Published online by Cambridge University Press: 05 December 2012
In this final chapter, we present applications of the theory of induced representations where knowing an explicit expression for an induced representation of a specific group is used.
In Section 7.1, we apply Mackey's theory, and one realization of the induced representations giving the irreducible representations to study the asymptotic behavior of coefficient functions of those representations. The main theorem is that those coefficient functions of infinite-dimensional irreducible representations of motion groups vanish at infinity. As a consequence, one can conclude that the image of a motion group under any irreducible representation is closed in the unitary group with the weak operator topology.
Section 7.2 is concerned with introducing methods for constructing self-adjoint idempotents, or projections, in L1(G) for certain kinds of groups G. A key observation is that the support in Ĝ of a projection must be a compact open set. After reviewing how projections arise for compact and abelian G, we turn to the noncompact, nonabelian situation. Drawing upon the theory developed in Chapters 4 and 5, we identify groups with nontrivial compact open sets in their duals. For appropriate groups G and explicit induced representations of those groups, coefficient functions of those representations can be modified to produce nontrivial projections in L1(G).
Finally, certain identities arising in the construction of projections can be exploited to produce generalizations of the continuous wavelet transform. This is explored in Section 7.3.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.