Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-v48vw Total loading time: 0 Render date: 2025-12-11T14:39:34.172Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  20 November 2025

Nathanaël Berestycki
Affiliation:
Universität Wien, Austria
Ellen Powell
Affiliation:
Durham University
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abe, Yoshihiro and Biskup, Marek. Exceptional points of two-dimensional random walks at multiples of the cover time. Probab. Theory Relat. Fields, 183(1–2):1–55, 2022.10.1007/s00440-022-01113-4CrossRefGoogle Scholar
Aı̈dékon, Elie, Berestycki, Julien, Brunet, Éric, and Shi, Zhan. Branching Brownian motion seen from its tip. Probab. Theory Relat. Fields, 157(1–2):405–451, 2013.10.1007/s00440-012-0461-0CrossRefGoogle Scholar
Aı̈dékon, Élie, Berestycki, Nathanaël, Jego, Antoine, and Lupu, Titus. Multiplicative chaos of the Brownian loop soup. Proc. Lond. Math. Soc. (3), 126(4):1254–1393, 2023.10.1112/plms.12511CrossRefGoogle Scholar
Arguin, Louis-Pierre, Bovier, Anton, and Kistler, Nicola. The extremal process of branching Brownian motion. Probab. Theory Relat. Fields, 157(3–4):535–574, 2013.10.1007/s00440-012-0464-xCrossRefGoogle Scholar
Angel, Omer and Curien, Nicolas. Percolation on random maps I: Half-plane models. Ann. Inst. Henri Poincaré Probab. Stat., 51(2):405–431, 2015.CrossRefGoogle Scholar
Adams, Robert A. and Fournier, John J. F.. Sobolev spaces, Vol. 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, 2nd ed., 2003.Google Scholar
Aru, Juhan, Huang, Yichao, and Sun, Xin. Two perspectives of the 2D unit area quantum sphere and their equivalence. Comm. Math. Phys., 356(1):261–283, 2017.CrossRefGoogle Scholar
Aı̈dékon, Elie, Hu, Yueyun, and Shi, Zhan. Points of infinite multiplicity of planar Brownian motion: Measures and local times. Ann. Probab., 48(4):1785–1825, 2020.10.1214/19-AOP1407CrossRefGoogle Scholar
Ang, Morris, Holden, Nina, and Sun, Xin. Integrability of SLE via conformal welding of quantum surfaces. Commun. Pure Appl. Math., to appear, 2024.10.1002/cpa.22180CrossRefGoogle Scholar
Aldous, David J.. The random walk construction of uniform spanning trees and uniform labelled trees. SIAM J. Discrete Math., 3(4):450–465, 1990.10.1137/0403039CrossRefGoogle Scholar
Aldous, David J.. The continuum random tree. III. Ann. Probab., 21(1):248–289, 1993.Google Scholar
Angel, Omer. Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal., 13(5):935–974, 2003.10.1007/s00039-003-0436-5CrossRefGoogle Scholar
Aru, Juhan and Powell, Ellen. A characterisation of the continuum Gaussian free field in arbitrary dimensions. J. Éc. Polytech. Math., 9:1101–1120, 2022.10.5802/jep.201CrossRefGoogle Scholar
Ang, Morris, Remy, Guillaume, and Sun, Xin. FZZ formula of boundary Liouville CFT via conformal welding. J. Eur. Math. Soc., to appear, 2023.10.4171/jems/1391CrossRefGoogle Scholar
Aru, Juhan. KPZ relation does not hold for the level lines and flow lines of the Gaussian free field. Probab. Theory Relat. Fields, 163(3–4):465–526, 2015.10.1007/s00440-014-0597-1CrossRefGoogle Scholar
Aru, Juhan. Gaussian multiplicative chaos through the lens of the 2D Gaussian free field. Markov Process. Relat. Fields, 26(1):17–56, 2020.Google Scholar
Angel, Omer and Schramm, Oded. Uniform infinite planar triangulations. Comm. Math. Phys., 241(2–3):191–213, 2003.10.1007/s00220-003-0932-3CrossRefGoogle Scholar
Aubin, Thierry. Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.10.1007/978-3-662-13006-3CrossRefGoogle Scholar
Ang, Morris and Yu, Pu. Reversibility of whole-plane SLE for . arXiv preprint arXiv:2309.05176, 2023.Google Scholar
Baxter, Rodney J.. Equivalence of the two results for the free energy of the chiral Potts model. J. Statist. Phys., 98(3–4):513–535, 2000.10.1023/A:1018621421257CrossRefGoogle Scholar
Borot, Gaëtan, Bouttier, Jérémie, and Guitter, Emmanuel. Loop models on random maps via nested loops: The case of domain symmetry breaking and application to the Potts model. J. Phys. A, 45(49):494017, 35, 2012.10.1088/1751-8113/45/49/494017CrossRefGoogle Scholar
Borot, Gaëtan, Bouttier, Jérémie, and Guitter, Emmanuel. A recursive approach to the model on random maps via nested loops. J. Phys. A, 45(4):045002, 38, 2012.Google Scholar
Bass, Richard F., Burdzy, Krzysztof, and Khoshnevisan, Davar. Intersection local time for points of infinite multiplicity. Ann. Probab., 22(2):566–625, 1994.10.1214/aop/1176988722CrossRefGoogle Scholar
Bernardi, Olivier and Bousquet-Mélou, Mireille. Counting colored planar maps: Algebraicity results. J. Combin. Theory Ser. B, 101(5):315–377, 2011.10.1016/j.jctb.2011.02.003CrossRefGoogle Scholar
Benjamini, Itai and Curien, Nicolas. Simple random walk on the uniform infinite planar quadrangulation: Subdiffusivity via pioneer points. Geom. Funct. Anal., 23(2):501–531, 2013.10.1007/s00039-013-0212-0CrossRefGoogle Scholar
Beffara, Vincent. The dimension of the SLE curves. Ann. Probab., 36(4):1421–1452, 2008.10.1214/07-AOP364CrossRefGoogle Scholar
Bertoin, Jean. Lévy processes, Vol. 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996.Google Scholar
Bernardi, Olivier. Bijective counting of tree-rooted maps and shuffles of parenthesis systems. Electron. J. Combin., 14(1), 2007.10.37236/928CrossRefGoogle Scholar
Bernardi, Olivier. A characterization of the Tutte polynomial via combinatorial embeddings. Ann. Comb., 12(2):139–153, 2008.10.1007/s00026-008-0343-4CrossRefGoogle Scholar
Berestycki, Nathanaël. Diffusion in planar Liouville quantum gravity. Ann. Inst. Henri Poincaré Probab. Stat., 51(3):947–964, 2015.10.1214/14-AIHP605CrossRefGoogle Scholar
Berestycki, Nathanaël. An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab., 22, 2017.10.1214/17-ECP58CrossRefGoogle Scholar
Baverez, Guillaume, Guillarmou, Colin, Kupiainen, Antti, Rhodes, Rémi, and Vargas, Vincent. The Virasoro structure and the scattering matrix for Liouville conformal field theory. Probability and Math. Physics, to appear, 2024.10.2140/pmp.2024.5.269CrossRefGoogle Scholar
Berestycki, Nathanaël, Garban, Christophe, Rhodes, Rémi, and Vargas, Vincent. KPZ formula derived from Liouville heat kernel. J. Lond. Math. Soc. (2), 94(1):186–208, 2016.10.1112/jlms/jdw031CrossRefGoogle Scholar
Benoist, Stéphane and Hongler, Clément. The scaling limit of critical Ising interfaces is . Ann. Probab., 47(4):2049–2086, 2019.CrossRefGoogle Scholar
Bernardi, Olivier, Holden, Nina, and Sun, Xin. Percolation on triangulations: A bijective path to Liouville quantum gravity. Mem. Amer. Math. Soc., 289(1440):v+176, 2023.Google Scholar
Bettinelli, Jérémie, Jacob, Emmanuel, and Miermont, Grégory. The scaling limit of uniform random plane maps, via the Ambjørn-Budd bijection. Electron. J. Probab., 19, 2014.10.1214/EJP.v19-3213CrossRefGoogle Scholar
Barral, Julien, Jin, Xiong, Rhodes, Rémi, and Vargas, Vincent. Gaussian multiplicative chaos and KPZ duality. Commun. Math. Phyis., 323:451–485, 2013.Google Scholar
Berestycki, Nathanaël, Laslier, Benoı̂t, and Ray, Gourab. Critical exponents on Fortuin-Kasteleyn weighted planar maps. Comm. Math. Phys., 355(2):427–462, 2017.10.1007/s00220-017-2933-7CrossRefGoogle Scholar
Bacry, Emmanuel and Muzy, Jean-Francois. Log-infinitely divisible multifractal processes. Comm. Math. Phys., 236(3):449–475, 2003.10.1007/s00220-003-0827-3CrossRefGoogle Scholar
Baur, Erich, Miermont, Grégory, and Ray, Gourab. Classification of scaling limits of uniform quadrangulations with a boundary. Ann. Probab., 47(6):3397–3477, 2019.10.1214/18-AOP1316CrossRefGoogle Scholar
Berestycki, Nathanaël and Norris, James R.. Lectures on Schramm–Loewner Evolution. Available on the websites of the authors, 2011.Google Scholar
Berestycki, Nathanaël, Powell, Ellen, and Ray, Gourab. A characterisation of the Gaussian free field. Probab. Theory Relat. Fields, 176(3–4):1259–1301, 2020.10.1007/s00440-019-00939-9CrossRefGoogle Scholar
Berestycki, Nathanaël, Powell, Ellen, and Ray, Gourab. moments suffice to characterise the GFF. Electron. J. Probab., 26, 2021.Google Scholar
Belavin, A. A., Polyakov, A. M., and Zamolodchikov, A. B.. Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B, 241(2):333–380, 1984.10.1016/0550-3213(84)90052-XCrossRefGoogle Scholar
Belavin, A. A., Polyakov, A. M., and Zamolodchikov, A. B.. Infinite conformal symmetry of critical fluctuations in two dimensions. J. Statist. Phys., 34(5–6):763–774, 1984.10.1007/BF01009438CrossRefGoogle Scholar
Broder, Andrei Z. Generating random spanning trees. In FOCS, Vol. 89, pages 442–447, 1989.Google Scholar
Berestycki, Nathanaël, Sheffield, Scott, and Sun, Xin. Equivalence of Liouville measure and Gaussian free field. Ann. Inst. Henri Poincaré Probab. Stat., 59(2):795–816, 2023.10.1214/22-AIHP1280CrossRefGoogle Scholar
Berestycki, Nathanaël, Webb, Christian, and Dick Wong, Mo. Random Hermitian matrices and Gaussian multiplicative chaos. Probab. Theory Relat. Fields, 172(1–2):103–189, 2018.10.1007/s00440-017-0806-9CrossRefGoogle Scholar
Chen, Linxiao, Curien, Nicolas, and Maillard, Pascal. The perimeter cascade in critical Boltzmann quadrangulations decorated by an loop model. Ann. Inst. Henri Poincaré D, 7(4):535–584, 2020.Google Scholar
Chelkak, Dmitry, Hugo Duminil-Copin, Clément Hongler, Kemppainen, Antti, and Smirnov, Stanislav. Convergence of Ising interfaces to Schramm’s SLE curves. C. R. Math. Acad. Sci. Paris, 352(2):157–161, 2014.10.1016/j.crma.2013.12.002CrossRefGoogle Scholar
Cerclé, Baptiste. Liouville conformal field theory on even-dimensional spheres. J. Math. Phys., 63(1):Paper No. 012301, 25, 2022.Google Scholar
Chevillard, Laurent, Garban, Christophe, Rhodes, Rémi, and Vargas, Vincent. On a skewed and multifractal unidimensional random field, as a probabilistic representation of Kolmogorov’s views on turbulence. Ann. Henri Poincaré, 20(11):3693–3741, 2019.10.1007/s00023-019-00842-yCrossRefGoogle Scholar
Chavel, Isaac. Eigenvalues in Riemannian geometry, Vol. 115 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk.Google Scholar
Chainais, Pierre. Multidimensional infinitely divisible cascades. Eur. Phys. J. B-Condens. Matter Complex Syst., 51(2):229–243, 2006.10.1140/epjb/e2006-00213-yCrossRefGoogle Scholar
Chen, Mu-Fa. From Markov chains to non-equilibrium particle systems. World Scientific Publishing Co., Inc., River Edge, NJ, 2nd ed., 2004.10.1142/5513CrossRefGoogle Scholar
Chevillard, Laurent. Une peinture aléatoire de la turbulence des fluides. PhD thesis, ENS Lyon, (Habilitation à diriger des recherches), 2015.Google Scholar
Chen, Linxiao. Basic properties of the infinite critical-FK random map. Ann. Inst. Henri Poincaré D, 4(3):245–271, 2017.Google Scholar
Curien, Nicolas and Kortchemski, Igor. Percolation on random triangulations and stable looptrees. Probab. Theory Relat. Fields, 163(1–2):303–337, 2015.CrossRefGoogle Scholar
Camia, Federico and Newman, Charles M.. and from critical percolation. In Probability, geometry and integrable systems, Vol. 55 of Math. Sci. Res. Inst. Publ., pages 103–130. Cambridge University Press, Cambridge, 2008.Google Scholar
Cont, Rama. Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Finance, 1(2):223–236, 2001.10.1080/713665670CrossRefGoogle Scholar
Manfredo, P. do Carmo. Differential geometry of curves & surfaces. Dover Publications, Inc., Mineola, NY, 2016. Revised & updated second edition of [ MR0394451].Google Scholar
Ding, Jian, Dubédat, Julien, Dunlap, Alexander, and Falconet, Hugo. Tightness of Liouville first-passage percolation for . Publ. Math. Inst. Hautes Études Sci., 132:353–403, 2020.10.1007/s10240-020-00121-1CrossRefGoogle Scholar
Ding, Jian and Goswami, Subhajit. Upper bounds on Liouville first-passage percolation and Watabiki’s prediction. Comm. Pure Appl. Math., 72(11):2331–2384, 2019.CrossRefGoogle Scholar
Ding, Jian and Gwynne, Ewain. The fractal dimension of Liouville quantum gravity: Universality, monotonicity, and bounds. Comm. Math. Phys., 374(3):1877–1934, 2020.10.1007/s00220-019-03487-4CrossRefGoogle Scholar
Durrett, Richard T., Iglehart, Donald L., and Miller, Douglas R.. Weak convergence to Brownian meander and Brownian excursion. Ann. Probability, 5(1):117–129, 1977.Google Scholar
David, François, Kupiainen, Antti, Rhodes, Rémi, and Vargas, Vincent. Liouville quantum gravity on the Riemann sphere. Comm. Math. Phys., 342(3):869–907, 2016.10.1007/s00220-016-2572-4CrossRefGoogle Scholar
Duquesne, Thomas and Le Gall, Jean-François. On the re-rooting invariance property of Lévy trees. Electron. Commun. Probab., 14:317–326, 2009.10.1214/ECP.v14-1484CrossRefGoogle Scholar
Duplantier, Bertrand, Miller, Jason, and Sheffield, Scott. Liouville quantum gravity as a mating of trees. Astérisque, 427:viii+257, 2021.Google Scholar
Douady, Adrien. Systèmes dynamiques holomorphes. In Bourbaki seminar, Vol. 1982/83, Vol. 105–106 of Astérisque, pages 39–63. Soc. Math. France, Paris, 1983.Google Scholar
Duplantier, Bertrand, Rhodes, Rémi, Sheffield, Scott, and Vargas, Vincent. Critical Gaussian multiplicative chaos: Convergence of the derivative martingale. Ann. Probab., 42(5):1769–1808, 2014.10.1214/13-AOP890CrossRefGoogle Scholar
Duplantier, Bertrand, Rhodes, Rémi, Sheffield, Scott, and Vargas, Vincent. Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Comm. Math. Phys., 330(1):283–330, 2014.10.1007/s00220-014-2000-6CrossRefGoogle Scholar
Duplantier, Bertrand and Sheffield, Scott. Liouville quantum gravity and KPZ. Invent. Math., 185(2):333–393, 2011.CrossRefGoogle Scholar
Schiavo, Lorenzo Dello, Herry, Ronan, Kopfer, Eva, and Sturm, Karl-Theodor. Conformally invariant random fields, quantum Liouville measures, and random Paneitz operators on Riemannian manifolds of even dimension. Preprint arXiv:2105.13925, 2021.Google Scholar
Dubédat, Julien. Duality of Schramm-Loewner evolutions. Ann. Sci. Éc. Norm. Supér. (4), 42(5):697–724, 2009.Google Scholar
Dubédat, Julien. SLE and the free field: Partition functions and couplings. J. Amer. Math. Soc., 22(4):995–1054, 2009.10.1090/S0894-0347-09-00636-5CrossRefGoogle Scholar
Eynard, Bertrand and Kristjansen, Charlotte. Exact solution of the model on a random lattice. Nuclear Phys. B, 455(3):577–618, 1995.10.1016/0550-3213(95)00469-9CrossRefGoogle Scholar
Evans, Steven N.. On the Hausdorff dimension of Brownian cone points. Math. Proc. Cambridge Philos. Soc., 98(2):343–353, 1985.10.1017/S0305004100063519CrossRefGoogle Scholar
Evans, Lawrence C.. Partial differential equations, Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2nd ed., 2010.Google Scholar
Falconer, Kenneth. Fractal geometry. John Wiley & Sons, Ltd., Chichester, 3rd ed., 2014. Mathematical foundations and applications.Google Scholar
Fyodorov, Yan V. and Bouchaud, Jean-Philippe. Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential. J. Phys. A, 41(37):372001, 12, 2008.CrossRefGoogle Scholar
Forkel, Johannes and Keating, Jonathan P.. The classical compact groups and Gaussian multiplicative chaos. Nonlinearity, 34(9):6050–6119, 2021.10.1088/1361-6544/ac1164CrossRefGoogle Scholar
Friedan, Daniel, Qiu, Zongan, and Shenker, Stephen. Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett., 52(18):1575–1578, 1984.10.1103/PhysRevLett.52.1575CrossRefGoogle Scholar
Frisch, Uriel. Turbulence. Cambridge University Press, Cambridge, 1995. The legacy of A. N. Kolmogorov.10.1017/CBO9781139170666CrossRefGoogle Scholar
Gwynne, Ewain and Hutchcroft, Tom. Anomalous diffusion of random walk on random planar maps. Probab. Theory Relat. Fields, 178(1–2):567–611, 2020.10.1007/s00440-020-00986-7CrossRefGoogle Scholar
Gwynne, Ewain, Holden, Nina, and Miller, Jason. An almost sure KPZ relation for SLE and Brownian motion. Ann. Probab., 48(2):527–573, 2020.10.1214/19-AOP1385CrossRefGoogle Scholar
Gwynne, Ewain, Holden, Nina, Miller, Jason, and Sun, Xin. Brownian motion correlation in the peanosphere for . Ann. Inst. Henri Poincaré Probab. Stat., 53(4):1866–1889, 2017.10.1214/16-AIHP774CrossRefGoogle Scholar
Garban, Christophe, Holden, Nina, Sepúlveda, Avelio, and Sun, Xin. Negative moments for Gaussian multiplicative chaos on fractal sets. Electron. Commun. Probab., 23, 2018.10.1214/18-ECP168CrossRefGoogle Scholar
Guionnet, Alice, Jones, Vaughan F. R., Shlyakhtenko, Dimitri, and Zinn-Justin, Paul. Loop models, random matrices and planar algebras. Comm. Math. Phys., 316(1):45–97, 2012.10.1007/s00220-012-1573-1CrossRefGoogle Scholar
Gwynne, Ewain, Kassel, Adrien, Miller, Jason, and Wilson, David B.. Active spanning trees with bending energy on planar maps and SLE-decorated Liouville quantum gravity for . Comm. Math. Phys., 358(3):1065–1115, 2018.10.1007/s00220-018-3104-1CrossRefGoogle Scholar
Guillarmou, Colin, Kupiainen, Antti, Rhodes, Rémi, and Vargas, Vincent. Segal’s axioms and bootstrap for Liouville theory. arXiv preprint arXiv:2112.14859, 2021.Google Scholar
Guillarmou, Colin, Kupiainen, Antti, Rhodes, Rémi, and Vargas, Vincent. Conformal bootstrap in Liouville theory. Acta Mathematica, 2024.10.4310/ACTA.2024.v233.n1.a2CrossRefGoogle Scholar
Gwynne, Ewain and Miller, Jason. Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology. Electron. J. Probab., 22:Paper No. 84, 47, 2017.Google Scholar
Gwynne, Ewain and Miller, Jason. Conformal covariance of the Liouville quantum gravity metric for . Ann. Inst. Henri Poincaré Probab. Stat., 57(2):1016–1031, 2021.10.1214/20-AIHP1105CrossRefGoogle Scholar
Gwynne, Ewain and Miller, Jason. Convergence of the self-avoiding walk on random quadrangulations to on -Liouville quantum gravity. Ann. Sci. Éc. Norm. Supér. (4), 54(2):305–405, 2021.Google Scholar
Gwynne, Ewain and Miller, Jason. Existence and uniqueness of the Liouville quantum gravity metric for . Invent. Math., 223(1):213–333, 2021.10.1007/s00222-020-00991-6CrossRefGoogle Scholar
Gwynne, Ewain and Miller, Jason. Percolation on uniform quadrangulations and on -Liouville quantum gravity. Astérisque, 429:vii+242, 2021.Google Scholar
Gwynne, Ewain and Miller, Jason. Random walk on random planar maps: spectral dimension, resistance and displacement. Ann. Probab., 49(3):1097–1128, 2021.10.1214/20-AOP1471CrossRefGoogle Scholar
Gwynne, Ewain, Mao, Cheng, and Sun, Xin. Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map I: Cone times. Ann. Inst. Henri Poincaré Probab. Stat., 55(1):1–60, 2019.10.1214/17-AIHP874CrossRefGoogle Scholar
Giné, Evarist and Nickl, Richard. Mathematical foundations of infinite-dimensional statistical models. Cambridge Series in Statistical and Probabilistic Mathematics, [40]. Cambridge University Press, New York, 2016.Google Scholar
Gwynne, Ewain and Pfeffer, Joshua. Bounds for distances and geodesic dimension in Liouville first passage percolation. Electron. Commun. Probab., 24:Paper No. 56, 12, 2019.10.1214/19-ECP248CrossRefGoogle Scholar
Gwynne, Ewain and Pfeffer, Joshua. KPZ formulas for the Liouville quantum gravity metric. Trans. Amer. Math. Soc., 375(12):8297–8324, 2022.10.1090/tran/8085CrossRefGoogle Scholar
Grigor’yan, Alexander. Heat kernel and analysis on manifolds, Vol. 47 of AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009.Google Scholar
Garban, Christophe, Rhodes, Rémi, and Vargas, Vincent. Liouville Brownian motion. Ann. Probab., 44(4):3076–3110, 2016.10.1214/15-AOP1042CrossRefGoogle Scholar
Guillarmou, Colin, Rhodes, Rémi, and Vargas, Vincent. Polyakov’s formulation of 2d bosonic string theory. Publ. Math. Inst. Hautes Études Sci., 130:111–185, 2019.10.1007/s10240-019-00109-6CrossRefGoogle Scholar
Gwynne, Ewain and Sun, Xin. Scaling limits for the critical Fortuin-Kastelyn model on a random planar map III: finite volume case. Preprint arXiv:1510.06346, 2015.Google Scholar
Gwynne, Ewain and Sun, Xin. Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map II: Local estimates and empty reduced word exponent. Electron. J. Probab., 22:Paper No. 45, 56, 2017.10.1214/17-EJP64CrossRefGoogle Scholar
Høegh-Krohn, Raphael. A general class of quantum fields without cut-offs in two space-time dimensions. Comm. Math. Phys., 21:244–255, 1971.10.1007/BF01647122CrossRefGoogle Scholar
Hu, Xiaoyu, Miller, Jason, and Peres, Yuval. Thick points of the Gaussian free field. Ann. Probab., 38(2):896–926, 2010.10.1214/09-AOP498CrossRefGoogle Scholar
Huang, Yichao, Rhodes, Rémi, and Vargas, Vincent. Liouville quantum gravity on the unit disk. Ann. Inst. Henri Poincaré Probab. Stat., 54(3):1694–1730, 2018.10.1214/17-AIHP852CrossRefGoogle Scholar
Holden, Nina and Sun, Xin. Convergence of uniform triangulations under the Cardy embedding. Acta Math., 230(1):93–203, 2023.10.4310/ACTA.2023.v230.n1.a2CrossRefGoogle Scholar
Itō, Kiyosi. Poisson point processes attached to Markov processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (University of California, Berkeley, California Calif., 1970/1971), Vol. III: Probability theory, pages 225–239. University of California Press, Berkeley, CA, 1972.Google Scholar
Janson, Svante. Gaussian Hilbert spaces, Vol. 129 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1997.Google Scholar
Jego, Antoine. Planar Brownian motion and Gaussian multiplicative chaos. Ann. Probab., 48(4):1597–1643, 2020.10.1214/19-AOP1399CrossRefGoogle Scholar
Jego, Antoine. Characterisation of planar Brownian multiplicative chaos. Comm. Math. Phys., 399(2):971–1019, 2023.10.1007/s00220-022-04570-zCrossRefGoogle Scholar
Jost, Jürgen. Partial differential equations, Vol. 214 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002. Translated and revised from the 1998 German original by the author.Google Scholar
Jones, Peter W. and Smirnov, Stanislav K.. Removability theorems for Sobolev functions and quasiconformal maps. Ark. Mat., 38(2):263–279, 2000.10.1007/BF02384320CrossRefGoogle Scholar
Junnila, Janne and Saksman, Eero. Uniqueness of critical Gaussian chaos. Electron. J. Probab., 22:Paper No. 11, 31, 2017.10.1214/17-EJP28CrossRefGoogle Scholar
Junnila, Janne, Saksman, Eero, and Webb, Christian. Decompositions of log-correlated fields with applications. Ann. Appl. Probab., 29(6):3786–3820, 2019.10.1214/19-AAP1492CrossRefGoogle Scholar
Kahane, Jean-Pierre. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9(2):105–150, 1985.Google Scholar
Kahane, Jean-Pierre. Une inégalité du type de Slepian et Gordon sur les processus gaussiens. Israel J. Math., 55(1):109–110, 1986.10.1007/BF02772698CrossRefGoogle Scholar
Kallenberg, Olav. Foundations of modern probability, Vol. 99 of Probability Theory and Stochastic Modelling. Springer, Cham, 3rd ed., [2021] ©2021.10.1007/978-3-030-61871-1CrossRefGoogle Scholar
Kemppainen, Antti. Schramm-Loewner evolution, Vol. 24 of Springer-Briefs in Mathematical Physics. Springer, Cham, 2017.Google Scholar
Kenyon, Richard. The asymptotic determinant of the discrete Laplacian. Acta Math., 185(2):239–286, 2000.10.1007/BF02392811CrossRefGoogle Scholar
Kenyon, Richard. Dominos and the Gaussian free field. Ann. Probab., 29(3):1128–1137, 2001.10.1214/aop/1015345599CrossRefGoogle Scholar
Kivimae, Pax. Random Matrices, Gaussian Multiplicative Chaos, and Complexity. ProQuest LLC, Ann Arbor, MI, 2022. Thesis (Ph.D.) – Northwestern University.Google Scholar
Kenyon, Richard, Miller, Jason, Sheffield, Scott, and Wilson, David B.. Bipolar orientations on planar maps and . Ann. Probab., 47(3):1240–1269, 2019.10.1214/18-AOP1282CrossRefGoogle Scholar
Kupiainen, Antti, Rhodes, Rémi, and Vargas, Vincent. Local conformal structure of Liouville quantum gravity. Comm. Math. Phys., 371(3):1005–1069, 2019.10.1007/s00220-018-3260-3CrossRefGoogle Scholar
Kupiainen, Antti, Rhodes, Rémi, and Vargas, Vincent. Integrability of Liouville theory: Proof of the DOZZ formula. Ann. of Math. (2), 191(1):81–166, 2020.10.4007/annals.2020.191.1.2CrossRefGoogle Scholar
Kemppainen, Antti and Smirnov, Stanislav. Conformal invariance in random cluster models. II. full scaling limit as a branching SLE. Preprint arXiv:1609.08527, 2016.Google Scholar
Lawler, Gregory F.. Conformally invariant processes in the plane, Vol. 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005.Google Scholar
Lawler, Gregory F.. Continuity of radial and two-sided radial SLE at the terminal point. In In the tradition of Ahlfors-Bers. VI, Vol. 590 of Contemp. Math., pages 101–124. Amer. Math. Soc., Providence, RI, 2013.Google Scholar
Le Gall, Jean-François. Random trees and applications. Probab. Surv., 2:245–311, 2005.10.1214/154957805100000140CrossRefGoogle Scholar
Le Gall, Jean-François. Uniqueness and universality of the Brownian map. Ann. Probab., 41(4):2880–2960, 2013.10.1214/12-AOP792CrossRefGoogle Scholar
Lawler, Gregory F. and Limic, Vlada. Random walk: a modern introduction, Vol. 123 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.Google Scholar
Lambert, Gaultier, Ostrovsky, Dmitry, and Simm, Nick. Subcritical multiplicative chaos for regularized counting statistics from random matrix theory. Comm. Math. Phys., 360(1):1–54, 2018.10.1007/s00220-018-3130-zCrossRefGoogle Scholar
Lyons, Russell and Peres, Yuval. Probability on trees and networks, Vol. 42 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, New York, 2016.Google Scholar
Lacoin, Hubert, Rhodes, Rémi, and Vargas, Vincent. Semiclassical limit of Liouville field theory. J. Funct. Anal., 273(3):875–916, 2017.10.1016/j.jfa.2017.04.012CrossRefGoogle Scholar
Lacoin, Hubert, Rhodes, Rémi, and Vargas, Vincent. The semiclassical limit of Liouville conformal field theory. Ann. Fac. Sci. Toulouse Math. (6), 31(4):1031–1083, 2022.10.5802/afst.1713CrossRefGoogle Scholar
Lawler, Gregory F., Schramm, Oded, and Werner, Wendelin. The dimension of the planar Brownian frontier is . Math. Res. Lett., 8(4):401–411, 2001.10.4310/MRL.2001.v8.n4.a1CrossRefGoogle Scholar
Lawler, Gregory F., Schramm, Oded, and Werner, Wendelin. Conformal restriction: The chordal case. J. Amer. Math. Soc., 16(4):917–955, 2003.10.1090/S0894-0347-03-00430-2CrossRefGoogle Scholar
Lawler, Gregory F., Schramm, Oded, and Werner, Wendelin. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab., 32(1B):939–995, 2004.10.1214/aop/1079021469CrossRefGoogle Scholar
Li, Yiting, Sun, Xin, and Watson, Samuel S.. Schnyder woods, SLE(16), and Liouville quantum gravity. Trans. Amer. Math. Soc., 2024.10.1090/tran/8887CrossRefGoogle Scholar
Madaule, Thomas. Convergence in law for the branching random walk seen from its tip. J. Theor. Probab., 30:27–63, 2017.10.1007/s10959-015-0636-6CrossRefGoogle Scholar
Muzy, Jean-François, Delour, Jean, and Bacry, Emmanuel. Modelling fluctuations of financial time series: from cascade process to stochastic volatility model. Eur. Phys. J. B-Condens. Matter Complex Syst., 17(3):537–548, 2000.10.1007/s100510070131CrossRefGoogle Scholar
Mandelbrot, Benoit B, Adlai J Fisher, and Laurent E Calvet. A multifractal model of asset returns. Cowles Foundation Discussion Paper, Sauder School of Business Working Paper, 1164, 1997.Google Scholar
Miermont, Grégory. The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math., 210(2):319–401, 2013.10.1007/s11511-013-0096-8CrossRefGoogle Scholar
Milnor, John. Pasting together Julia sets: A worked out example of mating. Experiment. Math., 13(1):55–92, 2004.10.1080/10586458.2004.10504523CrossRefGoogle Scholar
Molchan, George M.. Scaling exponents and multifractal dimensions for independent random cascades. Comm. Math. Phys., 179(3):681–702, 1996.10.1007/BF02100103CrossRefGoogle Scholar
Moore, R. L.. Concerning upper semi-continuous collections of continua. Trans. Amer. Math. Soc., 27(4):416–428, 1925.10.1090/S0002-9947-1925-1501320-8CrossRefGoogle Scholar
Mörters, Peter and Peres, Yuval. Brownian motion, Vol. 30 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. With an appendix by Schramm, Oded and Werner, Wendelin.Google Scholar
Madaule, Thomas, Rhodes, Rémi, and Vargas, Vincent. Glassy phase and freezing of log-correlated Gaussian potentials. Ann. Appl. Probab., 26(2):643–690, 2016.10.1214/14-AAP1071CrossRefGoogle Scholar
Miller, Jason and Sheffield, Scott. Imaginary geometry I: Interacting SLEs. Probab. Theory Relat. Fields, 164(3–4):553–705, 2016.10.1007/s00440-016-0698-0CrossRefGoogle Scholar
Miller, Jason and Sheffield, Scott. Imaginary geometry II: Reversibility of for . Ann. Probab., 44(3):1647–1722, 2016.Google Scholar
Miller, Jason and Sheffield, Scott. Imaginary geometry III: Reversibility of for . Ann. of Math. (2), 184(2):455–486, 2016.10.4007/annals.2016.184.2.3CrossRefGoogle Scholar
Miller, Jason and Sheffield, Scott. Imaginary geometry IV: Interior rays, whole-plane reversibility, and space-filling trees. Probab. Theory Relat. Fields, 169(3–4):729–869, 2017.10.1007/s00440-017-0780-2CrossRefGoogle Scholar
Miller, Jason and Sheffield, Scott. Liouville quantum gravity and the Brownian map I: the metric. Invent. Math., 219(1):75–152, 2020.10.1007/s00222-019-00905-1CrossRefGoogle Scholar
Miller, Jason and Sheffield, Scott. Liouville quantum gravity and the Brownian map III: The conformal structure is determined. Probab. Theory Relat. Fields, 179(3–4):1183–1211, 2021.10.1007/s00440-021-01026-8CrossRefGoogle Scholar
Mullin, Ronald C.. On the enumeration of tree-rooted maps. Canadian J. Math., 19:174–183, 1967.10.4153/CJM-1967-010-xCrossRefGoogle Scholar
Mussardo, Giuseppe. Statistical field theory. Oxford Graduate Texts. Oxford University Press, Oxford, 2010. An introduction to exactly solved models in statistical physics.Google Scholar
Narici, Lawrence and Beckenstein, Edward. Topological vector spaces, Vol. 296 of Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, 2nd ed., 2011.Google Scholar
Nikula, Miika, Saksman, Eero, and Webb, Christian. Multiplicative chaos and the characteristic polynomial of the CUE: The L1-phase. Trans. Amer. Math. Soc., 373(6):3905–3965, 2020.10.1090/tran/8020CrossRefGoogle Scholar
Osterwalder, Konrad and Schrader, Robert. Axioms for Euclidean Green’s functions. Comm. Math. Phys., 31:83–112, 1973.10.1007/BF01645738CrossRefGoogle Scholar
Osterwalder, Konrad and Schrader, Robert. Axioms for Euclidean Green’s functions. II. Comm. Math. Phys., 42:281–305, 1975. With an appendix by Stephen Summers.10.1007/BF01608978CrossRefGoogle Scholar
Pemantle, Robin. Choosing a spanning tree for the integer lattice uniformly. Ann. Probab., 19(4):1559–1574, 1991.10.1214/aop/1176990223CrossRefGoogle Scholar
Pitt, Loren D.. Positively correlated normal variables are associated. Ann. Probab., 10(2):496–499, 1982.10.1214/aop/1176993872CrossRefGoogle Scholar
Polyakov, A. M.. Conformal symmetry of critical fluctuations. JETP Lett., 12:381–383, 1970.Google Scholar
Polyakov, A. M.. Quantum geometry of bosonic strings. Phys. Lett. B, 103(3):207–210, 1981.Google Scholar
Pommerenke, Christian. Boundary behaviour of conformal maps, Vol. 299 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992.10.1007/978-3-662-02770-7CrossRefGoogle Scholar
Powell, Ellen. Critical Gaussian chaos: Convergence and uniqueness in the derivative normalisation. Electron. J. Probab., 23, 2018.10.1214/18-EJP157CrossRefGoogle Scholar
Powell, Ellen. Critical Gaussian multiplicative chaos: A review. Markov Processes And Relat. Fields, 27(4):557–606, 2021.Google Scholar
Propp, James Gary and Bruce Wilson, David. How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. 7th annual ACM-SIAM symposium on discrete algorithms (Atlanta, ga, 1996). J. Algorithms, 27(2):170–217, 1998.Google Scholar
Pitman, Jim and Yor, Marc. A decomposition of Bessel bridges. Z. Wahrsch. Verw. Gebiete, 59(4):425–457, 1982.10.1007/BF00532802CrossRefGoogle Scholar
Pitman, Jim and Yor, Marc. Decomposition at the maximum for excursions and bridges of one-dimensional diffusions. In Itô’s stochastic calculus and probability theory, pages 293–310. Springer, Tokyo, 1996.Google Scholar
Remy, Guillaume. The Fyodorov-Bouchaud formula and Liouville conformal field theory. Duke Math. J., 169(1):177–211, 2020.10.1215/00127094-2019-0045CrossRefGoogle Scholar
Rohde, Steffen and Schramm, Oded. Basic properties of SLE. Ann. of Math. (2), 161(2):883–924, 2005.10.4007/annals.2005.161.883CrossRefGoogle Scholar
Rhodes, Rémi and Vargas, Vincent. Multidimensional multifractal random measures. Electron. J. Probab., 15:no. 9, 241–258, 2010.10.1214/EJP.v15-746CrossRefGoogle Scholar
Robert, Raoul and Vargas, Vincent. Gaussian multiplicative chaos revisited. Ann. Probab., 38(2):605–631, 2010.10.1214/09-AOP490CrossRefGoogle Scholar
Rhodes, Rémi and Vargas, Vincent. KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat., 15:358–371, 2011.10.1051/ps/2010007CrossRefGoogle Scholar
Rhodes, Rémi and Vargas, Vincent. Gaussian multiplicative chaos and applications: A review. Probab. Surv., 11:315–392, 2014.10.1214/13-PS218CrossRefGoogle Scholar
Rhodes, Rémi and Vargas, Vincent. The tail expansion of Gaussian multiplicative chaos and the Liouville reflection coefficient. Ann. Probab., 47(5):3082–3107, 2019.10.1214/18-AOP1333CrossRefGoogle Scholar
Rhodes, Rémi and Vargas, Vincent. Lecture notes on Liouville theory and the DOZZ formula. In Topics in statistical mechanics, Vol. 59 of Panor. Synthèses, pages 185–229. Soc. Math. France, Paris, 2023.Google Scholar
Revuz, Daniel and Yor, Marc. Continuous martingales and Brownian motion, Vol. 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 3rd ed., 1999.10.1007/978-3-662-06400-9CrossRefGoogle Scholar
Schramm, Oded. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118:221–288, 2000.10.1007/BF02803524CrossRefGoogle Scholar
Shamov, Alexander. On Gaussian multiplicative chaos. J. Funct. Anal., 270(9):3224–3261, 2016.10.1016/j.jfa.2016.03.001CrossRefGoogle Scholar
Sheffield, Scott. Gaussian free fields for mathematicians. Probab. Theory Relat. Fields, 139(3–4):521–541, 2007.10.1007/s00440-006-0050-1CrossRefGoogle Scholar
Sheffield, Scott. Exploration trees and conformal loop ensembles. Duke Math. J., 147(1):79–129, 2009.10.1215/00127094-2009-007CrossRefGoogle Scholar
Sheffield, Scott. Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab., 44(5):3474–3545, 2016.10.1214/15-AOP1055CrossRefGoogle Scholar
Sheffield, Scott. Quantum gravity and inventory accumulation. Ann. Probab., 44(6):3804–3848, 2016.10.1214/15-AOP1061CrossRefGoogle Scholar
Smirnov, Stanislav K.. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333(3):239–244, 2001.CrossRefGoogle Scholar
Schramm, Oded and Sheffield, Scott. A contour line of the continuum Gaussian free field. Probab. Theory Relat. Fields, 157(1–2):47–80, 2013.10.1007/s00440-012-0449-9CrossRefGoogle Scholar
Stephenson, Kenneth. Introduction to circle packing. Cambridge University Press, Cambridge, 2005. The theory of discrete analytic functions.Google Scholar
Schramm, Oded and Wilson, David B.. SLE coordinate changes. New York J. Math., 11:659–669, 2005.Google Scholar
Sheffield, Scott and Wang, Menglu. Field-measure correspondence in Liouville quantum gravity almost surely commutes with all conformal maps simultaneously. Preprint arXiv:1605.06171, 2016.Google Scholar
Saksman, Eero and Webb, Christian. The Riemann zeta function and Gaussian multiplicative chaos: Statistics on the critical line. Ann. Probab., 48(6):2680–2754, 2020.10.1214/20-AOP1433CrossRefGoogle Scholar
Viklund, Fredrik and Wang, Yilin. The Loewner-Kufarev energy and foliations by Weil-Petersson quasicircles. Proc. Lond. Math. Soc. (3), 128(2):Paper No. e12582, 62, 2024.10.1112/plms.12582CrossRefGoogle Scholar
Watabiki, Yoshiyuki. Analytic study of fractal structure of quantized surface in two-dimensional quantum gravity. Progress of Theoretical Physics Supplement, 114:1–17, 1993.10.1143/PTPS.114.1CrossRefGoogle Scholar
Webb, Christian. The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos – the L2-phase. Electron. J. Probab., 20, 2015.10.1214/EJP.v20-4296CrossRefGoogle Scholar
Williams, David. Path decomposition and continuity of local time for one-dimensional diffusions. I. Proc. London Math. Soc. (3), 28:738–768, 1974.Google Scholar
David Bruce Wilson. Generating random spanning trees more quickly than the cover time. In Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pages 296–303. ACM, New York, 1996.Google Scholar
Mo Dick Wong. Universal tail profile of Gaussian multiplicative chaos. Probab. Theory Relat. Fields, 177(3–4):711–746, 2020.Google Scholar
Werner, Wendelin and Powell, Ellen. Lecture notes on the Gaussian free field, Vol. 28 of Cours Spécialisés [Specialized Courses]. Société Mathématique de France, Paris, 2021.Google Scholar
Zeitouni, Ofer. Gaussian fields (notes for lectures). Available on the website of the author, 2015.Google Scholar
Zhan, Dapeng. Duality of chordal SLE. Invent. Math., 174(2):309–353, 2008.10.1007/s00222-008-0132-zCrossRefGoogle Scholar
Zhan, Dapeng. Reversibility of chordal SLE. Ann. Probab., 36(4):1472–1494, 2008.10.1214/07-AOP366CrossRefGoogle Scholar

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×