Published online by Cambridge University Press: 01 March 2011
If science represents humanity's endeavor to understand the universe, then probability theory is the language in which we encode this knowledge. In essence, probability theory formalizes the effect that evidence has on what we believe. Similarly, information theory quantitatively summarizes our knowledge. In this appendix, I briefly describe how probability theory and information theory developed, and how they serve to evaluate scientific hypotheses.
Probability theory
Basic concepts
This section briefly describes the central concepts required to understand the remainder of this appendix. For a more rigorous, detailed presentation of these concepts, please refer to.
Without loss of generality, we consider in this section only binary (i.e., two-valued) variables. Most of the concepts described in this section generalize to multi-state variables and continuous variables. The marginal probability that a statement S is true, written as P(S), is the probability that statement S is true in the absence of any evidence. The joint probability of statements S1 and S2, written as P(S1, S2), is the probability that both statements are true simultaneously, again in the absence of any evidence. Mutually exclusive statements cannot be true simultaneously; for example, the statements “the patient has squamous-cell carcinoma of the lung” and “the patient does not have squamous-cell carcinoma of the lung” are mutually exclusive.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.