Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T19:27:35.499Z Has data issue: false hasContentIssue false

10 - The Neurobiology of Language Aptitude, Musicality and Working Memory

from Part III - Innovative Perspectives and Paradigms

Published online by Cambridge University Press:  27 May 2023

Zhisheng (Edward) Wen
Affiliation:
Hong Kong Shue Yan University
Peter Skehan
Affiliation:
Institute of Education, University of London
Richard L. Sparks
Affiliation:
Mount St Joseph University
Get access

Summary

In this chapter, we aim to provide a solid review of studies on the neurobiology of language aptitude and the role of two other important variables, namely musicality and working memory. We stress the importance of taking findings from the cognitive neurosciences into consideration and extend current models on language aptitude by taking neurocognitive perspectives into account. We highlight the importance of stable anatomical and functional markers for individual differences in language learning and aptitude and suggest more closely investigating the interdependency between musical abilities, musical training and language learning. While we argue that working memory is an essential prerequisite for language learning and is largely genetically driven, we propose to include musical abilities in a cognitive starter kit for language aptitude.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloway, T. P., & Alloway, R. G. (2013). Working memory across the lifespan: A cross-sectional approach. Journal of Cognitive Psychology, 25(1), 8493. https://doi.org/10.1080/20445911.2012.748027Google Scholar
Assaneo, M. F., & Poeppel, D. (2018). The coupling between auditory and motor cortices is rate-restricted: Evidence for an intrinsic speech-motor rhythm. Science Advances, 4(2), 110. https://doi.org/10.1126/sciadv.aao3842Google Scholar
Assaneo, M. F., Ripollés, P., Orpella, , et al. (2019). Spontaneous synchronization to speech reveals neural mechanisms facilitating language learning. Nature Neuroscience, 22(4), 627632. https://doi.org/10.1038/s41593-019-0353-zCrossRefGoogle ScholarPubMed
Baddeley, A. D., Gathercole, S., & Papagno, C. (1998). The phonological loop as a language learning device. Psychological Review, 105(1), 158173. https://doi.org/10.1037//0033-295x.105.1.158CrossRefGoogle ScholarPubMed
Baddeley, A. D., & Hitch, G. (1974). The social design of virtual worlds: constructing the user and community through code. Internet Research Annual: Selected Papers from the Association of Internet Researchers Conferences 2000–2002, vol 1, 260–268.Google Scholar
Baddeley, A. D., & Hitch, G. J. (2000). Development of working memory: Should the Pascual-Leone and the Baddeley and Hitch models be merged? Journal of Experimental Child Psychology, 77(2), 128137. https://doi.org/10.1006/jecp.2000.2592Google Scholar
Benner, J., Wengenroth, M., Reinhardt, J., et al. (2017). Prevalence and function of Heschl’s gyrus morphotypes in musicians. Brain Structure and Function, 222(8), 35873603. https://doi.org/10.1007/s00429-017-1419-xCrossRefGoogle ScholarPubMed
Besson, M., & Schön, D. (2001). Comparison Between Language and Music. Annals of the New York Academy of Sciences, 930, 232258. https://doi.org/10.1111/j.1749-6632.2001.tb05736.xGoogle Scholar
Besson, M., Schön, D., Moreno, S., Santos, A., & Magne, C. (2007). Influence of musical expertise and musical training on pitch processing in music and language. Restorative Neurology and Neuroscience, 25(3–4), 399410.Google Scholar
Bhatara, A., Yeung, H. H., & Nazzi, T. (2015). Foreign language learning in French speakers is associated with rhythm perception, but not with melody perception. Journal of Experimental Psychology: Human Perception and Performance, 41(2), 277282. https://doi.org/10.1037/a0038736Google Scholar
Biedroń, A. (2015). Neurology of foreign language aptitude. Studies in Second Language Learning and Teaching, 5(1), 1340. https://doi.org/10.14746/ssllt.2015.5.1.2Google Scholar
Bowles, A. R., Chang, C. B., & Karuzis, V. P. (2016). Pitch ability as an aptitude for tone learning. Language Learning, 66(4), 774808. https://doi.org/10.1111/lang.12159CrossRefGoogle Scholar
Brandt, A., Gebrian, M., & Slevc, L. R. (2012). Music and early language acquisition. Frontiers in Psychology, 3(SEP), 117. https://doi.org/10.3389/fpsyg.2012.00327Google Scholar
Burnham, D., Brooker, R., & Reid, A. (2015). The effects of absolute pitch ability and musical training on lexical tone perception. Psychology of Music, 43(6), 881897. https://doi.org/10.1177/0305735614546359CrossRefGoogle Scholar
Carroll, J. B., & Sapon, S. M. (1959). Modern language aptitude test. Psychological Corporation.Google Scholar
Chow, I., & Brown, S. (2018). A musical approach to speech melody. Frontiers in Psychology, 9(MAR), 117. https://doi.org/10.3389/fpsyg.2018.00247Google Scholar
Christiner, M., & Reiterer, S. M. (2013). Song and speech: Examining the link between singing talent and speech imitation ability. Frontiers in Psychology, 4(NOV), 111. https://doi.org/10.3389/fpsyg.2013.00874Google Scholar
Christiner, M., & Reiterer, S. M. (2015). A Mozart is not a Pavarotti: Singers outperform instrumentalists on foreign accent imitation. Frontiers in Human Neuroscience, 9(AUG), 18. https://doi.org/10.3389/fnhum.2015.00482Google Scholar
Delogu, F., Lampis, G., & Olivetti Belardinelli, M. (2006). Music-to-language transfer effect: May melodic ability improve learning of tonal languages by native nontonal speakers? Cognitive Processing, 7(3), 203207. https://doi.org/10.1007/s10339-006-0146-7CrossRefGoogle ScholarPubMed
Delogu, F., Lampis, G., & Olivetti Belardinelli, M. (2010). From melody to lexical tone: Musical ability enhances specific aspects of foreign language perception. European Journal of Cognitive Psychology, 22(1), 4661.Google Scholar
Dolman, M., & Spring, R. (2014). To what extent does musical aptitude influence foreign language pronunciation skills? A multi-factorial analysis of Japanese learners of English. World Journal of English Language, 4(4), 111. https://doi.org/10.5430/wjel.v4n4p1CrossRefGoogle Scholar
Ellis, N. C. (1996). Working memory in the acquisition of vocabulary and syntax: Putting language in good order. The Quarterly Journal of Experimental Psychology, 49(1), 403414. https://doi.org/10.1080/713755604CrossRefGoogle Scholar
Fonseca-Mora, C., Herrero Machancoses, F., Gryb, O., & Reiterer, S. M. (2020). Musical aptitude, working memory, general intelligence and plurilingualism: When adults learn to read fluently in a foreign language. Cogent Education, 8(1), 1936371. https://doi.org/10.1080/2331186X.2021.1936371Google Scholar
Gembris, H. (2013). Grundlagen musikalischer Begabung und Entwicklung. Wißner-Verlag.Google Scholar
Golestani, N., & Pallier, C. (2007). Anatomical correlates of foreign speech sound production. Cerebral Cortex, 17(4), 929934. https://doi.org/10.1093/cercor/bhl003CrossRefGoogle ScholarPubMed
Golestani, N., Paus, T., & Zatorre, R. J. (2002). Anatomical correlates of learning novel speech sounds. Neuron, 35(5), 9971010. https://doi.org/10.1016/S0896-6273(02)00862-0CrossRefGoogle ScholarPubMed
Golestani, N., Price, C. J., & Scott, S. K. (2011). Born with an ear for dialects? Structural plasticity in the expert phonetician brain. Journal of Neuroscience, 31(11), 42134220. https://doi.org/10.1523/JNEUROSCI.3891-10.2011Google Scholar
Gordon, E. E. (1989). Advanced Measures of Music Audiation. GIA Publications.Google Scholar
Gordon, E. E. (2001). Music Aptitude and Related Tests: An Introduction. GIA Publications.Google Scholar
Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4(4), 131138.Google Scholar
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 6799. https://doi.org/10.1016/j.cognition.2003.10.011Google Scholar
Homae, F., Watanabe, H., Nakano, T., Asakawa, K., & Taga, G. (2006). The right hemisphere of sleeping infant perceives sentential prosody. Neuroscience Research, 54(4), 276280. https://doi.org/10.1016/j.neures.2005.12.006Google Scholar
Honing, H., ten Cate, C., Peretz, I., & Trehub, S. E. (2015). Without it no music: Cognition, biology and evolution of musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664). https://doi.org/10.1098/rstb.2014.0088Google Scholar
Hu, X., Ackermann, H., Martin, , et al. (2013). Language aptitude for pronunciation in advanced second language (L2) learners: Behavioural predictors and neural substrates. Brain and Language, 127(3), 366376.Google Scholar
Hummel, K. M. (2009). Aptitude phonological memory and second language proficiency in nonnovice adult learners. Applied Pscyholinguistics, 30(2), 225249.Google Scholar
Jackendoff, R. (2007). A Parallel Architecture perspective on language processing. Brain Research, 1146(1), 222. https://doi.org/10.1016/j.brainres.2006.08.111Google Scholar
Jackendoff, R. (2009). Parallels and nonparallels between language and music review. Music Perception: An Interdisciplinary Journal, 26(3), 195204. https://doi.org/10.1525/mp.2009.26.3.195Google Scholar
Jackendoff, R. (2010). Meaning and the Lexicon: The Parallel Architecture 1975–2010. Oxford University Press.Google Scholar
Jacquemot, C., & Scott, S. K. (2006). What is the relationship between phonological short-term memory and speech processing? Trends in Cognitive Sciences, 10(11), 480486. https://doi.org/10.1016/j.tics.2006.09.002Google Scholar
Jessner, U. (1999). Metalinguistic awareness in multilinguals: Cognitive aspects of third language learning. Language Awareness, 8(3–4), 201209. https://doi.org/10.1080/09658419908667129Google Scholar
Jouravlev, O., Mineroff, Z., Blank, I. A., & Fedorenko, E. (2019). The small and efficient language network of polyglots and hyper-polyglots. BioRxiv, 1–43. https://doi.org/10.1101/713057Google Scholar
Juffs, A., & Harrington, M. (2011). Aspects of working memory in L2 learning. In Language Teaching, 44(2), 137166. https://doi.org/10.1017/S0261444810000509CrossRefGoogle Scholar
Kepinska, O., de Rover, M., Caspers, J., & Schiller, N. O. (2017). On neural correlates of individual differences in novel grammar learning: An fMRI study. Neuropsychologia, 98, 156168. https://doi.org/10.1016/j.neuropsychologia.2016.06.014Google Scholar
Kepinska, O., Pereda, E., Caspers, J., & Schiller, N. O. (2017). Neural oscillatory mechanisms during novel grammar learning underlying language analytical abilities. Brain and Language, 175, 99110. https://doi.org/10.1016/j.bandl.2017.10.003CrossRefGoogle ScholarPubMed
Kogan, V., & Reiterer, S. (2021). Eros, beauty, and phon-aesthetic judgements of language sound. we like it flat and fast, but not melodious. Comparing phonetic and acoustic features of 16 European languages. Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.578594CrossRefGoogle Scholar
Kormos, J., & Sáfár, A. (2008). Phonological short-term memory, working memory and foreign language performance in intensive language learning. Bilingualism, 11(2), 261271. https://doi.org/10.1017/S1366728908003416CrossRefGoogle Scholar
Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11(8), 599605. https://doi.org/10.1038/nrn2882Google Scholar
Linck, J. A., Osthus, P., Koeth, J. T., & Bunting, M. F. (2014). Working memory and second language comprehension and production: A meta-analysis. Psychonomic Bulletin and Review, 21(4), 861883. https://doi.org/10.3758/s13423-013-0565-2CrossRefGoogle ScholarPubMed
Ludke, K. M., Ferreira, F., & Overy, K. (2014). Singing can facilitate foreign language learning. Memory and Cognition, 42(1), 4152. https://doi.org/10.3758/s13421-013-0342-5Google Scholar
Marques, C., Moreno, S., Castro, S. L., & Besson, M. (2007). Musicians detect pitch violation in a foreign language better than nonmusicians: Behavioral and electrophysiological evidence. Journal of Cognitive Neuroscience, 19(9), 14531463. https://doi.org/10.1162/jocn.2007.19.9.1453Google Scholar
Meara, P. (2005). LLAMA Language Aptitude Tests The Manual. Lognostics.Google Scholar
Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270291. https://doi.org/10.1037/a0028228Google Scholar
Milovanov, R., Huotilainen, M., Välimäki, V., Esquef, P. A. A., & Tervaniemi, M. (2008). Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence. Brain Research, 1194, 8189. https://doi.org/10.1016/j.brainres.2007.11.042Google Scholar
Milovanov, R., Pietilä, P., Tervaniemi, M., & Esquef, P. A. A. (2010). Foreign language pronunciation skills and musical aptitude: A study of Finnish adults with higher education. Learning and Individual Differences, 20(1), 5660. https://doi.org/10.1016/j.lindif.2009.11.003Google Scholar
Miyake, A., & Friedman, N. P. (1998). Individual differences in second language proficiency: Working memory as language aptitude. In Healy, A. F. & Bourne, L. E. Jr. (eds.), Foreign Language Learning: Psycholinguistic Studies on Training and Retention. Lawrence Erlbaum Associates Publishers, pp. 339365.Google Scholar
Moreno, S., Bialystok, E., Barac, R., et al. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22(11), 14251433. https://doi.org/10.1177/0956797611416999CrossRefGoogle ScholarPubMed
Moreno, S., & Bidelman, G. M. (2014). Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hearing Research, 308, 8497. https://doi.org/10.1016/j.heares.2013.09.012Google Scholar
Müller, N. G., & Knight, R. T. (2006). The functional neuroanatomy of working memory: Contributions of human brain lesion studies. Neuroscience, 139(1), 5158. https://doi.org/10.1016/j.neuroscience.2005.09.018Google Scholar
Nardo, D., & Reiterer, S. M. (2009). Musicality and phonetic language aptitude. In Dogil, G. & Reiterer, S. M. (eds.), Language Talent and Brain Activity. Mouton de Gruyter, pp. 213256.Google Scholar
Novén, M., Schremm, A., Nilsson, M., Horne, M., & Roll, M. (2019). Cortical thickness of Broca’s area and right homologue is related to grammar learning aptitude and pitch discrimination proficiency. Brain and Language, 188(January 2018), 4247. https://doi.org/10.1016/j.bandl.2018.12.002Google Scholar
O’Brien, I., Segalowitz, N., Collentine, J., & Freed, B. (2006). Phonological memory and lexical, narrative, and grammatical skills in second language oral production by adult learners. Applied Psycholinguistics, 27(3), 377402. https://doi.org/10.1017/S0142716406060322CrossRefGoogle Scholar
Papagno, C., Valentine, T., & Baddeley, A. (1991). Phonological short-term memory and foreign-language vocabulary learning. Journal of Memory and Language, 30(3), 331347. https://doi.org/10.1016/0749-596X(91)90040-QGoogle Scholar
Perani, D., Saccuman, M. C., Scifo, P., et al. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 1605616061. https://doi.org/10.1073/pnas.1102991108Google Scholar
Petrides, M. (2014). Neuroanatomy of Language Regions of the Human Brain. Elsevier. https://doi.org/10.1016/C2011-0-07354-4Google Scholar
Preissl, H., Lowery, C. L., & Eswaran, H. (2005). Fetal magnetoencephalography: Viewing the developing brain in utero. International Review of Neurobiology, 68(05), 123. https://doi.org/10.1016/S0074-7742(05)68001-4Google Scholar
Price, C. J. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 6288. https://doi.org/10.1111/j.1749-6632.2010.05444.xGoogle Scholar
Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62(2), 816847. https://doi.org/10.1016/j.neuroimage.2012.04.062Google Scholar
Reiterer, S. M. (ed.) (2018). Exploring Language Aptitude: Views from Psychology, the Language Sciences, and Cognitive Neuroscience. Springer.Google Scholar
Reiterer, S. M. (2019). Neuro-psycho-cognitive markers for pronunciation/speech imitation as language aptitude. In Wen, Z. (E.), Skehan, P., Biedroń, A., Li, S., & Sparks, R. (eds.), Language Aptitude: Advancing Theory, Testing, Research and Practice. Routledge, pp. 277299.Google Scholar
Reiterer, S. M, Hu, X., Erb, M., et al. (2011). Individual differences in audio-vocal speech imitation aptitude in late bilinguals: Functional neuro-imaging and brain morphology. Frontiers in Psychology, 2(OCT), 112. https://doi.org/10.3389/fpsyg.2011.00271Google Scholar
Reiterer, S. M., Hu, X., Sumathi, T. A., & Singh, N. C. (2013). Are you a good mimic? Neuro-acoustic signatures for speech imitation ability. Frontiers in Psychology, 4(OCT), 113. https://doi.org/10.3389/fpsyg.2013.00782Google Scholar
Roden, I., Kreutz, G., & Bongard, S. (2012). Effects of a school-based instrumental music program on verbal and visual memory in primary school children: A longitudinal study. Frontiers in Psychology, 3(DEC), 19. https://doi.org/10.3389/fpsyg.2012.00572Google Scholar
Sammler, D. (2020). Splitting speech and music. Science, 367(6481), 974976. https://doi.org/10.1126/science.aba7913Google Scholar
Sawyer, M., & Ranta, L. (2001). Aptitude, individual differences, and instructional design. In Robinson, P. (ed.), Cognition and Second Language Instruction. Cambridge University Press, pp. 319353. https://doi.org/10.1017/cbo9781139524780.013Google Scholar
Schellenberg, E. G. (2011). Examining the association between music lessons and intelligence. British Journal of Psychology, 102(3), 283302. https://doi.org/10.1111/j.2044-8295.2010.02000.xGoogle Scholar
Schneider, J. W., & McGrew, K. S. (2018). The Cattell-Horn-Carroll Theory of Cognitive Abilities. In Flanagan, D. P. & McDonough, E. M. (eds.), Contemporary Intellectual Assessment: Theories, Tests and Issues, 4th ed. Guilford Press, pp. 73163.Google Scholar
Schneider, P., Sluming, V., Roberts, N., Bleeck, S., & Rupp, A. (2005). Structural, functional, and perceptual differences in Heschl’s gyrus and musical instrument preference. Annals of the New York Academy of Sciences, 1060, 387394. https://doi.org/10.1196/annals.1360.033Google Scholar
Schön, D., Magne, C., & Besson, M. (2004). The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology, 41(3), 341349. https://doi.org/10.1111/1469-8986.00172.xGoogle Scholar
Seither-Preisler, A., Parncutt, R., & Schneider, P. (2014). Size and synchronization of auditory cortex promotes musical, literacy, and Attentional skills in children. Journal of Neuroscience, 34(33), 1093710949. https://doi.org/10.1523/JNEUROSCI.5315-13.2014Google Scholar
Serrallach, B., Groß, C., Bernhofs, V., et al. (2016). Neural biomarkers for dyslexia, ADHD, and ADD in the auditory cortex of children. Frontiers in Neuroscience, 10(JUL), 123. https://doi.org/10.3389/fnins.2016.00324Google Scholar
Skeide, M. A., & Friederici, A. D. (2016). The ontogeny of the cortical language network. Nature Reviews Neuroscience, 17(5), 323332. https://doi.org/10.1038/nrn.2016.23Google Scholar
Slevc, L. R., & Miyake, A. (2006). Individual differences in second-language proficiency: Does musical ability matter? Psychological Science, 17(8), 675681. https://doi.org/10.1111/j.1467-9280.2006.01765.xGoogle Scholar
Smith, E. E., & Jonides, J. (1997). Working Memory: A View from Neuroimaging. Cognitive Psychology, 33(1), 542. https://doi.org/10.1006/cogp.1997.0658Google Scholar
Sternberg, R. & Sternberg, K. (2012). Cognitive Psychology. Wadsworth.Google Scholar
Szaflarski, J. P., Holland, S. K., Schmithorst, V. J., & Byars, A. W. (2006). fMRI study of language lateralization in children and adults. Human Brain Mapping, 27(3), 202212.Google Scholar
Turker, S. (2019). Exploring the neuroanatomical and behavioural correlates of foreign language aptitude. Doctoral dissertation, University of Graz.Google Scholar
Turker, S., Reiterer, S. M., Schneider, P., & Seither-Preisler, A. (2019). Auditory cortex morphology predicts language learning potential in children and teenagers. Frontiers in Neuroscience, 13(JUL), 116. https://doi.org/10.3389/fnins.2019.00824Google Scholar
Turker, S., Reiterer, S. M., Seither-Preisler, A., & Schneider, P. (2017). “When music speaks”: Auditory cortex morphology as a neuroanatomical marker of language aptitude and musicality. Frontiers in Psychology, 8(DEC). https://doi.org/10.3389/fpsyg.2017.02096Google Scholar
Turker, S., Seither-Preisler, A, A., & Reiterer, S. M. (2021). Examining individual differences in language learning: A neurocognitive model of language aptitude. Neurobiology of Language, 2(3), 389415.Google Scholar
Turker, S., Sommer-Lolei, S., & Christiner, M. (2018). Sprachtalent und Musikgenie – zwei Seiten einer Münze? Zusammenspiel musikalischer und sprachlicher Fähigkeiten durch umsetzungsnahe Ideen im schulischen und familiären Bereich. Journal Für Begabtenförderung, 2(3), 389415.Google Scholar
Ullman, H., Almeida, R., & Klingberg, T. (2014). Structural maturation and brain activity predict future working memory capacity during childhood development. Journal of Neuroscience, 34(5), 15921598. https://doi.org/10.1523/JNEUROSCI.0842-13.2014Google Scholar
Ullman, M. T., Earle, F. S., Walenski, M., & Janacsek, K. (2020). The Neurocognition of Developmental Disorders of Language. Annual Review of Psychology, 71(1), 389417. https://doi.org/10.1146/annurev-psych-122216-011555Google Scholar
Van Den Noort, M. W. M. L., Bosch, P., & Hugdahl, K. (2006). Foreign language proficiency and working memory capacity. European Psychologist, 11(4), 289296. https://doi.org/10.1027/1016-9040.11.4.289Google Scholar
Vangehuchten, L., Verhoeven, V., & Thys, P. (2015). Pronunciation proficiency and musical aptitude in Spanish as a foreign language: Results of an experimental research project. Revista de Lingüística y Lenguas Aplicadas, 10(1), 90100. https://doi.org/10.4995/rlyla.2015.3372Google Scholar
Vaquero, L., Rodríguez-Fornells, A., & Reiterer, S. M. (2017). The left, the better: White-matter brain integrity predicts foreign language imitation ability. Cerebral Cortex, 27(8), 39063917. https://doi.org/10.1093/cercor/bhw199Google Scholar
Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255274. https://doi.org/10.3758/CABN.3.4.255Google Scholar
Wen, Z. (2016). Working Memory and Second Language Learning: Towards an Integrated Approach. Multilingual Matters.Google Scholar
Wen, Z. (2019). Working memory as langauge aptitude: The Phonological/Executive Model. In Wen, Z., Skehan, P., Biedroń, A., Li, S., & Sparks, R. (eds.), Language Aptitude: Advancing Theory, Testing, Research and Practice. Routledge.Google Scholar
Wen, Z., Biedroń, A., & Skehan, P. (2017). Foreign language aptitude theory: Yesterday, today and tomorrow. In Language Teaching 50(1). https://doi.org/10.1017/S0261444816000276Google Scholar
Wen, Z., & Skehan, P. (2011). A new perspective on foreign language aptitude research: Building and supporting a case for “working memory as language aptitude.Ilha do Desterro A Journal of English Language, Literatures in English and Cultural Studies, 60, 1543. https://doi.org/10.5007/2175-8026.2011n60p015Google Scholar
Wen, Z., & Skehan, P.. (2021). Stages of acquisition and the P/E Model of working memory: Complementary or contrasting approaches to foreign language aptitude? Annual Review of Applied Linguistics, 41, 624. https://doi.org/10.1017/S0267190521000015Google Scholar
Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420422. https://doi.org/10.1038/nn1872Google Scholar
Xiang, H., Dediu, D., Roberts, L., et al. (2012). The structural connectivity underpinning language aptitude, working memory, and IQ in the perisylvian language network. Language Learning, 62(SUPPL. 2), 110130. https://doi.org/10.1111/j.1467-9922.2012.00708.xGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×