoogle Scholar
Pollard, W., Omelon, C., Andersen, D., and McKay, C. (1999). Perennial spring occurrence in the Expedition Fiord area of western Axel Heiberg Island, Canadian High Arctic. Canadian Journal of Earth Science, 36, 105–120.CrossRefGoogle Scholar
Quinn, R. C., Zent, A. P., Grunthaner, F. J., et al. (2005). Detection and characterization of oxidizing acids in the Atacama Desert using the Mars Oxidation Instrument. Planetary and Space Science, 53, 1376–1388.CrossRefGoogle Scholar
Rudolf, W. E. (1955). Licancabur: mountain of the Atacamenos. Geographical Review, 45, 151–171.CrossRefGoogle Scholar
Rundel, P. W., Dillon, M. O., Palma, B., et al. (1991). The phytogeography and ecology of the coastal Atacama and Peruvian deserts. Aliso, 13(1), 1–49.CrossRefGoogle Scholar
Servant Vilardy, S., Risacher, F., Roux, M., Landre, J., and Cornee, A. (2000). Les diatomées des milieux salés (Ouest Lipez, SW de l'Altiplano bolivien). www.mnhn.fr/mnhn/geo/diatoms/.
Sharp, R. P. and Malin, M. C. (1975). Channels on Mars. Geological Society of America Bulletin, 86(5), 593–609.2.0.CO;2>CrossRefGoogle Scholar
Sherlock, S., Kelley, S., Parnell, J., et al. (2005). Re-evaluating the age of the Haughton impact event. Meteoritics and Planetary Science, 40, 1777–1787.CrossRefGoogle Scholar
Skelley, A. M., Scherer, J. R., Aubrey, A. D., et al. (2005). Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. Proceedings of the National Academy of Sciences of the USA, 102, 1041–1046.CrossRefGoogle ScholarPubMed
Smith, T., Niekum, S., Thompson, D., and Wettergreen, D. (2005). Concepts for science autonomy during robotic traverse and survey. Paper presented at IEEE Aerospace Conference, Big Sky, MT. Washington, D.C.: IEEE.Google Scholar
Squyres, S. W. and Carr, M. H. (1986). Geomorphic evidence for the distribution of ground ice on Mars. Science, 231, 249–252.CrossRefGoogle ScholarPubMed
Squyres, S. W., Arvidson, R. E., Bell, III, J. F., et al. (2004). The Opportunity rover's Athena science investigation at Meridiani Planum, Mars. Science, 306, 1698–1703.CrossRefGoogle ScholarPubMed
Steele, A., Schweizer, M., Amundsen, H. E. F., and Wainwright, N. (2004). In-field testing of life detection instruments and protocols in a Mars analogue arctic environment. International Journal of Astrobiology, Supplement, 1, 24.Google Scholar
Stoker, C., Mandell, L., McKay, C., et al. (2003). Mars Analog Research and Technology Experiment (MARTE): a simulated Mars drilling mission to search for subsurface life at the Rio Tinto, Spain. Lunar and Planetary Science Conference, 34, Abstract 1076.Google Scholar
Stoker, C. R., Dunagan, S., Stevens, T., et al. (2004). Mars Analog Río Tinto Experiment (MARTE): 2003 drilling campaign to search for a subsurface biosphere at Río Tinto, Spain. Lunar and Planetary Science Conference, 35, Abstract 2025.Google Scholar
Stoker, C. R., Stevens, T., Amils, R., et al. (2005). Characterization of a subsurface biosphere in a massive sulfide deposit at Río Tinto, Spain: implications for extant life on Mars. Lunar and Planetary Science Conference, 36, Abstract 1534.Google Scholar
Summers, M. E., Lieb, B. J., Chapman, E., and Yung, Y. L. (2002). Atmospheric biomarkers of subsurface life on Mars. Geophysical Research, Letters, 29(24), 2171, doi: 10.1029/2002GL015377.CrossRefGoogle Scholar
Sylvestre, F., Servant, M., Servant-Vildary, S., Causse, C., and Fournier, C. (1999). Lake-level chronology on the southern Bolivian Altiplano (18 degrees – 23 degrees S) during late-glacial time and the early Holocene. Quaternary Research, 51, 54–66.CrossRefGoogle Scholar
Thompson, D. R., Smith, T., and Wettergreen, D. (2005). Autonomous detection of novel biologic and geologic features in Atacama Desert rover imagery. Lunar and Planetary Science Conference, 37, Abstract 2085.Google Scholar
Vinebrook, R. R. and Leavitt, P. R. (1996). Effects of ultraviolet radiation on periphyton in an alpine lake. Limnology and Oceanography, 41(5), 1035–1040.CrossRefGoogle Scholar
Vuille, M., Bradley, R. S., Werner, M., and Keimig, F. (2003). 20th century climate change in the tropical Andes: observations and model results. Palaeogeography Palaeoclimatology Palaeoecology, 194, 123–138.Google Scholar
Warren-Rhodes, K. A., Rhodes, K. L., Pointing, S. B., et al. (2006). Hypolithic cyanobacteria, dry limit of photosynthesis and microbial ecology in the hyper-arid Atacama Desert. Microbial Ecology, 52(3), 389–398.CrossRefGoogle Scholar
Warren-Rhodes, K. A., Weinstein, S., Dohm, J., et al. (2007). Robotic ecological mapping: habitats and the search for life on Mars in the Atacama desert. Journal of Geophysical Research, Biogeosciences, 112, G04S02.Google Scholar
Wettergreen, D., Bapna, D., Maimone, M., and Thomas, G. (1999). Developing Nomad for robotic exploration of the Atacama Desert. Robotics and Autonomous Systems Journal, 26(2–3), 127–148.CrossRefGoogle Scholar
Wettergreen, D. S., Cabrol, N. A., Baskaran, V., et al. (2005a). Second experiment in the robotic investigation of life in the Atacama Desert of Chile. Paper presented at International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Munich, Germany.Google Scholar
Wettergreen, D., Cabrol, N., Teza, J., et al. (2005b). First experiments in the robotic investigation of life in the Atacama Desert of Chile. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Washington, D.C.: IEEE, pp. 873–878.CrossRefGoogle Scholar
Wettergreen, D., Tompkins, P., Urmson, C., Wagner, M. D., and Whittaker, W. L. (2005c). Sun-synchronous robotic exploration: technical description and field experimentation. Journal of Robotics Research, 24(1), 3–30.CrossRefGoogle Scholar
Wierzchos, J., Ascaso, C., and McKay, C. P. (2006). Endolithic cyanobacteria in halite rocks from the hyper-arid core of the Atacama Desert. Astrobiology, 6(3), 1.CrossRefGoogle Scholar
Williamson, G., Grad, H., Lange, J., and Gilroy, S. (2002). Temperature-dependent ultraviolet responses in zooplankton: implications of climate change. Limnology and Oceanography, 47(6), 1844–1848.CrossRefGoogle Scholar
Wirrmann, D. and Mourguiart, P. (1995). Late Quaternary spatio-temporal limnological variations in the Altiplano of Bolivia. Quaternary Research, 43, 344–354.CrossRefGoogle Scholar
Wood, L. J. (2005). Geomorphology of the Mars northeast Holden delta. Search and Discovery Article, 110 027.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×