Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T21:57:41.377Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  15 June 2023

Alexander von Eye
Affiliation:
Michigan State University
Wolfgang Wiedermann
Affiliation:
University of Missouri
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The General Linear Model
A Primer
, pp. 162 - 171
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions with formulas, graphs and mathematical tables. New York: Dover.Google Scholar
Aguinis, H., Gottfredson, R. K., & Joo, H. (2013). Best-practice recommendations for defining, identifying, and handling outliers. Organizational Research Methods, 16(2), 270301.CrossRefGoogle Scholar
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks: Sage.Google Scholar
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Petrov, B. N. & Caski, F. (Eds.), Proceedings of the second international symposium on information theory (pp. 267281). Budapest: Akademiai Kiado.Google Scholar
Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica, 61(4), 821856. https://doi.org/10.2307/2951764CrossRefGoogle Scholar
Barnett, V., & Lewis, T. (1994). Outliers in statistical data. New York: Wiley & Sons.Google Scholar
Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate Behavioral Research, 40(3), 373400.CrossRefGoogle ScholarPubMed
Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying influential data and sources of collinearity. New York: Wiley & Sons.CrossRefGoogle Scholar
Bollen, K. A., & Jackman, R. W. (1985). Regression diagnostics: An expository treatment of outliers and influential cases. Sociological Methods & Research, 13(4), 510542.Google Scholar
Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345370.Google Scholar
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123140.CrossRefGoogle Scholar
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont: Wadsworth.Google Scholar
Brys, G., Hubert, M., & Struyf, A. (2004). A robust measure of skewness. Journal of Computational and Graphical Statistics, 13, 9961017.CrossRefGoogle Scholar
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach. New York, NY: Springer.Google Scholar
Chen, Z., & Chan, L. (2013). Causality in linear non-Gaussian acyclic models in the presence of latent gaussian confounders. Neural Computation, 25(6), 16051641.Google Scholar
Clogg, C. C., Petkova, E., & Haritou, A. (1995). Statistical methods for comparing regression coefficients between models. American Journal of Sociology, 100(5), 12611293.Google Scholar
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Oxfordshire, UK: Routledge.Google Scholar
Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. London, UK: Chapman & Hall.Google Scholar
Cudeck, R., & du Toit, S. H. C. (2002). A version of quadratic regression with interpretable parameters. Multivariate Behavioral Research, 37, 501519.Google Scholar
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
De Maesschalck, D., Jounan-Rimbaud, D., & Massart, D. L. (2000). The Mahalanobis distance. Chemometrics and Intelligent Laboratory Systems, 50, 118.Google Scholar
Dehaene, S., & Cohen, L. (1998). Levels of representation in number processing. In Stemmer, B. & Whitakter, H. A. (Eds.), Handbook of neurolinguistics (pp. 331341). New York: Academic Press.CrossRefGoogle Scholar
Derksen, S., & Keselman, H. J. (1992). Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology, 45(2), 265282.Google Scholar
DesJardins, D. (2001). Outliers, inliers, and just plain liars: New graphical EDA+ (EDA Plus) techniques for understanding data. Proceedings of the SAS User’s Group International Conference (SUGI26), 26, pp. 169–126. Long Beach, CA.Google Scholar
Dodge, Y., & Rousson, V. (2000). Direction dependence in a regression line. Communications in Statistics: Theory and Methods, 29(9–10), 19571972. https://doi.org/10.1080/03610920008832589Google Scholar
Dodge, Y., & Rousson, V. (2001). On asymmetric properties of the correlation coefficient in the regression setting. The American Statistician, 55(1), 5154. https://doi.org/10.1198/000313001300339932Google Scholar
Dodge, Y., & Yadegari, I. (2010). On direction of dependence. Metrika, 72, 139150. https://doi.org/10.1007/s00184-009-0273-0Google Scholar
Dodge, Y., & Rousson, V. (2016). Recent developments on the direction of a regression line. In Wiedermann, W. & von Eye, A. (Eds.), Statistics and causality: Methods for applied empirical research (pp. 4562). Hoboken: Wiley.Google Scholar
Dunkler, D., Plischke, M., Leffondré, K., & Heinze, G. (2014). Augmented backward elimination: A pragmatic and purposeful way to develop statistical models. PLoS One, 9. (11) https://doi.org/10.1371/journal.pone.0113677.Google Scholar
Dunn, G. (2004). Statistical evaluation of measurement errors: Design and analysis of reliability studies. London: Arnold.Google Scholar
Elwert, F., & Winship, C. (2014). Endogenous selection bias: The problem of conditioning on a collider variable. Annual Review of Sociology, 40(1), 3153.Google Scholar
Entner, D., Hoyer, P. O., & Spirtes, P. (2012). Statistical test for consistent estimation of causal effects in linear non-Gaussian models. Journal of Machine Learning Research: Workshop and Conference Proceedings, 22, 364372.Google Scholar
Falk, R., & Well, A. (1997). Many faces of the correlation coefficient. Journal of Statistics Education, 5(1), 112. https://doi.org/10.1080/10691898.1997.11910597Google Scholar
Falkenhagen, U., Kössler, W., & Lenz, H. J. (2019). A likelihood ratio test for inlier detection. In Workshop on stochastic models, statistics and their application (pp. 351359). Cham: Springer.Google Scholar
Feigelson, E. D., & Babu, G. J. (1992). Statistical challenges in modern astronomy. New York: Springer.Google Scholar
Ferris, J., & Wynne, H. (2001). The Canadian problem gambling index: Final report. Canadian Center on Substance Abuse.Google Scholar
Finkelstein, J. W., von Eye, A., & Preece, M. A. (1994). The relationship between aggressive behavior and puberty in normal adolescents: A longitudinal study. Journal of Adolescent Health, 15, 319326.Google Scholar
Fischer, K., & van Geert, P. (2014). Dynamic development of brain and behavior. In Molenaar, P., Lerner, R., & Newell, K. (Eds.), Handbook of developmental systems theory and methodology (pp. 287315). New York, NY: Guilford Press.Google Scholar
Flack, V. F., & Chang, P. C. (1987). Frequency of selecting noise variables in subset regression analysis: a simulation study. American Statistician, 41(1), 8486.Google Scholar
Frisch, R., & Waugh, F. (1933). Partial time regressions as compared with individual trends. Econometrica, 1, 387401.CrossRefGoogle Scholar
Fuller, W. A. (1987). Measurement error models. New York: Wiley.Google Scholar
Furnival, G. M., & Wilson, R. W. (2000). Regression by leaps and bounds. Technometrics, 42, 6979.Google Scholar
Gebauer, L., LaBrie, R.,&Shaffer, H. J. (2010). OptimizingDSM-IV-TR classification accuracy:Abrief biosocial screen for detecting current gambling disorders among gamblers in the general household population. The Canadian Journal of Psychiatry, 55(2), 8290. https://doi.org/10.1177/070674371005500204Google Scholar
Glaister, P. (2001). Least squares revisited. The Mathematical Gazette, 85(502), 104107.Google Scholar
Greenacre, M., & Ayhan, H (2014). Identifying Inliers. Barcelona GSE Working Paper Series. URL: https://econ-papers.upf.edu/papers/1423.pdf (last accessed July 16, 2021).Google Scholar
Greenland, S., Pearl, J., & Robins, J. M. (1999). Causal diagrams for epidemiologic research. Epidemiology, 10, 3748.Google Scholar
Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., & Smola, A. J. (2008). A kernel statistical test of independence. Advances in Neural Information Processing Systems, 20, 585592.Google Scholar
Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic regression, and survival analysis. New York, Berlin, Heidelberg: Springer.Google Scholar
Harrell, F. E., Lee, K. L., & Mark, D. B. (1996). Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine, 15(4), 361387.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Harrell, F. E., Lee, K. L., Califf, R. M., Pryor, D. B., & Rosati, R. A. (1984). Regression modelling strategies for improved prognostic prediction. Statistics in Medicine, 3, 143152.Google Scholar
Harris, K. M., & Udry, J. R. (1994–2008). National Longitudinal Study of Adolescent to Adult Health (Add Health), 1994–2008 [Public Use]. Carolina Population Center, University of North Carolina-Chapel Hill, Inter-university Consortium for Political and Social Research, 2021–06–10. https://doi.org/10.3886/ICPSR21600.v22Google Scholar
Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models. London, UK: Chapman & Hill.Google Scholar
Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (2nd ed.). New York, NY: Springer.Google Scholar
Heinze, G., & Dunkler, D. (2017). Five myths about variable selection. Transplant International, 30, 610.Google Scholar
Heinze, G., Wallisch, C., & Dunkler, D. (2018). Variable selection: A review and recommendations for the practicing statistician. Biometrical Journal, 60(3), 431449.CrossRefGoogle ScholarPubMed
Hernandez-Lobato, D., Morales Mombiela, P., Lopez-Paz, D., & Suarez, A. (2016). Non-linear causal inference using Gaussianity measures. Journal of Machine Learning Research, 17, 139.Google Scholar
Hettmansperger, T. P., & Sheather, S. J. (1992). A cautionary note on the method of least median squares. The American Statistician, 46(2), 7983.Google Scholar
Hettmansperger, T. P., McKean, J. W., & Sheather, S. J. (1997). 7 Rank-based analyses of linear models. In Maddala, G. S. & Rao, C. R. (Eds.), Handbook of Statistics: Robust Inference (pp. 145173). Amsterdam: North-Holland.Google Scholar
Hjort, N. L., & Koning, A. (2002). Tests for constancy of model parameters over time. Journal of Nonparametric Statistics, 14, 113132. https://doi.org/10.1080/10485250211394Google Scholar
Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (1983). Understanding robust and exploratory data analysis. New York, NY: Wiley & Sons.Google Scholar
Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). New York, NY: John Wiley & Sons.Google Scholar
Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15, 651674. https://doi.org/10.1198/106186006X133933CrossRefGoogle Scholar
Hubert, M., & Vandervieren, E. (2008). An adjusted boxplot for skewed distributions. Computational Statistics & Data Analysis, 52(12), 51865201.Google Scholar
Hyvärinen, A., & Smith, S. M. (2013). Pairwise likelihood ratios for estimation of non-Gaussian structural equation models. Journal of Machine Learning Research, 14, 111152.Google Scholar
Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent components analysis. New York: Wiley.Google Scholar
Hyvärinen, A., Zhang, K., Shimizu, S., & Hoyer, P. O. (2010). Estimation of a structural vector autoregression model using non-Gaussianity. Journal of Machine Learning Research, 11(5), 123.Google Scholar
Johnson, P. O., & Fay, L. C. (1950). The Johnson–Neyman technique, its theory and application. Psychometrika, 15(4), 349367.Google Scholar
Johnson, P. O., & Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs, 1, 5793.Google Scholar
Kim, H., & Loh, W.-Y. (2001). Classification trees with unbiased multiway splits. Journal of the American Statistical Association, 96, 589604.Google Scholar
Koller, I., & Alexandrowicz, R. W. (2010). A psychometric analysis of the ZAREKI-R using Rasch-models. Diagnostica, 56, 5767.Google Scholar
Krass, R., & Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773795.Google Scholar
Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2004). Applied linear statistical models (4th ed.). Boston, MA: McGraw-Hill.Google Scholar
Lesieur, H. R., & Blume, S. B. (1987). The south oaks gambling screen (SOGS): A new instrument for the identification of pathological gamblers. The American Journal of Psychiatry, 144(9), 11841188. https://doi.org/10.1176/ajp.144.9.1184Google Scholar
Leys, C., Klein, O., Dominicy, Y., & Ley, C. (2018). Detecting multivariate outliers: Use a robust variant of the Mahalanobis distance. Journal of Experimental Social Psychology, 74, 150156.Google Scholar
Li, X., & Wiedermann, W. (2020). Conditional direction dependence analysis: Evaluating the causal direction of effects in linear models with interaction terms. Multivariate Behavioral Research, 55(5), 786810.Google Scholar
Li, X., Bergin, C., & Olsen, A. A. (2022). Positive teacher-student relationships may lead to better teaching. Learning and Instruction (in press).Google Scholar
Lima, E., Davies, P., Kaler, J., Lovatt, F., & Green, M. (2020). Variable selection for inferential models with relatively high-dimensional data: Between method heterogeneity and covariate stability as adjuncts to robust selection. Scientific Reports, 10(1), 111. 8002.Google Scholar
Liu, Y., & Zumbo, B. D. (2012). Impact of outliers arising from unintended and unknowingly included subpopulations on the decisions about the number of factors in exploratory factor analysis. Educational and Psychological Measurement, 72(3), 388414.Google Scholar
Lobato-Calleros, O. C., Martínez, J. M., Miranda, V. S., Rivera, H., & Serrato, H. (2007). Diseño de la evaluación del Índice Mexicano de Satisfacción del Usario del programa de abasto social de leche y del programa de estancias y garderías infantiles de la SEDESOL. Universidad Iberoamericana, México, D.F.: unpublished project report.Google Scholar
Loh, W.-Y. (2009). Improving the precision of classification trees. Annals of Applied Statistics, 3, 17101737.Google Scholar
Loh, W.-Y. (2014). Fifty years of classification and regression trees. International Statistical Review, 82(3), 329348.Google Scholar
Loh, W.-Y., & Shih, Y.-S. (1997). Split selection methods for classification trees. Statistica Sinica, 7, 815840.Google Scholar
Loh, W.-Y., & Vanichsetakul, N. (1988). Tree-structured classification via generalized discriminant analysis (with discussion). Journal of the American Statistical Association, 83, 715728.Google Scholar
Long, J. S., & Ervin, L. H. (2000). “Using heteroscedasticity consistent standard errors in the linear regression model.” The American Statistician, 54, 217224.Google Scholar
Lovell, M. (1963). Seasonal adjustment of economic time series and multiple regression analysis. Journal of the American Statistical Association, 58, 9931010.Google Scholar
Maeda, T. N., & Shimizu, S. (2020). RCD: Repetitive causal discovery of linear non-Gaussian acyclic models with latent confounders. In International Conference on Artificial Intelligence and Statistics (pp. 735745). PMLR.Google Scholar
Mandell, L. (1972). A modal search technique for predictive nominal scale multivariate analysis. Journal of the American Statistical Association, 67, 768772.Google Scholar
Mason, R. L., Gunst, R. F., & and Hess, J. L. (1989). Statistical design and analysis of experiments. New York: John Wiley.Google Scholar
McNeish, D. M. (2015). Using lasso for predictor selection and to assuage overfitting: A method long overlooked in behavioral sciences. Multivariate Behavioral Research, 50(5), 471484.Google Scholar
Merkle, E. C., Fan, J., & Zeileis, A. (2014). Testing for measurement invariance with respect to an ordinal variable. Psychometrika, 79(4), 569584.Google Scholar
Morgan, J. N., & Sonquist, J. A. (1963). Problems in the analysis of survey data, and a proposal. Journal of the American Statistical Assocication, 58, 415434.Google Scholar
Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. New York: Wiley.Google Scholar
Nelsen, R. B. (1998). Correlation, regression lines, and moments of inertia. The American Statistician, 52, 343345.Google Scholar
Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669688.Google Scholar
Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2, 559572.Google Scholar
Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of causal inference: Foundations and learning algorithms. Cambridge, MA: MIT Press.Google Scholar
Philipp, M., Rusch, T., Hornik, K., & Strobl, C. (2018). Measuring the stability of results from supervised statistical learning. Journal of Computational and Graphical Statistics, 27, 685700.Google Scholar
Pollaris, A., & Bontempi, G. (2020). Latent causation: An algorithm for pairs of correlated latent variables in linear non-Gaussian structural equation modeling. BNAIC/BeneLearn, 2020, 209.Google Scholar
Pornprasertmanit, S., & Little, T. D. (2012). Determining directional dependency in causal associations. International Journal of Behavioral Development, 36, 313322.Google Scholar
Potthoff, R. F. (1964). On the Johnson-Neyman technique and some extensions thereof. Psychometrika, 29, 241256. https://doi.org/10.1007/BF02289721Google Scholar
Primack, B. A., Swanier, B., Georgiopoulos, A. M., Land, S. R., & Fine, M. J. (2009). Association between media use in adolescence and depression in young adulthood: a longitudinal study. Archives of General Psychiatry, 66(2), 181188.Google Scholar
Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401.Google Scholar
Reichenbach, H. (1956). The direction of time. Los Angeles, CA: Los Angeles University Press.Google Scholar
Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42, 5966.Google Scholar
Rosenström, T., & García-Velázquez, R. (2020). Distribution-based causal inference: A review and practical guidance for epidemiologists. In Wiedermann, W., Kim, D., Sungur, E., & von Eye, A. (Eds.), Direction dependence in statistical modeling: Methods of analysis (pp. 267294). Hoboken, NJ: Wiley & Sons.Google Scholar
Rosenström, T., Jokela, M., Puttonen, S., Hintsanen, M., Pulkki-Råback, L., Viikari, J. S., & Keltikangas-Järvinen, L. (2012). Pairwise measures of causal direction in the epidemiology of sleep problems and depression. PloS One, 7(11), e50841.Google Scholar
Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79, 871880.Google Scholar
Rousseeuw, P. J., & Leroy, A. M. (2003). Robust regression and outlier detection. New York, NY: Wiley & Sons.Google Scholar
Rovine, M. J., & von Eye, A. (1997). A 14th way to look at a correlation coefficient: Correlation as the proportion of matches. The American Statistician, 51, 4246.Google Scholar
Royston, P., & Sauerbrei, W. (2003). Stability of multivariable fractional polynomial models with selection of variables and transformations: A bootstrap investigation. Statistics in Medicine, 22, 639659.Google Scholar
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5), 688701.Google Scholar
Sauerbrei, W., & Royston, P. (1999). Building multivariable prognostic and diagnostic models: Transformation of the predictors using fractional polynomials. Journal of the Royal Statistical Society A, 162, 7194.Google Scholar
Sauerbrei, W., Buchholz, A., Boulesteix, A.-L., & Binder, H. (2015). On stability issues in deriving multivariable regression models. Biometrical Journal, 57, 531555.Google Scholar
Schlosser, L., Hothorn, T., & Zeileis, A. (2020). The power of unbiased recursive partitioning: A unifying view of CTree, MOB, and GUIDE. arXiv preprint arXiv:1906.10179.Google Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464.Google Scholar
Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52(3), 333343.Google Scholar
Shimizu, S. (2019). Non-Gaussian methods for causal structure learning. Prevention Science, 20(3), 431441.Google Scholar
Shimizu, S., Inazumi, T., Sogawa, Y., Hyvarinen, A., Kawahara, Y., Washio, T., & Hoyer, P. (2011). DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model. Journal of Machine Learning Research, 12(Apr), 12251248.Google Scholar
Shmueli, G. (2010). To explain or to predict? Statistical Science, 25, 289310.Google Scholar
Stevens, J. P. (1984). Outliers and influential data points in regression analysis. Psychological Bulletin, 95(2), 334344.CrossRefGoogle Scholar
Steyerberg, E. W. (2009). Clinical prediction models. New York, NY: Springer.Google Scholar
Stimson, J. A., Carmines, E. G., & Zeller, R. A. (1978). Interpreting polynomial regression. Sociological Methods & Research, 6(4), 515524.Google Scholar
Strobl, C., Wickelmaier, F., & Zeileis, A. (2011). Accounting for individual differences in Bradley-Terry models by means of recursive partitioning. Journal of Educational and Behavioral Statistics, 36, 135153. https://doi.org/10.3102/1076998609359791Google Scholar
Su, X., Wang, M., & Fan, J. (2004). Maximum likelihood regression trees. Journal of Computational and Graphical Statistics, 13(3), 586598.Google Scholar
Sugiyama, M. (2016). Introduction to machine learning. Amsterdam: Elsevier.Google Scholar
Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. Annals of Statistics, 35(6), 27692794.Google Scholar
Taylor, J., & Tibshirani, R. J. (2015). Statistical learning and selective inference. Proceedings of the National Academy of Sciences of the United States of America, 112, 76297634.Google Scholar
Theil, H. (1972). Principles of econometrics. New York: Wiley.Google Scholar
Turney, P. (1995). Technical note: Bias and the quantification of stability. Machine Learning, 20, 2333. https://doi.org/10.1007/BF00993473Google Scholar
VanderWeele, T. J., & Shpitser, I. (2011). A new criterion for confounder selection. Biometrics, 67, 14061413.CrossRefGoogle ScholarPubMed
Vansteelandt, S., Bekaert, M., & Claeskens, G. (2012). On model selection and model misspecification in causal inference. Statistical Methods in Medical Research, 21, 730.Google Scholar
von Aster, M., Weinhold Zulauf, M., & Horn, R. (2006). Neuropsychologische Testbatterie fuer Zahlenverarbeitung und Rechnen bei Kindern (ZAREKI-R) [Neuropsychological test battery for number processing and calculation in children]. Frankfurt: Harcourt Test Services.Google Scholar
von Eye, A., & DeShon, R. P. (2012). Directional dependency in developmental research. International Journal of Behavior Development, 36, 303312.Google Scholar
von Eye, A., & Mun, E. Y. (2013). Log-linear modelling. Hoboken, NJ: Wiley & Sons.Google Scholar
von Eye, A., & Rovine, M. J. (1991). Robust symmetrical regression in astronomy. The Institute of Mathematical Statistics Bulletin, 20, 277.Google Scholar
von Eye, A., & Schuster, C. (1998). Regression analysis for social sciences – models and applications. San Diego: Academic Press.Google Scholar
von Eye, A., & Wiedermann, W. (2014). On direction of dependence in latent variable contexts. Educational and Psychological Measurement, 74(1), 530.Google Scholar
von Eye, A., & Wiedermann, W. (2021). Configural frequency analysis: Foundations, Models, and applications. Berlin: Springer.Google Scholar
Weinstock, J., Whelan, J. P., & Meyers, A. W. (2004). Behavioral assessment of gambling: An application of the timeline followback method. Psychological Assessment, 16(1), 7280. https://doi.org/10.1037/1040-3590.16.1.72Google Scholar
Whiteside, S. P., & Lynam, D. R. (2001). The five factor model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30(4), 669689. https://doi.org/10.1016/S0191-8869(00)00064-7Google Scholar
Wiedermann, W. (2015). Decisions concerning the direction of effects in linear regression models using fourth central moments. In Stemmler, M., von Eye, A., & Wiedermann, W. (Eds.), Dependent data in social sciences research: Forms, issues, and methods of analysis (Vol. 145, pp. 149169). New York, NY: Springer.Google Scholar
Wiedermann, W. (2018). A note on fourth moment-based direction dependence measures when regression errors are non normal. Communications in Statistics – Theory and Methods, 47, 52555264. https://doi.org/10.1080/03610926.2017.1388403Google Scholar
Wiedermann, W. (2020). Asymmetry properties of the partial correlation coefficient: foundations for covariate adjustment in distribution-based direction dependence analysis. In Wiedermann, W., Kim, D., Sungur, E. A., & von Eye, A (Eds.), Direction dependence in statistical modeling: Methods of analysis (pp. 81110). New York, NY: Wiley.Google Scholar
Wiedermann, W. (2022). Third moment-based causal inference. Behaviormetrika, 49, 303328. https://doi.org/10.1007/s41237-021-00154-8Google Scholar
Wiedermann, W., & Hagmann, M. (2016). Asymmetric properties of the Pearson correlation coefficient: Correlation as the negative association between linear regression residuals. Communication in Statistics- Theory and Methods, 45, 62636283. https://doi.org/10.1080/03610926.2014.960582Google Scholar
Wiedermann, W., & Li, X. (2018). Direction dependence analysis: A framework to test the direction of effects in linear models with an implementation in SPSS. Behavior Research Methods, 50(4), 15811601.Google Scholar
Wiedermann, W., & Sebastian, J. (2020a). Direction dependence analysis in the presence of confounders: Applications to linear mediation models using observational data. Multivariate Behavioral Research, 55(4), 495515. https://doi.org/10.1080/00273171.2018.1528542Google Scholar
Wiedermann, W., & Sebastian, J. (2020b). Sensitivity analysis and extensions of testing the causal direction of dependence: A rejoinder to Thoemmes (2019). Multivariate Behavioral Research, 55(4), 523530.Google Scholar
Wiedermann, W., & von Eye, A. (2015a). Direction-dependence analysis: A confirmatory approach for testing directional theories. International Journal of Behavioral Development, 39(6), 570580.Google Scholar
Wiedermann, W., & von Eye, A. (2015b). Direction of effects in multiple linear regression model. Multivariate Behavioral Research, 50, 2340.Google Scholar
Wiedermann, W., & von Eye, A. (2015c). Direction of effects in mediation analysis. Psychological Methods, 20(2), 221244.Google Scholar
Wiedermann, W., & von Eye, A. (2016). Directional dependence in the analysis of single subjects. Journal of Person-Oriented Research, 2, 2033.Google Scholar
Wiedermann, W., & von Eye, A. (2020). Log-linear models to evaluate direction of effect in binary variables. Statistical Papers, 61(1), 317346.Google Scholar
Wiedermann, W., Artner, R., & von Eye, A. (2017). Heteroscedasticity as a basis of direction dependence in reversible linear regression models. Multivariate Behavioral Research, 52, 222241.Google Scholar
Wiedermann, W., Frick, U., & Merkle, E. C. (2022). Detecting heterogeneity of intervention effects in comparative judgments. Prevention Science, 34, 111.Google Scholar
Wiedermann, W., Frick, U., & Merkle, E. C. (2023). Detecting heterogeneity of intervention effects in comparative judgments. Prevention Science. https://doi.org/10.1007/s11121-021-01212-zGoogle Scholar
Wiedermann, W., Hagmann, M., & von Eye, A. (2015). Significance tests to determine the direction of effects in linear regression models. British Journal of Mathematical and Statistical Psychology, 68, 116141.Google Scholar
Wiedermann, W., Hagmann, M., Kossmeier, M., & von Eye, A. (2013). Resampling techniques to determine direction of effects in linear regression models. Interstat. Retrieved May 13, 2013, from http://interstat.statjournals.net/YEAR/2013/articles/1305002.pdfGoogle Scholar
Wiedermann, W., Herman, K. C., Reinke, W., & von Eye, A. (2022b). Configural frequency trees. Development and Psychopathology, 34, 119.Google Scholar
Wiedermann, W., Kim, D., Sungur, E., & von Eye, A. (Eds.), (2020). Direction dependence in statistical modeling: Methods of analysis. Hoboken, NJ: Wiley & Sons.Google Scholar
Wiedermann, W., Li, X., & von Eye, A. (2019). Testing the causal direction of mediation effects in randomized intervention studies. Prevention Science, 20(3), 419430.Google Scholar
Zeileis, A., & Hornik, K. (2007). Generalized M-fluctuation tests for parameter instability. Statistica Neerlandica, 61, 488508 https://doi.org/10.1111/j.1467-9574.2007.00371.xGoogle Scholar
Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 17, 492514. https://doi.org/10.1198/106186008X319331Google Scholar
Zhang, B., & Wiedermann, W. (2023). Covariate selection in causal learning under non-Gaussianity. Under review.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×