Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T20:38:36.118Z Has data issue: false hasContentIssue false

Chapter 5 - Functional Connectivity of the Insula

from Section 1 - The Human Insula from an Epileptological Standpoint

Published online by Cambridge University Press:  09 June 2022

Dang Nguyen
Affiliation:
Université de Montréal
Jean Isnard
Affiliation:
Claude Bernard University Lyon
Philippe Kahane
Affiliation:
Grenoble-Alpes University Hospital
Get access

Summary

This chapter is about the use of direct electrical stimulation with short current pulses to estimate from recorded SEEG responses the functional connectivity of the insula. First, we review some studies of the literature which reported both intra-insular and extra-insular connectivity, using the anterior-posterior gyral decomposition of the insula. Second, we present the mapping of the responses to insula stimulation from 301 patients explored in SEEG from the database of the F-TRACT project. We show that the SEEG responses are highly spatially resolved on the whole brain, as demonstrated when comparing the stimulations between the anterior and posterior parts of the insula at different spatial resolution of the Lausanne parcellation scheme. In general, the responses to electrical stimulation of the insula are particularly numerous, in comparison to the stimulation of other areas, which suggests that insula is a structure densely connected to the rest of the cortex.

Type
Chapter
Information
Insular Epilepsies , pp. 40 - 51
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Türe, U, Yaşargil, DC, Al-Mefty, O, Yaşargil, MG. Topographic anatomy of the insular region. J Neurosurg. 1999 Apr;90(4):720733.Google Scholar
Augustine, JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev. 1996 Oct;22(3):229244.CrossRefGoogle ScholarPubMed
Cauda, F, D’Agata, F, Sacco, K, Duca, S, Geminiani, G, Vercelli, A. Functional connectivity of the insula in the resting brain. NeuroImage. 2011 Mar 1;55(1):823.CrossRefGoogle ScholarPubMed
Deen, B, Pitskel, NB, Pelphrey, KA. Three systems of insular functional connectivity identified with cluster analysis. Cerebral Cortex. 2011 Jul;21(7):14981506.Google Scholar
Gallay, DS, Gallay, MN, Jeanmonod, D, Rouiller, EM, Morel, A. The insula of Reil revisited: Multiarchitectonic organization in macaque monkeys. Cerebral Cortex. 2012 Jan;22(1):175190.Google Scholar
Nieuwenhuys, R. The insular cortex: a review. Prog Brain Res. 2012;195:123163.CrossRefGoogle ScholarPubMed
Penfield, W, ME, Faulk. The insula: Further observations on its function. Brain. 1955;78(4):445470.CrossRefGoogle ScholarPubMed
Desai, A, Bekelis, K, Darcey, TM, Roberts, DW. Surgical techniques for investigating the role of the insula in epilepsy: A review. Neurosurg Focus. 2012 Mar;32(3):E6.Google Scholar
Nguyen, DK, Nguyen, DB, Malak, R, Bouthillier, A. Insular cortex epilepsy: An overview. Can J Neurol Sci. 2009 Aug;36 Suppl 2:S58S62.Google ScholarPubMed
Ryvlin, P, Picard, F. Invasive investigation of insular cortex epilepsy. J Clin Neurophysiol. 2017 Jul;34(4):328332.CrossRefGoogle ScholarPubMed
Ryvlin, P, Kahane, P. The hidden causes of surgery-resistant temporal lobe epilepsy: Extratemporal or temporal plus? Curr Opin Neurol. 2005 Apr;18(2):125127.CrossRefGoogle ScholarPubMed
Silfvenius, H, gloor, P, rasmussen, T. Evaluation of insular ablation in surgical treatment of temporal lobe epilepsy. Epilepsia. 1964 Dec;5(4):307320.Google Scholar
Trebaul, L, Deman, P, Tuyisenge, V, Jedynak, M, Hugues, E, Rudrauf, D, et al. Probabilistic functional tractography of the human cortex revisited. NeuroImage. 2018 Jul 17;181:414429.Google Scholar
David, O, Job, A-S, De Palma, L, Hoffmann, D, Minotti, L, Kahane, P. Probabilistic functional tractography of the human cortex. NeuroImage. 2013 Oct 15;80(C):307–317.Google Scholar
Hagmann, P, Cammoun, L, Gigandet, X, Meuli, R, Honey, CJ, Wedeen, VJ, et al. Mapping the structural core of human cerebral cortex. PLoS Biology: Public Library of Science; 2008 Jul 1;6(7):e159.Google Scholar
Friston, KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):1336.Google Scholar
Matsumoto, R, Nair, DR, LaPresto, E, Najm, I, Bingaman, W, Shibasaki, H, et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain. 2004 Oct;127(pt 10):23162330.Google Scholar
Rosenberg, DS, Mauguiere, F, Catenoix, H, Faillenot, I, Magnin, M. Reciprocal thalamocortical connectivity of the medial pulvinar: A depth stimulation and evoked potential study in human brain. Cerebral Cortex. 2009 Jun;19(6):14621473.CrossRefGoogle ScholarPubMed
Catenoix, H, Magnin, M, Guénot, M, Isnard, J, Mauguiere, F, Ryvlin, P. Hippocampal-orbitofrontal connectivity in human: an electrical stimulation study. Clin Neurophysiol. 2005 Aug;116(8):17791784.Google Scholar
Keller, CJ, Honey, CJ, Mégevand, P, Entz, L, Ulbert, I, Mehta, AD. Mapping human brain networks with cortico-cortical evoked potentials. Philos Trans R Soc Lond, B, Biol Sci. 2014 Oct 5;369(1653):20130528-8.Google Scholar
Kanno, A, Enatsu, R, Ookawa, S, Noshiro, S, Ohtaki, S, Suzuki, K, et al. Interhemispheric asymmetry of network connecting between frontal and temporoparietal cortices: A corticocortical-evoked potential study. World Neurosurg. 2018 Dec;120:e628e636.CrossRefGoogle ScholarPubMed
Conner, CR, Ellmore, TM, DiSano, MA, Pieters, TA, Potter, AW, Tandon, N. Anatomic and electro-physiologic connectivity of the language system: a combined DTI-CCEP study. Comput Biol Med. 2011 Dec;41(12):11001109.Google Scholar
Enatsu, R, Kubota, Y, Kakisaka, Y, Bulacio, J, Piao, Z, O’Connor, T, et al. Reorganization of posterior language area in temporal lobe epilepsy: a cortico-cortical evoked potential study. Epilepsy Res. 2013 Jan;103(1):7382.Google Scholar
Saito, T, Tamura, M, Muragaki, Y, Maruyama, T, Kubota, Y, Fukuchi, S, et al. Intraoperative cortico-cortical evoked potentials for the evaluation of language function during brain tumor resection: Initial experience with 13 cases. J Neurosurg. 2014 Oct;121(4):827838.Google Scholar
Tamura, Y, Ogawa, H, Kapeller, C, Prueckl, R, Takeuchi, F, Anei, R, et al. Passive language mapping combining real-time oscillation analysis with cortico-cortical evoked potentials for awake craniotomy. J Neurosurg. 2016 Dec;125(6):15801588.CrossRefGoogle ScholarPubMed
Matsuzaki, N, Juhász, C, Asano, E. Cortico-cortical evoked potentials and stimulation-elicited gamma activity preferentially propagate from lower- to higher-order visual areas. Clinical Neurophysiology. 2013 Jul;124(7):12901296.CrossRefGoogle ScholarPubMed
Swann, NC, Cai, W, Conner, CR, Pieters, TA, Claffey, MP, George, JS, et al. Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: Electrophysiological responses and functional and structural connectivity. NeuroImage. 2012 Feb 1;59(3):28602870.Google Scholar
Enatsu, R, Matsumoto, R, Piao, Z, O’Connor, T, Horning, K, Burgess, RC, et al. Cortical negative motor network in comparison with sensorimotor network: A cortico-cortical evoked potential study. Cortex. 2013 Sep;49(8):20802096.Google Scholar
Kikuchi, T, Matsumoto, R, Mikuni, N, Yokoyama, Y, Matsumoto, A, Ikeda, A, et al. Asymmetric bilateral effect of the supplementary motor area proper in the human motor system. Clin Neurophysiol. 2012 Feb;123(2):324334.CrossRefGoogle ScholarPubMed
Matsumoto, R, Nair, DR, LaPresto, E, Bingaman, W, Shibasaki, H, Lüders, HO. Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain. 2007 Jan;130(pt 1):181197.CrossRefGoogle ScholarPubMed
Almashaikhi, T, Rheims, S, Ostrowsky-Coste, K, Montavont, A, Jung, J, De Bellescize, J, et al. Intrainsular functional connectivity in human. Hum Brain Mapp. 2014 Jun;35(6):27792788.Google Scholar
Jiménez-Jiménez, D, Abete-Rivas, M, Martín-López, D, Lacruz, ME, Selway, RP, Valentín, A, et al. Incidence of functional bi-temporal connections in the human brain in vivo and their relevance to epilepsy surgery. Cortex. 2015 Apr;65:208218.CrossRefGoogle ScholarPubMed
Enatsu, R, Gonzalez-Martinez, J, Bulacio, J, Kubota, Y, Mosher, J, Burgess, RC, et al. Connections of the limbic network: a corticocortical evoked potentials study. Cortex. 2015 Jan;62:2033.Google Scholar
Koubeissi, MZ, Kahriman, E, Syed, TU, Miller, J, Durand, DM. Low-frequency electrical stimulation of a fiber tract in temporal lobe epilepsy. Ann Neurol. 2013 Aug;74(2):223231.Google Scholar
Almashaikhi, T, Rheims, S, Jung, J, Ostrowsky-Coste, K, Montavont, A, De Bellescize, J, et al. Functional connectivity of insular efferences. Hum Brain Mapp. 2014 Oct;35(10):52795294.Google Scholar
Lacuey, N, Zonjy, B, Kahriman, ES, Marashly, A, Miller, J, Lhatoo, SD, et al. Homotopic reciprocal functional connectivity between anterior human insulae. Brain Struct Funct. 2016 Jun;221(5):26952701.Google Scholar
Afif, A, Minotti, L, Kahane, P, Hoffmann, D. Anatomofunctional organization of the insular cortex: A study using intracerebral electrical stimulation in epileptic patients. Epilepsia. 2010 Nov;51(11):23052315.Google Scholar
Afif, A, Minotti, L, Kahane, P, Hoffmann, D. Middle short gyrus of the insula implicated in speech production: Intracerebral electric stimulation of patients with epilepsy. Epilepsia. 2010 Feb;51(2):206213.Google Scholar
Dionisio, S, Mayoglou, L, Cho, S-M, Prime, D, Flanigan, PM, Lega, B, et al. Connectivity of the human insula: A cortico-cortical evoked potential (CCEP) study. Cortex. 2019 Nov;120:419442.Google Scholar
Tuyisenge, V, Trebaul, L, Bhattacharjee, M, Chanteloup-Forêt, B, Saubat-Guigui, C, Mîndruţă, I, et al. Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning. Clin Neurophysiol. 2018 Mar;129(3):548554.CrossRefGoogle ScholarPubMed
Deman, P, Bhattacharjee, M, Tadel, F, Job, A-S, Rivière, D, Cointepas, Y, et al. IntrAnat electrodes: A free database and visualization software for intracranial electroencephalographic data processed for case and group studies. Front Neuroinform. 2018;12:40.Google Scholar
Fischl, B, van der Kouwe, A, Destrieux, C, Halgren, E, Ségonne, F, Salat, DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004 Jan;14(1):1122.CrossRefGoogle ScholarPubMed
Daducci, A, Gerhard, S, Griffa, A, Lemkaddem, A, Cammoun, L, Gigandet, X, et al. The connectome mapper: An open-source processing pipeline to map connectomes with MRI. PLoS ONE. 2012;7(12):e48121.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×