Published online by Cambridge University Press: 12 May 2020
High gravity fields are exploited in a range of processes involving liquid–liquid dispersions. The accelerative forces achieved acting on dispersed drops can be several thousand-fold that of gravity. The benefits of the presence of the high gravity field include short residence times, efficient separations, less material hold-up, and reduction of equipment size. The development of spinning disk contactors for intensified liquid–liquid contacting is described, with discussion of the hydrodynamic phenomena which underpin the enhancements in mass transfer and reaction. A number of variants are described, including impinging jet contactors, parallel spinning tube contactors, and annular centrifugal contactors. Theoretical analysis of the fluid mechanics in spinning disk contactors and parallel spinning disk contactors is presented, with good comparison to experimental observation. The role of Taylor–Couette flows in spinning tube contactors is briefly discussed. Possibilities for intensifying the performance of tubular membrane contactors using high gravity fields are discussed, together with scope for conducting enantiomeric separations by application of high gravity.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.