Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-m4fzj Total loading time: 0 Render date: 2025-12-24T05:42:03.642Z Has data issue: false hasContentIssue false

9 - Human–AI Collaboration for Identifying Health Information Wants

Published online by Cambridge University Press:  19 September 2025

Dan Wu
Affiliation:
Wuhan University, China
Shaobo Liang
Affiliation:
Wuhan University, China
Get access

Summary

Informal caregivers such as family members or friends provide much care to people with physical or cognitive impairment. To address challenges in care, caregivers often seek information online via social media platforms for their health information wants (HIWs), the types of care-related information that caregivers wish to have. Some efforts have been made to use Artificial Intelligence (AI) to understand caregivers’ information behaviors on social media. In this chapter, we present achievements of research with a human–AI collaboration approach in identifying caregivers’ HIWs, focusing on dementia caregivers as one example. Through this collaboration, AI techniques such as large language models (LLMs) can be used to extract health-related domain knowledge for building classification models, while human experts can benefit from the help of AI to further understand caregivers’ HIWs. Our approach has implications for the caregiving of various groups. The outcomes of human–AI collaboration can provide smart interventions to help caregivers and patients.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Adams, S. J., Henderson, R. D., Yi, X., & Babyn, P. (2021). Artificial Intelligence Solutions for Analysis of X-ray Images. Canadian Association of Radiologists Journal, 72(1), 6072.10.1177/0846537120941671CrossRefGoogle ScholarPubMed
Aguirre, A., Hilsabeck, R., Smith, T., Xie, B., He, D., Wang, Z., & Zou, N. (2024). Assessing the Quality of ChatGPT Responses to Dementia Caregivers’ Questions: Qualitative Analysis. JMIR Aging, 7, Article e53019.10.2196/53019CrossRefGoogle ScholarPubMed
Alzheimer’s Association (2022). 2022 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 18(4), 700789.Google Scholar
Bansal, G., Nushi, B., Kamar, E., Horvitz, E., & Weld, D. S. (2021, May). Is the Mmost Accurate AI the Best Teammate? Optimizing AI for Teamwork. Proceedings of the AAAI Conference on Artificial Intelligence, 35(13), 1140511414.10.1609/aaai.v35i13.17359CrossRefGoogle Scholar
Beisecker, A. E., & Beisecker, T. D. (1990). Patient Information-seeking Behaviors when Communicating with Doctors. Medical Care, 28(1), 1928.10.1097/00005650-199001000-00004CrossRefGoogle ScholarPubMed
Benbassat, J., Pilpel, D., & Tidhar, M. (1998). Patients’ Preferences for Participation in Clinical Decision Making: A Review of Published Surveys. Behavioral Medicine, 24(2), 8188.10.1080/08964289809596384CrossRefGoogle ScholarPubMed
Bressan, V., Visintini, C., & Palese, A. (2020). What Do Family Caregivers of People with Dementia Need? A Mixed-method Systematic Review. Health and Social Care in the Community, 28(6), 19421960.10.1111/hsc.13048CrossRefGoogle Scholar
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, H., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models Are Few-shot Learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., & Lin, H. (eds.), NIPS’20: Proceedings of the 34th International Conference on Neural Information Processing Systems (pp. 18771901). Curran Associates.Google Scholar
Charles, C., Gafni, A., & Whelan, T. (1999). Decision-making in the Physician–Patient Encounter: Revisiting the Shared Treatment Decision-making Model. Social Science & Medicine, 49(5), 651661.10.1016/S0277-9536(99)00145-8CrossRefGoogle ScholarPubMed
Chi, Y., He, D., & Jeng, W. (2020). Laypeople’s Source Selection in Online Health Information-seeking Process. Journal of the Association for Information Science and Technology, 71(12), 14841499.10.1002/asi.24343CrossRefGoogle Scholar
Chi, Y., Thaker, K., He, D., Hui, V., Donovan, H., Brusilovsky, P., & Lee, Y. J. (2022). Knowledge Acquisition and Social Support in Online Health Communities: Analysis of an Online Ovarian Cancer Community. JMIR Cancer, 8(3), Article e39643.10.2196/39643CrossRefGoogle ScholarPubMed
De Santis, E., Martino, A., Ronci, F., & Rizzi, A. (2024). From Bag-of-Words to Transformers: A Comparative Study for Text Classification in Healthcare Discussions in Social Media. IEEE Transactions on Emerging Topics in Computational Intelligence, 9(1), 10631077.10.1109/TETCI.2024.3423444CrossRefGoogle Scholar
Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R., Xia, H., Xu, J. Wu, Z., Chang, B., Sun, X., Li, L., & Sui, Z. (2022, June 18). A Survey on In-context Learning [arXiv preprint]. arXiv:2301.00234.Google Scholar
Ende, J., Kazis, L., Ash, A., & Moskowitz, M. A. (1989). Measuring Patients’ Desire for Autonomy: Decision Making and Information-Seeking Preferences among Medical Patients. Journal of General Internal Medicine, 4, 2330.Google ScholarPubMed
Epstein, R. M., Alper, B. S., & Quill, T. E. (2004). Communicating Evidence for Participatory Decision Making. JAMA, 291(19), 23592366.10.1001/jama.291.19.2359CrossRefGoogle ScholarPubMed
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A Guide to Deep Learning in Healthcare. Nature Medicine, 25(1), 2429.10.1038/s41591-018-0316-zCrossRefGoogle ScholarPubMed
Ferraris, G., Monzani, D., Coppini, V., Conti, L., Pizzoli, S. F. M., Grasso, R., & Pravettoni, G. (2023). Barriers to and Facilitators of Online Health Information-seeking Behaviours among Cancer Patients: A Systematic Review. Digital Health, 9, Article 20552076231210663.Google ScholarPubMed
González-Fraile, E., Ballesteros, J., Rueda, J.-R., Santos-Zorrozúa, B., Solà, I., & McCleery, J. (2021). Remotely Delivered Information, Training and Support for Informal Caregivers of People with Dementia. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD006440.pub3.CrossRefGoogle Scholar
Goodman, L. A. (1961). Snowball Sampling. The Annals of Mathematical Statistics, 32, 148170.10.1214/aoms/1177705148CrossRefGoogle Scholar
Guo, Y., Ovadje, A., Al-Garadi, M. A., & Sarker, A. (2024). Evaluating Large Language Models for Health-related Text Classification Tasks with Public Social Media Data. Journal of the American Medical Informatics Association, 31(10), 21812189.10.1093/jamia/ocae210CrossRefGoogle ScholarPubMed
Habehh, H., & Gohel, S. (2021). Machine Learning in Healthcare. Current Genomics, 22(4), 291300.10.2174/1389202922666210705124359CrossRefGoogle ScholarPubMed
Harrington, N. G., & Noar, S. M. (2012). Reporting Standards for Studies of Tailored Interventions. Health Education Research, 27(2), 331342.Google ScholarPubMed
Hemmer, P., Schemmer, M., Riefle, L., Rosellen, N., Vössing, M., & Kühl, N. (2022). Factors That Influence the Adoption of Human–AI Collaboration in Clinical Decision-making [arXiv preprint]. arXiv:2204.09082.Google Scholar
Huang, J., Gu, S. S., Hou, L., Wu, Y., Wang, X., Yu, H., & Han, J. (2023, December). Large Language Models Can Self-Improve. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (pp. 1051–1068).Google Scholar
Hubbard, P. (2008). Here, There, Everywhere: The Ubiquitous Geographies of Heteronormativity. Geography Compass, 2(3), 640658.Google Scholar
Hui, V., Wang, Y., Kunsuk, H., Donovan, H., Brusilovsky, P., He, D., & Lee, Y. J. (2024). Towards Building an e-Librarian System: Exploring Recommendation System Preferences among Ovarian Cancer Patients and Caregivers. In Strudwick, G., Hardiker, N. R., Rees, G., Cook, R., & Lee, Y. J. (eds.), Studies in Health Technology and Informatics: Vol. 315. Innovation in Applied Nursing Informatics (pp. 746747). IOS Press.Google Scholar
Ji, Y., Zou, N., Xie, B., He, D., & Wang, Z. (2022). Automatic Classification of ADRD Caregivers’ Online Information Wants: A Machine Learning Approach. Innovation in Aging, 6(Suppl. 1), 485.Google Scholar
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial Intelligence in Healthcare: Past, Present and Future. Stroke and Vascular Neurology, 2(4), 230243.10.1136/svn-2017-000101CrossRefGoogle ScholarPubMed
Kent, E. E., Rowland, J. H., Northouse, L., Litzelman, K., Chou, W.-Y. S., Shelburne, N., Timura, C., O’Mara, A., & Huss, K. (2016). Caring for Caregivers and Patients: Research and Clinical Priorities for Informal Cancer Caregiving. Cancer, 122(13), 19871995.10.1002/cncr.29939CrossRefGoogle ScholarPubMed
Kung, T. H., Cheatham, M., Medenilla, A., Sillos, C., De Leon, L., Elepaño, C., ... & Tseng, V. (2023). Performance of ChatGPT on USMLE: Potential for AI-assisted Medical Education Using Large Language Models. PLoS Digital Health, 2(2), e0000198.10.1371/journal.pdig.0000198CrossRefGoogle ScholarPubMed
Lai, Y., Kankanhalli, A., & Ong, D. C. (2021). Human–AI Collaboration in Healthcare: A Review and Research Agenda. In Bui, T. X. (ed.), Proceedings of the 54th Hawaii International Conference on System Sciences (pp. 390399). University of Hawaii at Manoa, Department of IT Management.Google Scholar
Li, T., Ma, X., Zhuang, A., Gu, Y., Su, Y., & Chen, W. (2023). Few-shot In-context Learning for Knowledge Base Question Answering [arXiv preprint]. arXiv:2305.01750.Google Scholar
Li, Y., Zhao, W., Dang, B., Yan, X., Gao, M., Wang, W., & Xiao, M. (2024, June). Research on Adverse Drug Reaction Prediction Model Combining Knowledge Graph Embedding and Deep Learning. In 2024 4th International Conference on Machine Learning and Intelligent Systems Engineering (MLISE) (pp. 322329). IEEE.10.1109/MLISE62164.2024.10674360CrossRefGoogle Scholar
Li, Z., Thaker, K., & He, D. (2023, October). SiaKey: A Method for Improving Few-shot Learning with Clinical Domain Information. In 2023 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) (pp. 14). IEEE.Google Scholar
Li, Z., Xie, B., Hilsabeck, R., Aguirre, A., Zou, N., Luo, Z., & He, D. (2024, April 5). Effects of Different Prompts on the Quality of GPT-4 Responses to Dementia Care Questions. In 2024 IEEE 12th International Conference on Healthcare Informatics (ICHI) (pp. 412417). IEEE.10.1109/ICHI61247.2024.00059CrossRefGoogle Scholar
Licklider, J. C. R. (1960). Man–Computer Symbiosis. IRE Transactions on Human Factors in Electronics, HFE-1(1), 411.10.1109/THFE2.1960.4503259CrossRefGoogle Scholar
Liu, Z., Huang, Y., Yu, X., Zhang, L., Wu, Z., Cao, C., ... & Li, X. (2023). Deid-gpt: Zero-shot Medical Text De-identification by Gpt-4 [arXiv preprint]. arXiv:2303.11032.Google Scholar
Magrabi, F., Ammenwerth, E., McNair, J. B., De Keizer, N. F., Hyppönen, H., Nykänen, P., ... & Georgiou, A. (2019). Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications. Yearbook of Medical Informatics, 28(1), 128134.Google ScholarPubMed
Markus, A. F., Kors, J. A., & Rijnbeek, P. R. (2021). The Role of Explainability in Creating Trustworthy Artificial Intelligence for Health Care: A Comprehensive Survey of the Terminology, Design Choices, and Evaluation Strategies. Journal of Biomedical Informatics, 113, Article 103655.10.1016/j.jbi.2020.103655CrossRefGoogle ScholarPubMed
Moor, M., Banerjee, O., Abad, Z. S. H., Krumholz, H. M., Leskovec, J., Topol, E. J., & Rajpurkar, P. (2023). Foundation Models for Generalist Medical Artificial Intelligence. Nature, 616(7956), 259265.10.1038/s41586-023-05881-4CrossRefGoogle ScholarPubMed
Nie, L., Xie, B., Yang, Y., & Shan, Y. M. (2016). Characteristics of Chinese m-Health Applications for Diabetes Self-management. Telemedicine and e-Health, 22(7), 614619.10.1089/tmj.2015.0184CrossRefGoogle ScholarPubMed
Nori, H., King, N., McKinney, S. M., Carignan, D., & Horvitz, E. (2023). Capabilities of GPT-4 on Medical Challenge Problems [arXiv preprint]. arXiv:2303.13375Google Scholar
Open AI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M., Begum, J., … Zoph, B. (2023, March 15). Gpt-4 Technical Report [arXiv preprint]. arXiv:2303.08774.Google Scholar
Peterson, K., Hahn, H., Lee, A. J., Madison, C. A., & Atri, A. (2016). In the Information Age, Do Dementia Caregivers Get the Information They Need? Semi-structured Interviews to Determine Informal Caregivers’ Education Needs, Barriers, and Preferences. BMC Geriatrics, 16, Article 164.10.1186/s12877-016-0338-7CrossRefGoogle ScholarPubMed
Reid, B., & O’Brien, L. (2021). The Psychological Effects of Caring for a Family Member with Dementia. Nursing Older People, 33(6), 2127.10.7748/nop.2021.e1295CrossRefGoogle ScholarPubMed
Reifegerste, J., Meyer, A. S., Zwitserlood, P., & Ullman, M. T. (2021). Aging Affects Steaks More Than Knives: Evidence That the Processing of Words Related to Motor Skills Is Relatively Spared in Aging. Brain and Language, 218, Article 104941.10.1016/j.bandl.2021.104941CrossRefGoogle ScholarPubMed
Shaheen, M. Y. (2021, September 25). Applications of Artificial Intelligence (AI) in Healthcare: A Review [ScienceOpen Preprints].10.14293/S2199-1006.1.SOR-.PPVRY8K.v1CrossRefGoogle Scholar
Shin, J. Y., & Habermann, B. (2022). Caregivers of Adults Living with Alzheimer’s Disease or Dementia in 2020: A Secondary Analysis. Journal of Gerontological Nursing, 48(9), 1525.Google ScholarPubMed
Shneiderman, B., & Plaisant, C. (2009). Designing the User Interface: Strategies for Effective Human–Computer Interaction, 5th ed. Addison-Wesley.Google Scholar
Shu, S., & Woo, B. K. P. (2021). Use of Technology and Social Media in Dementia Care: Current and Future Directions. World Journal of Psychiatry, 11(4), 109123.10.5498/wjp.v11.i4.109CrossRefGoogle ScholarPubMed
Sivarajkumar, S., & Wang, Y. (2023, April). HealthPrompt: A Zero-shot Learning Paradigm for Clinical Natural Language Processing. In AMIA Annual Symposium Proceedings (Vol. 2022, p. 972).Google Scholar
Song, Y., Zhang, J., Tian, Z., Yang, Y., Huang, M., & Li, D. (2024, February 26). LLM-based Privacy Data Augmentation Guided by Knowledge Distillation with a Distribution Tutor for Medical Text Classification [arXiv preprint]. arXiv:2402.16515.Google Scholar
Soong, A., Au, S. T., Kyaw, B. M., Theng, Y. L., & Car, L. T. (2020). Information Needs and Information Seeking Behaviour of People with Dementia and Their Non-professional Caregivers: A Scoping Review. BMC Geriatrics, 20, Article 61.10.1186/s12877-020-1454-yCrossRefGoogle ScholarPubMed
Tang, A. Y., Kwak, J., Xiao, L., Xie, B., Lahiri, S., Flynn, O. A., & Murugadass, A. (2023). Online Health Information Wants of Caregivers for Persons with Dementia in Social Media. SAGE Open, 13(4), 21582440231205367.10.1177/21582440231205367CrossRefGoogle Scholar
Thaker, K., Rahadari, B., Hui, V., Luo, Z., Wang, Y., Brusilovsky, P., He, D., Donovan, H., & Lee, Y. J. (2024). HELPeR: Interface Design Decision and Evaluation. In Strudwick, G., Hardiker, N. R., Rees, G., Cook, R., & Lee, Y. J. (eds.), Studies in Heath Technology and Informatics: Vol. 315. Innovation in Applied Nursing Informatics (pp. 750751). IOS Press.Google Scholar
Wang, D., Churchill, E., Maes, P., Fan, X., Shneiderman, B., Shi, Y., & Wang, Q. (2020, April). From Human–Human Collaboration to Human–AI Collaboration: Designing AI Systems That Can Work Together with People. In CHI EA’20: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery.Google Scholar
Wang, Y., Thaker, K., Hui, V., Brusilovsky, P., He, D., Donovan, H., & Lee, Y. J. (2024). Utilizing Digital Twin to Create Personas Representing Ovarian Cancer Patients and Their Families. In Strudwick, G., Hardiker, N. R., Rees, G., Cook, R., & Lee, Y. J. (eds.), Studies in Health Technology and Informatics: Vol. 315. Innovation in Applied Nursing Informatics (pp. 754756). IOS Press.Google Scholar
Wang, Z., Zou, N., Xie, B., Luo, Z., He, D., Hilsabeck, R. C., & Aguirre, A. (2021). Characterizing Dementia Caregivers’ Information Exchange on Social Media: Exploring an Expert–Machine Co-development Process. In Toeppe, K., Yan, H., & Chu, S. K. W. (eds.), Diversity, Divergence, Dialogue: 16th International Conference, iConference 2021, Beijing, China, March 17–31, 2021, Proceedings, Part I (pp. 4767). Springer-Verlag.10.1007/978-3-030-71292-1_6CrossRefGoogle Scholar
Wu, C., Fang, W., Dai, F., & Yin, H. (2023, October). A Model Ensemble Approach with LLM for Chinese Text Classification. In Xu, H., Chen, Q., Lin, H., Wu, F., Liu, L., Tang, B., Hao, T., Huang, Z., Lei, J., Li, Z., & Zong, H. (eds.), CHIP 2023: Communications in Computer and Information Science, Vol 2080 (pp. 214230). Springer Singapore.Google Scholar
Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.-L., & Tang, Y. (2023). A Brief Overview of ChatGPT: The History, Status Quo and Potential Future Development. IEEE/CAA Journal of Automatica Sinica, 10(5), 11221136.10.1109/JAS.2023.123618CrossRefGoogle Scholar
Xie, B. (2009). Older Adults’ Health Information Wants in the Internet Age: Implications for Patient–Provider Relationships. Journal of Health Communication, 14(6), 510524.Google ScholarPubMed
Xie, B., Berkley, A., Kwak, J., Fleischmann, K. R., Champion, J. D., & Koltai, K. (2018). End-of-Life Decision Making by Family Caregivers of Persons with Advanced Dementia: A Literature Review of Decision Aids. SAGE Open Medicine, 6, 19.Google ScholarPubMed
Xie, B., Su, Z., Liu, Y., Wang, M., & Zhang, M. (2017). Health Information Sources for Different Types of Information Used by Chinese Patients with Cancer and Their Family Caregivers. Health Expectations, 20(4), 665674.10.1111/hex.12498CrossRefGoogle ScholarPubMed
Xie, B., Wang, M., Feldman, R., & Zhou, L. (2010, November). Health Information and Decision-making Preferences in the Internet Age: A Pilot Study Using the Health Information Wants (HIW) Questionnaire. In Proceedings of the 1st ACM International Health Informatics Symposium (pp. 610–619).10.1145/1882992.1883090CrossRefGoogle Scholar
Xie, B., Wang, Z., Zou, N., Luo, Z., Hilsabeck, R., & Aguirre, A. (2020). Detecting ADRD Caregivers’ Information Wants in Social Media: A Machine Learning-Aided Approach. Innovation in Aging, 4(Suppl 1), 656.10.1093/geroni/igaa057.2261CrossRefGoogle Scholar
Zhao, Y. C., Zhao, M., & Song, S. (2022). Online Health Information Seeking Behaviors among Older Adults: Systematic Scoping Review. Journal of Medical Internet Research, 24(2), Article e34790.10.2196/34790CrossRefGoogle ScholarPubMed
Zheng, M., Pei, J., & Jurgens, D. (2023, November 16). Is “A Helpful Assistant” the Best Role for Large Language Models? A Systematic Evaluation of Social Roles in System Prompts [arXiv preprint]. arXiv:2311.10054, 8.Google Scholar
Zou, N., Ji, Y., Xie, B., He, D., & Luo, Z. (2023, March). Mapping Dementia Caregivers’ Comments on Social Media with Evidence-based Care Strategies for Memory Loss and Confusion. In CHIR’23: Proceedings of the 2023 Conference on Human Information Interaction and Retrieval (pp. 362–367).Google Scholar
Zou, N., Thaker, K., & He, D. (2023). A Preliminary Study of Ovarian Cancer Caregivers’ Health Information Seeking on Social Media. Proceedings of the Association for Information Science and Technology, 60(1), 12301232.10.1002/pra2.1001CrossRefGoogle Scholar

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×