Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T21:39:34.815Z Has data issue: false hasContentIssue false

Chapter 6 - Mitochondrial Movement Disorders

from Section 1: - Basic Introduction

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Mitochondrial disease presents with a wide, diverse spectrum of clinical manifestations at any age, often characterized by multisystem dysfunction. Movement disorders are a frequent manifestation, and may include ataxia, parkinsonism, myoclonus, dystonia, chorea, tremor. The phenotype of mitochondrial disorders, including the spectrum of movement disorders, may be very variable, even in patients carrying the same genetic mutation. Mitochondrial dysfunction may also play an important role in sporadic neurodegenerative diseases with movement disorders. Identification of a genetic mitochondrial movement disorder is challenging, but has been facilitated by new technologies, such as next-generation sequencing, thus identifying causative genes and eventually expanding the phenotype spectrum in the case of nuclear mitochondrial mutations. Identification of the underlying genetic basis of a mitochondrial movement disorder is crucial for patient management, as potentially mitochondriotoxic agents should be avoided and special precautions taken with anesthesia. This chapter gives a comprehensive overview of the spectrum of movement disorders associated with mitochondrial disease.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

DiMauro, S, Schon, EA. Mitochondrial respiratory-chain diseases. N Engl J Med 2003;348:26562668.CrossRefGoogle ScholarPubMed
Finsterer, J. Inherited mitochondrial disorders. Adv Exp Med Biol 2012;942:187213.CrossRefGoogle ScholarPubMed
Swerdlow, RH. Treating neurodegeneration by modifying mitochondria: potential solutions to a ‘complex’ problem. Antooxid Redox Signal 2007;9:15911603.CrossRefGoogle ScholarPubMed
Swerdlow, RH. The neurodegenerative mitochondriopathies. J Alzheimers Dis 2009;17:737751.CrossRefGoogle ScholarPubMed
Finsterer, J. Mitochondriopathies. Eur J Neurol. 2004;11:163186.CrossRefGoogle ScholarPubMed
Schon, EA, Manfredi, G. Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 2003;111:303312.CrossRefGoogle ScholarPubMed
Schapira, AHV. Mitochondrial diseases. Lancet 2012; 379:18251834CrossRefGoogle ScholarPubMed
Orsucci, D, Ienco, EC, Mancuso, M, Siciliano, G. POLG1-related and other ‘mitochondrial Parkinsonisms’: an overview. J Mol Neurosci 2011;44:1724.CrossRefGoogle ScholarPubMed
Mackey, DA, Oostra, RJ, Rosenberg, T, et al. Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy. Am J Hum Genet 1996;59:481485.Google ScholarPubMed
Betts, J, Lightowlers, RN, Turnbull, DM. Neuropathological apects of mitochondrial DNA disease. Neurochem Res 2004;29:505511.CrossRefGoogle Scholar
Takeda, S, Wakabayashi, F, Ohama, E, Ikuta, F. Neuropathology of myoclonus epilepsy associated with ragged-red fibers (Fukuhara’s disease). Acta Neuropathol 1988;75:433440.CrossRefGoogle Scholar
Filosto, M, Tomelleri, G, Tonin, P, et al. Neuropathology of mitochondrial diseases. Biosci Rep 2007;27:2330.CrossRefGoogle ScholarPubMed
Rojo, A, Campos, Y, Sanchez, JM, et al. NARP-MILS syndrome caused by 8993 T>G mitochondrial DNA mutation: a clinical, genetic and neuropathological study. Acta Neuropathol 2006;111:610616.CrossRefGoogle ScholarPubMed
Nishioka, K, Vilariño-Güell, C, Cobb, SA, et al. Genetic variation of the mitochondrial complex I subunit NDUFV2 and Parkinson’s disease. Parkinsonism Relat Disord 2010;16:686687.CrossRefGoogle ScholarPubMed
Copeland, WC. The mitochondrial DNA polymerase in health and disease. Subcell Biochem 2010;50:211222.CrossRefGoogle ScholarPubMed
Cui, L, Jeong, H, Borovecki, F, et al. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006;127:5969.CrossRefGoogle ScholarPubMed
Lodi, R, Cooper, JM, Bradley, JL, et al. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci USA 1999;96:1149211495.CrossRefGoogle ScholarPubMed
Rossi, L, Lombardo, MF, Ciriolo, MR, Rotilio, G. Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance. Neurochem Res 2004;29:493504.CrossRefGoogle ScholarPubMed
Kordasiewicz, HB, Stanek, LM, Wancewicz, EV, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 2012;74:10314104.CrossRefGoogle ScholarPubMed
Hudson, G, Chinnery, PF. Mitochondrial DNA polymerase-gamma and human disease. Hum Mol Genet 2006;15:244252.CrossRefGoogle ScholarPubMed
Chan, SS, Copeland, WC. DNA polymerase gamma and mitochondrial disease: understanding the consequences of POLG mutations. Biochim Biophys Acta 2009;1787:312319.CrossRefGoogle ScholarPubMed
Fukae, J, Mizuno, Y, Hattori, N. Mitochondrial dysfunction in Parkinson’s disease. Mitochondrion 2007;7:58-62.CrossRefGoogle ScholarPubMed
Tranchant, C, Anheim, M. Movement disorders in mitochondrial diseases. Revue Neurologique 2016: 172: 524529.CrossRefGoogle ScholarPubMed
Schreglmann, S, Riederer, F, Galovic, M, et al. Movement disorders in genetically confirmed mitochondrial disease and the putative role of the cerebellum. Mov Disord 33: 146–155CrossRefGoogle Scholar
Manusco, M, Filosto, M, Orsucci, D, Siciliano, G. Mitochondrial DNA sequence variation and neurodegeneration. Hum Genomics 2008;3:7178.Google Scholar
Thyagajaran, D, Bressman, S, Bruno, C, et al. A novel mitochondrial 12SrRNA point mutation in parkinsonism, deafness, and neuropathy. Ann Neurol 2000;48:730736.3.0.CO;2-0>CrossRefGoogle Scholar
Horvath, R, Kley, RA, Lochmuller, H, Vorgerd, M. Parkinson syndrome, neuropathy, and myopathy caused by the mutation A8344G (MERRF) in tRNALys. Neurology. 2007;68:5658CrossRefGoogle ScholarPubMed
Nikoskelainen, EK, Martilla, RJ, Huoponen, K, et al. Leber’s “plus” neurological abnormalities in patients with Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry 1995;59:160164.CrossRefGoogle ScholarPubMed
Luoma, PT, Eerola, J, Ahola, S, et al. Mitochondrial DNA polymerase gamma variants in idiopathic sporadic Parkinson disease. Neurology 2007;69:11521159.CrossRefGoogle ScholarPubMed
Eerola, J, Luoma, PT, Peuralinna, T, et al. POLG1 polyglutamine tract variants associated with Parkinson’s disease. Neurosci Lett 2010;477:15.CrossRefGoogle ScholarPubMed
Anvret, A, Westerlund, M, Sydow, O. Variations of the CAG trinucleotide repeat in DNA polymerase gamma (POLG1) is associated with Parkinson’s disease in Sweden. Neurosci Lett 2010;485:117120.CrossRefGoogle ScholarPubMed
Synofzik, M, Asmus, F, Reimold, M, Schols, L, Berg, D. Sustained dopaminergic response of parkinsonism and depression in POLG-associated parkinsonism. Mov Disord 2010;25:243245.CrossRefGoogle ScholarPubMed
Bueler, H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 2009;218:235247.CrossRefGoogle ScholarPubMed
Lera, G, Bhatia, K, Marsden, CD. Dystonia as the major manifestation of Leigh’s syndrome. Mov Disord 1994;9:642649CrossRefGoogle Scholar
Koene, S, Rodenburg, RJ, van der Knaap, MS, et al. Natural disease course and genotype–phenotype correlations in Complex I deficiency caused by nuclear gene defects: what we learned from 130 cases. J Inherit Metab Dis. 2012;35:737747.CrossRefGoogle ScholarPubMed
Simon, DK, Friedman, J, Breakefield, XO, et al. A heteroplasmic mitochondrial complex I gene mutation in adult-onset dystonia. Neurogenetics 2003;4:199205CrossRefGoogle ScholarPubMed
Wang, K, Takahashi, Y, Gao, ZL, et al. Mitochondrial ND3 as the novel causative gene for Leber hereditary optic neuropathy and dystonia. Neurogenetics. 2009;10:337345CrossRefGoogle Scholar
Solano, A, Roig, M, Vives-Bauza, C, et al. Bilateral striatal necrosis associated with a novel mutation in the mitochondrial ND6 gene. Ann Neurol 2003;54:527530.CrossRefGoogle ScholarPubMed
Mestre, T, Ferreira, J, Coelho, MM, Rosa, M, Sampaio, C. Therapeutic interventions for symptomatic treatment in Huntington’s disease. Cochrane Database Syst Rev 2009;(3):CD006456.CrossRefGoogle Scholar
Gehrig, SM, Petersen, JA, Frese, S, et al. Skeletal muscle characteristics and mitochondrial function in Huntington disease patients. Mov Disord 2017;32:12581259.CrossRefGoogle Scholar
Emmanuele, V, Lopez, LC, Berardo, A, et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch Neurol 2012;69:978983.CrossRefGoogle ScholarPubMed
Satishchandra, P, Sinha, S. Progressive myoclonic epilepsy. Neurol India 2010;58:514522.CrossRefGoogle ScholarPubMed
Anheim, M, Tranchant, C, Koenig, M. The autosomal recessive cerebellar ataxias. N Engl J Med 2012;366(7):636646.CrossRefGoogle ScholarPubMed
Nikali, K, Suomalainen, A, Saharinen, J, et al. Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky. Hum Mol Genet 2005;14:29812990.CrossRefGoogle ScholarPubMed
Wolters, ECh, Jung, HH, Baumann, CR. Mitochondrial movement disorders. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement disorders. Amsterdam: VU University Press; 2014: 577586.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×