Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-kpv4p Total loading time: 0 Render date: 2025-12-23T18:28:31.583Z Has data issue: false hasContentIssue false

Chapter 6 - Physiological correlates associated with interpersonal emotion dynamics

Published online by Cambridge University Press:  14 September 2018

Ashley K. Randall
Affiliation:
Arizona State University
Dominik Schoebi
Affiliation:
Université de Fribourg, Switzerland
Get access

Summary

This chapter describes how interpersonal emotion dynamics get “under the skin” and are reflected by the body’s physiology. Research on the physiological correlates of close relationship functioning have often focused on the stress hormone cortisol –, which is the end product of the HPA axis,; heart rate and skin conductance –, which reflect the autonomic nervous system,; and the hormones oxytocin and testosterone. We introduce each physiological marker and discuss research on (1) how it is affected by a close relationship context, and (2) whether there is evidence of within-dyad linkage. We conclude by summarizing future directions, unanswered questions, and recommendations for further research.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Adam, E. K., & Gunnar, M. R. (2001). Relationship functioning and home and work demands predict individual differences in diurnal cortisol patterns in women. Psychoneuroendocrinology, 26(2), 189208.10.1016/S0306-4530(00)00045-7CrossRefGoogle ScholarPubMed
Alvergne, A., Faurie, C., Raymond, M. (2009). Variation in testosterone levels and male reproductive effort: insight from a polygynous human population. Hormones and Behavior, 56, 491–7.10.1016/j.yhbeh.2009.07.013CrossRefGoogle ScholarPubMed
Bartz, J. A., Zaki, J., Ochsner, K. N., et al. (2010). Effects of oxytocin on recollections of maternal care and closeness. Proceedings of the National Academy of Sciences, 107(50), 213715.10.1073/pnas.1012669107CrossRefGoogle ScholarPubMed
Beckes, L., & Coan, J. A. (2011). Social baseline theory: The role of social proximity in emotion and economy of action. Social and Personality Psychology Compass, 5(12), 976–88.10.1111/j.1751-9004.2011.00400.xCrossRefGoogle Scholar
Berg, S. J., & Wynne-Edwards, K. E. (2001, June). Changes in testosterone, cortisol, and estradiol levels in men becoming fathers. In Mayo Clinic Proceedings (Vol. 76, No. 6, pp. 582–92). Elsevier.Google Scholar
Booth, A., Johnson, D. R., & Granger, D. A. (1999). Testosterone and men's health. Journal of Behavioral Medicine, 22(1), 119.10.1023/A:1018705001117CrossRefGoogle ScholarPubMed
Burnham, T. C., Chapman, J. F., Gray, P. B., et al. (2003). Men in committed, romantic relationships have lower testosterone. Hormones and Behavior, 44(2), 119–22.10.1016/S0018-506X(03)00125-9CrossRefGoogle ScholarPubMed
Butler, E. A. (2011). Temporal interpersonal emotion systems: The “TIES” that form relationships. Personality and Social Psychology Review, 15(4), 367–93.10.1177/1088868311411164CrossRefGoogle ScholarPubMed
Butler, E. A., & Randall, A. K. (2013). Emotional coregulation in close relationships. Emotion Review, 5(2), 202–10.CrossRefGoogle Scholar
Carter, C. S., Devries, A. C., & Getz, L. L. (1995). Physiological substrates of mammalian monogamy: the prairie vole model. Neuroscience & Biobehavioral Reviews, 19(2), 303–14.Google ScholarPubMed
Chatel-Goldman, J., Congedo, M., Jutten, C., & Schwartz, J. (2014). Touch increases autonomic coupling between romantic partners. Frontiers in Behavioral Neuroscience, 8(1), 112.CrossRefGoogle ScholarPubMed
Cohen, S. (2004). Social relationships and health. American Psychologist, 59(8), 676.10.1037/0003-066X.59.8.676CrossRefGoogle ScholarPubMed
Curtis, B. M., & O'Keefe, J. H. (2002). Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clinic Proceedings, 77(1), 4554.10.4065/77.1.45CrossRefGoogle ScholarPubMed
Cyranowski, J. M., Hofkens, T. L., Frank, E., et al. (2008). Evidence of dysregulated peripheral oxytocin release among depressed women. Psychosomatic Medicine, 70(9), 967–75.10.1097/PSY.0b013e318188ade4CrossRefGoogle ScholarPubMed
Diamond, L. M., Hicks, A. M., & Otter-Henderson, K. D. (2011). Individual differences in vagal regulation moderate associations between daily affect and daily couple interactions. Personality and Social Psychology Bulletin, 37(6), 731–44.10.1177/0146167211400620CrossRefGoogle ScholarPubMed
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355–95.10.1037/0033-2909.130.3.355CrossRefGoogle ScholarPubMed
Ditzen, B., Hoppmann, C., & Klumb, P. (2008). Positive couple interactions and daily cortisol: On the stress-protecting role of intimacy. Psychosomatic Medicine, 70(8), 883889.10.1097/PSY.0b013e318185c4fcCrossRefGoogle ScholarPubMed
Ditzen, B., Neumann, I. D., Bodenmann, G., et al. (2007). Effects of different kinds of couple interaction on cortisol and heart rate responses to stress in women. Psychoneuroendocrinology, 32, 565–74.10.1016/j.psyneuen.2007.03.011CrossRefGoogle ScholarPubMed
Ditzen, B., Schaer, M., Gabriel, B., et al. (2009). Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biological Psychiatry, 65(9), 728–31.10.1016/j.biopsych.2008.10.011CrossRefGoogle ScholarPubMed
Eckberg, D. L. (1997). Sympathovagal balance: a critical appraisal. Circulation, 96(9), 3224–32.CrossRefGoogle ScholarPubMed
Edelstein, R. S., Wardecker, B. M., Chopik, W. J., Moors, A. C., Shipman, E. L., & Lin, N. J. (2015). Prenatal hormones in first-time expectant parents: Longitudinal changes and within-couple correlations. American Journal of Human Biology, 27(3), 317–25.10.1002/ajhb.22670CrossRefGoogle ScholarPubMed
Feldman, R. (2012). Parent–infant synchrony: a biobehavioral model of mutual influences in the formation of affiliative bonds. Monographs of the Society for Research in Child Development, 77(2), 4251.10.1111/j.1540-5834.2011.00660.xCrossRefGoogle Scholar
Feldman, R., Gordon, I., Influs, M., Gutbir, T., & Ebstein, R. P. (2013). Parental oxytocin and early caregiving jointly shape children's oxytocin response and social reciprocity. Neuropsychopharmacology, 38(7), 1154–62.10.1038/npp.2013.22CrossRefGoogle ScholarPubMed
Feldman, R., Gordon, I., & Zagoory-Sharon, O. (2010). The cross-generation transmission of oxytocin in humans. Hormones and Behavior, 58, 669–76.10.1016/j.yhbeh.2010.06.005CrossRefGoogle ScholarPubMed
Feldman, R., Gordon, I., & Zagoory-Sharon, O. (2011). Maternal and paternal plasma, salivary, and urinary oxytocin and parent–infant synchrony: considering stress and affiliation components of human bonding. Developmental Science, 14(4), 752–61.10.1111/j.1467-7687.2010.01021.xCrossRefGoogle ScholarPubMed
Feldman, R., Weller, A., Zagoory-Sharon, O., & Levine, A. (2007). Evidence for a neuroendocrinological foundation of human affiliation: plasma oxytocin levels across pregnancy and the postpartum period predict mother-infant bonding. Psychological Science, 18(11), 965–70.10.1111/j.1467-9280.2007.02010.xCrossRefGoogle ScholarPubMed
Ferrer, E., & Helm, J. M. (2013). Dynamical systems modeling of physiological coregulation in dyadic interactions. International Journal of Psychophysiology, 88(3), 296308.10.1016/j.ijpsycho.2012.10.013CrossRefGoogle ScholarPubMed
Fleming, A. S., Corter, C., Stallings, J., & Steiner, M. (2002). Testosterone and prolactin are associated with emotional responses to infant cries in new fathers. Hormones and Behavior, 42(4), 399413.10.1006/hbeh.2002.1840CrossRefGoogle ScholarPubMed
Floyd, K., & Riforgiate, S. (2008). Affectionate communication received from spouses predicts stress hormone levels in healthy adults. Communication Monographs, 75(4), 351–68.10.1080/03637750802512371CrossRefGoogle Scholar
Fuchs, A. R., Fuchs, F., Husslein, P., & Soloff, M. S. (1984). Oxytocin receptors in the human uterus during pregnancy and parturition. American Journal of Obstetrics and Gynecology, 150(6), 734–41.10.1016/0002-9378(84)90677-XCrossRefGoogle ScholarPubMed
Galbally, M., Lewis, A. J., IJzendoorn, M. V., & Permezel, M. (2011). The role of oxytocin in mother-infant relations: a systematic review of human studies. Harvard Review of Psychiatry, 19(1), 114.10.3109/10673229.2011.549771CrossRefGoogle ScholarPubMed
Gettler, L. T., McDade, T. W., Feranil, A. B., & Kuzawa, C. W. (2011). Longitudinal evidence that fatherhood decreases testosterone in human males. Proceedings of the National Academy of Sciences, 108(39), 161949.10.1073/pnas.1105403108CrossRefGoogle ScholarPubMed
Gordon, I., Zagoory-Sharon, O., Leckman, J. F., & Feldman, R. (2010a). Oxytocin and the development of parenting in humans. Biological Psychiatry, 68(4), 377–82.10.1016/j.biopsych.2010.02.005CrossRefGoogle ScholarPubMed
Gordon, I., Zagoory-Sharon, O., Leckman, J. F., & Feldman, R. (2010b). Oxytocin, cortisol, and triadic family interactions. Physiology & Behavior, 101, 679–84.10.1016/j.physbeh.2010.08.008CrossRefGoogle ScholarPubMed
Gottman, J. M., Jacobson, N. S., Rushe, R. H., et al. (1995). The relationship between heart rate reactivity, emotionally aggressive behavior, and general violence in batterers. Journal of Family Psychology, 9(3), 227–48.10.1037/0893-3200.9.3.227CrossRefGoogle Scholar
Gray, P. B., Parkin, J. C., & Samms-Vaughan, M. E. (2007). Hormonal correlates of human paternal interactions: a hospital-based investigation in urban Jamaica. Hormones and Behavior, 52(4), 499507.10.1016/j.yhbeh.2007.07.005CrossRefGoogle ScholarPubMed
Helm, J. L., Sbarra, D., & Ferrer, E. (2012). Assessing cross-partner associations in physiological responses via coupled oscillator models. Emotion, 12(4), 748–62.10.1037/a0025036CrossRefGoogle ScholarPubMed
Helm, J. L., Sbarra, D. A., & Ferrer, E. (2014). Coregulation of respiratory sinus arrhythmia in adult romantic partners. Emotion, 14(3), 522–31.10.1037/a0035960CrossRefGoogle ScholarPubMed
Hofer, M. A. (1994). Hidden regulators in attachment, separation, and loss. Monographs of the Society for Research in Child Development, 59(29c), 192207.10.1111/j.1540-5834.1994.tb01285.xCrossRefGoogle ScholarPubMed
Insel, T. R., & Young, L. J. (2001). The neurobiology of attachment. Nature Reviews Neuroscience, 2(2), 129–36.10.1038/35053579CrossRefGoogle ScholarPubMed
Isabella, R. A., & Belsky, J. (1991). Interactional synchrony and the origins of infant mother attachment: a replication study. Child Development, 62(2), 373–84.10.2307/1131010CrossRefGoogle ScholarPubMed
Jansen, A. S., Van Nguyen, X., Karpitskiy, V., Mettenleiter, T. C., & Loewy, A. D. (1995). Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science, 270(5236), 644–6.10.1126/science.270.5236.644CrossRefGoogle ScholarPubMed
Kiecolt-Glaser, J. K., & Newton, T. L. (2001). Marriage and health: His and hers. Psychological Bulletin, 127(4), 472503.10.1037/0033-2909.127.4.472CrossRefGoogle Scholar
Kirschbaum, C., Klauer, T., Filipp, S. H., & Hellhammer, D. H. (1995). Sex-specific effects of social support on cortisol and subjective responses to acute psychological stress. Psychosomatic Medicine, 57(1), 2331.10.1097/00006842-199501000-00004CrossRefGoogle ScholarPubMed
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673–76.10.1038/nature03701CrossRefGoogle ScholarPubMed
Kumari, M., Shipley, M., Stafford, M., & Kivimaki, M. (2011). Association of diurnal patterns in salivary cortisol with all-cause and cardiovascular mortality: findings from the Whitehall II study. The Journal of Clinical Endocrinology & Metabolism, 96(5), 1478–85.10.1210/jc.2010-2137CrossRefGoogle ScholarPubMed
Laws, H. B., Sayer, A. G., Pietromonaco, P. R., & Powers, S. I. (2015). Longitudinal changes in spouses’ HPA responses: convergence in cortisol patterns during the early years of marriage. Health Psychology, 34(11), 1076–8910.1037/hea0000235CrossRefGoogle ScholarPubMed
Levenson, R. W., & Gottman, J. M. (1983). Marital interaction: physiological linkage and affective exchange. Journal of Personality and Social Psychology, 45(3), 587.10.1037/0022-3514.45.3.587CrossRefGoogle ScholarPubMed
Liu, S., Rovine, M. J., Cousino Klein, L., & Almeida, D. M. (2013). Synchrony of diurnal cortisol pattern in couples. Journal of Family Psychology, 27(4), 579–88.10.1037/a0033735CrossRefGoogle ScholarPubMed
Lykken, D. T., & Venables, P. H. (1971). Direct measurement of skin conductance: A proposal for standardization. Psychophysiology, 8(5), 656–72.10.1111/j.1469-8986.1971.tb00501.xCrossRefGoogle ScholarPubMed
MacDonald, K., & MacDonald, T. M. (2010). The peptide that binds: a systematic review of oxytocin and its prosocial effects in humans. Harvard Review of Psychiatry, 18(1), 121.10.3109/10673220903523615CrossRefGoogle ScholarPubMed
Marazziti, D., Dell'Osso, B., Baroni, S., et al. (2006). A relationship between oxytocin and anxiety of romantic attachment. Clinical Practice and Epidemiology in Mental Health, 2(1), 2834.10.1186/1745-0179-2-28CrossRefGoogle ScholarPubMed
McCorry, L. K. (2007). Physiology of the autonomic nervous system. American Journal of Pharmaceutical Education, 71(4), 111.10.5688/aj710478CrossRefGoogle ScholarPubMed
Mooradian, A. D., Morley, J. E., & Korenman, S. G. (1987). Biological actions of androgens. Endocrine Reviews, 8(1), 128.10.1210/edrv-8-1-1CrossRefGoogle ScholarPubMed
Murray-Close, D. (2011). Autonomic reactivity and romantic relational aggression among female emerging adults: moderating roles of social and cognitive risk. International Journal of Psychophysiology, 80(1), 2835.10.1016/j.ijpsycho.2011.01.007CrossRefGoogle ScholarPubMed
Murray-Close, D., Holland, A. S., & Roisman, G. I. (2012). Autonomic arousal and relational aggression in heterosexual dating couples. Personal Relationships, 19(2), 203–18.10.1111/j.1475-6811.2011.01348.xCrossRefGoogle Scholar
Nave, G., Camerer, C., & McCullough, M. (2015). Does oxytocin increase trust in humans? A critical review of research. Perspectives on Psychological Science, 10(6), 772–89.10.1177/1745691615600138CrossRefGoogle ScholarPubMed
Papp, L. M., Pendry, P., Simon, C. D., & Adam, E. K. (2013). Spouses’ cortisol associations and moderators: Testing physiological synchrony and connectedness in everyday life. Family Process, 52(2), 284–98.10.1111/j.1545-5300.2012.01413.xCrossRefGoogle ScholarPubMed
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116–43.10.1016/j.biopsycho.2006.06.009CrossRefGoogle ScholarPubMed
Porges, S. W., & Byrne, E. A. (1992). Research methods for measurement of heart rate and respiration. Biological Psychology, 34(2–3), 93130.10.1016/0301-0511(92)90012-JCrossRefGoogle ScholarPubMed
Reed, R. G., Randall, A. K., Post, J. H., & Butler, E. A. (2013). Partner influence and in-phase versus anti-phase physiological linkage in romantic couples. International Journal of Psychophysiology, 88(3), 309–16.10.1016/j.ijpsycho.2012.08.009CrossRefGoogle ScholarPubMed
Robles, T. F., & Kiecolt-Glaser, J. K. (2003). The physiology of marriage: pathways to health. Physiology & Behavior, 79(3), 409–16.10.1016/S0031-9384(03)00160-4CrossRefGoogle ScholarPubMed
Saxbe, D. E., Adam, E. K., Schetter, C. D., et al. (2015). Cortisol covariation within parents of young children: moderation by relationship aggression. Psychoneuroendocrinology, 62, 121–8.10.1016/j.psyneuen.2015.08.006CrossRefGoogle ScholarPubMed
Saxbe, D. E., Edelstein, R. S., Lyden, H. M., et al. (2017). Fathers’ decline in testosterone and synchrony with partner testosterone during pregnancy predicts greater postpartum relationship investment. Hormones and Behavior, 90, 3947.CrossRefGoogle ScholarPubMed
Saxbe, D. E., & Repetti, R. L. (2010). For better or worse? Coregulation of couples’ cortisol levels and mood states. Journal of Personality and Social Psychology, 98(1), 92103.10.1037/a0016959CrossRefGoogle ScholarPubMed
Saxbe, D. E., Repetti, R. L., & Nishina, A. (2008). Marital satisfaction, recovery from work, and diurnal cortisol among men and women. Health Psychology, 27(1), 1525.10.1037/0278-6133.27.1.15CrossRefGoogle ScholarPubMed
Scarpa, A., & Raine, A. (1997). Psychophysiology of anger and violent behavior. The Psychiatric Clinics of North America, 20(2), 375–94.10.1016/S0193-953X(05)70318-XCrossRefGoogle ScholarPubMed
Schmidt-Nielsen, K. (1997). Animal Physiology: Adaptation and Environment. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Schneiderman, I., Kanat-Maymon, Y., Zagoory-Sharon, O., & Feldman, R. (2014). Mutual influences between partners’ hormones shape conflict dialog and relationship duration at the initiation of romantic love. Social Neuroscience, 9(4), 337–51.10.1080/17470919.2014.893925CrossRefGoogle ScholarPubMed
Smith, T. W., & Brown, P. C. (1991). Cynical hostility, attempts to exert social control, and cardiovascular reactivity in married couples. Journal of Behavioral Medicine, 14(6), 581–92.10.1007/BF00867172CrossRefGoogle ScholarPubMed
Smith, T. W., Cribbet, M. R., Nealey-Moore, J. B., et al. (2011). Matters of the variable heart: respiratory sinus arrhythmia response to marital interaction and associations with marital quality. Journal of Personality and Social Psychology, 100(1), 103–19.10.1037/a0021136CrossRefGoogle ScholarPubMed
Smith, T. W., & Ruiz, J. M. (2002). Psychosocial influences on the development and course of coronary heart disease: current status and implications for research and practice. Journal of Consulting and Clinical Psychology, 70(3), 548–68.10.1037/0022-006X.70.3.548CrossRefGoogle ScholarPubMed
Storey, A. E., & Ziegler, T. E. (2015). Primate paternal care: interactions between biology and social experience. Hormones and Behavior, 77, 260–71.Google ScholarPubMed
Szeto, A., McCabe, P. M., Nation, D. A., et al. (2011). Evaluation of enzyme immunoassay and radioimmunoassay methods for the measurement of plasma oxytocin. Psychosomatic Medicine, 73(5), 393.10.1097/PSY.0b013e31821df0c2CrossRefGoogle ScholarPubMed
Tabak, B. A., McCullough, M. E., Szeto, A., Mendez, A. J., & McCabe, P. M. (2011). Oxytocin indexes relational distress following interpersonal harms in women. Psychoneuroendocrinology, 36(1), 115–22.10.1016/j.psyneuen.2010.07.004CrossRefGoogle ScholarPubMed
Taylor, S. E., Gonzaga, G. C., Klein, L. C., et al. (2006). Relation of oxytocin to psychological stress responses and hypothalamic-pituitary-adrenocortical axis activity in older women. Psychosomatic Medicine, 68(2), 238–45.10.1097/01.psy.0000203242.95990.74CrossRefGoogle ScholarPubMed
Taylor, S. E., Saphire-Bernstein, S., & Seeman, T. E. (2010). Are plasma oxytocin in women and plasma vasopressin in men biomarkers of distressed pair-bond relationships? Psychological Science, 21(1), 37.10.1177/0956797609356507CrossRefGoogle ScholarPubMed
Thayer, J. F., & Lane, R. D. (2007). The role of vagal function in the risk for cardiovascular disease and mortality. Biological Psychology, 74(2), 224–2.10.1016/j.biopsycho.2005.11.013CrossRefGoogle ScholarPubMed
Timmons, A. C., Margolin, G., & Saxbe, D. E. (2015). Physiological linkage in couples and its implications for individual and interpersonal functioning: a literature review. Journal of Family Psychology, 29(5), 720–31.10.1037/fam0000115CrossRefGoogle ScholarPubMed
Turner, R. A., Altemus, M., Enos, T., Cooper, B., & McGuinness, T. (1999). Preliminary research on plasma oxytocin in normal cycling women: investigating emotion and interpersonal distress. Psychiatry, 62(2), 97113.10.1080/00332747.1999.11024859CrossRefGoogle ScholarPubMed
van Anders, S. M., Tolman, R. M., & Volling, B. L. (2012). Baby cries and nurturance affect testosterone in men. Hormones and Behavior, 61(1), 31–610.1016/j.yhbeh.2011.09.012CrossRefGoogle ScholarPubMed
Vedhara, K., Miles, J. N., Sanderman, R., & Ranchor, A. V. (2006). Psychosocial factors associated with indices of cortisol production in women with breast cancer and controls. Psychoneuroendocrinology, 31(3), 299311.10.1016/j.psyneuen.2005.08.006CrossRefGoogle ScholarPubMed
Weisman, O., Zagoory-Sharon, O., & Feldman, R. (2012). Oxytocin administration to parent enhances infant physiological and behavioral readiness for social engagement. Biological Psychiatry, 72(12), 982–9.10.1016/j.biopsych.2012.06.011CrossRefGoogle ScholarPubMed
Wynne-Edwards, K. E. (2001). Hormonal changes in mammalian fathers. Hormones and Behavior, 40(2), 139–45.10.1006/hbeh.2001.1699CrossRefGoogle ScholarPubMed
Young, L. J., & Wang, Z. (2004). The neurobiology of pair bonding. Nature Neuroscience, 7(10), 1048–54.10.1038/nn1327CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×