Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T13:48:56.819Z Has data issue: false hasContentIssue false

10 - Salinity

from Part II - Physiology of Photosynthetic Autotrophs in Present-Day Environments

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access

Summary

Over 70% of the Earth’s surface is covered by saline environments. While the salinity of the open ocean is fairly stable, in coastal waters and estuaries, where river freshwater mixes with marine water bodies, salinity is usually highly variable, and, in some situations, such as lagoons or rock pools, evaporation of water can lead to hypersaline conditions. Changes in salinity directly affect water potential and turgor pressure in walled cells. Furthermore, salinity changes alter the intracellular concentration of inorganic ions such as sodium, which can have deleterious effects on processes such as photosynthesis and respiration. Salinity can therefore pose challenges for the physiology and growth of aquatic phototrophs. Algae respond to differences in salinity through a range of physiological mechanisms, including osmotic adjustment involving inorganic ion fluxes and the production of organically compatible solutes. In some cases, acclimation to salinity involves ultrastructural plasticity. Horizontal salinity gradients, found in environments including estuaries, lagoons or semi-isolated systems such as the Baltic Sea, promote the development of physiologically distinct variants of algal species, known as ecotypes, and eventually speciation in algae.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allakhverdiev, S. I. & Murata, N. (2008). Salt stress inhibits photosystems II and I in cyanobacteria. Photosynthesis Research 98: 529539.CrossRefGoogle ScholarPubMed
Bird, C. J. & McLachlan, J. (1986). The effect of salinity on distribution of species of Gracilaria (Rhodophyta, Gigartinales): An experimental assessment. Botanica Marina 29: 231238.CrossRefGoogle Scholar
Bisson, M. A. & Gutknecht, J. (1975). Osmotic regulation in the marine alga, Codium decorticatum: Regulation of turgor pressure by control of ionic composition. The Journal of Membrane Biology 24:183200.CrossRefGoogle ScholarPubMed
Bisson, M. A. & Kirst, G. O. (1983). Osmotic adaptations of charophyte algae in the Coorong, South Australia and other Australian lakes. Hydrobiologia 105: 4551.CrossRefGoogle Scholar
Bisson, M. A. & Kirst, G. O. (1995). Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82: 461471.CrossRefGoogle Scholar
Bolton, J. J. (1979). Estuarine adaptation in populations of Pilayella littoralis (L.) Kjellm. (Phaeophyta, Ectocarpales). Estuarine Coastal Marine Science 9: 273280.CrossRefGoogle Scholar
Chudek, J. A., Foster, R., Davison, I. R. et al. (1984). Altritol in the brown alga Himanthalia elongata. Phytochemistry 23: 10811082.CrossRefGoogle Scholar
Davison, I. R. & Reed, R. H. (1985a). Osmotic adjustment in Laminaria digitata (Phaeophyta) with particular reference to seasonal changes in internal solute concentrations. Journal of Phycology 21: 4150.CrossRefGoogle Scholar
Davison, I. R. & Reed, R. H. (1985b). The physiological significance of mannitol accumulation in brown algae: The role of mannitol as a compatible cytoplasmic solute. Phycologia 24: 449457.CrossRefGoogle Scholar
Dickson, D. M. J. & Kirst, G. O. (1986). The role of dimethylsulphoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis. Planta 155: 409415.CrossRefGoogle Scholar
Eggert, A. & Karsten, U. (2010). Low molecular weight carbohydrates in red algae – an ecophysiological and biochemical perspective. In: Seckbach, J., Chapman, D. & Weber, A. (eds.) Cellular Origins, Life in Extreme Habitats and Astrobiology Red Algae in the Genomics Age. Springer, Berlin, pp. 445456.Google Scholar
Eppley, R. W. & Bovell, C. R. (1958). Sulphuric acid in Desmarestia. The Biological Bulletin 115: 101106.CrossRefGoogle Scholar
Gessner, F. & Schramm, W. (1971). Salinity: Plants In: Kinne, O. (ed.) Marine Ecology, Vol. 1(2) Environmental Factors. Wiley Interscience, London, pp. 7051083.Google Scholar
Gimmler, H., Kaaden, R., Kirchner, U. et al. (1984). The chloride sensitivity of Dunaliella parva enzymes. Zeitschrift für Pflanzenphysiologie 114: 131150.CrossRefGoogle Scholar
Groszmann, M., Osborn, H. L. & Evans, J. R. (2017). Carbon dioxide and water transport through plant aquaporins. Plant, Cell and Environment 40: 938961.CrossRefGoogle ScholarPubMed
Gustavs, L., Schumann, R., Eggert, A. et al. (2009) In vivo growth fluorometry: accuracy and limits of microalgal growth rate measurements in ecophysiological investigations. Aquatic Microbial Ecology 55: 95104.CrossRefGoogle Scholar
Hagemann, M. (2011). Molecular biology of cyanobacterial salt acclimation. FEMS Microbiology Reviews 35: 87123.CrossRefGoogle ScholarPubMed
Hay, W. W., Migdisov, A., Balukhovsky, A. N. et al. (2006). Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life. Palaeogeography Palaeoclimatology Palaeoecology Journal 240: 346.CrossRefGoogle Scholar
Herburger, K. & Holzinger, A. (2015). Localization and quantification of callose in the streptophyte green algae Zygnema and Klebsormidium: Correlation with desiccation tolerance. Plant Cell Physiology 56: 22592270.Google ScholarPubMed
Holzinger, A. & Karsten, U. (2013). Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological, and molecular mechanisms. Frontiers in Plant Sciences 4: 327.Google ScholarPubMed
Holzinger, A., Herburger, K., Kaplan, F. et al. (2015). Desiccation tolerance in the chlorophyte green alga Ulva compressa: Does cell wall architecture contribute to ecological success? Planta 242: 477492.CrossRefGoogle ScholarPubMed
Jacob, A., Kirst, G. O., Wiencke, C. et al. (1991). Physiological responses of the Antarctic green alga Prasiola crispa ssp. antarctica to salinity stress. Journal of Plant Physiology 139: 5762.CrossRefGoogle Scholar
Karsten, U., Wiencke, C. & Kirst, G. O. (1991a). The effect of salinity changes upon the physiology of eulittoral green macroalgae from Antarctica and Southern Chile. I. Cell viability, growth, photosynthesis and dark respiration. Journal of Plant Physiology 138: 667673.CrossRefGoogle Scholar
Karsten, U., Wiencke, C. & Kirst, G. O. (1991b). The effect of salinity changes upon the physiology of eulittoral green macroalgae from Antarctica and Southern Chile. II. Intracellular inorganic ions and organic compounds. Journal of Experimental Botany 245: 15331539.CrossRefGoogle Scholar
Karsten, U., Barrow, K. D. & King, R. J. (1993a). Floridoside, L-isofloridoside, and D-isofloridoside in the red alga Porphyra columbina. Plant Physiology 103: 485491.CrossRefGoogle ScholarPubMed
Karsten, U., West, J. A. & Ganesan, E. K. (1993b). Comparative physiological ecology of Bostrychia moritziana (Ceramiales, Rhodophyta) from freshwater and marine habitats. Phycologia 32: 401409.CrossRefGoogle Scholar
Karsten, U., West, J. A., Zuccarello, G. et al. (1994). Physiological ecotypes in the marine red alga Bostrychia radicans (Ceramiales, Rhodophyta) from the east coast of the USA. Journal of Phycology 30: 174182.CrossRefGoogle Scholar
Karsten, U., Barrow, K. D., Nixdorf, O. et al. (1996). The compatibility of unusual organic osmolytes from mangrove red algae with enzyme activity. Australian Journal of Plant Physiology 23: 577582.Google Scholar
Karsten, U. (2007). Salinity tolerance of Arctic kelps from Spitsbergen. Phycological Research 55: 257262.CrossRefGoogle Scholar
Karsten, U., Görs, S., Eggert, A. et al. (2007). Trehalose, digeneaside and floridoside in the Florideophyceae (Rhodophyta) – a re-evaluation of its chemotaxonomic value. Phycologia 46: 143150.CrossRefGoogle Scholar
Karsten, U. (2012). Seaweed acclimation to salinity and desiccation stress. In: Wiencke, C. & Bischof, K. (eds.) Seaweed Ecophysiology and Ecology. Ecological Studies, vol. 219, Springer, Berlin, pp. 87107.Google Scholar
Kauss, H. (1987). Some aspects of calcium-dependent regulation in plant metabolism. Annual Review of Plant Physiology 38: 4772.CrossRefGoogle Scholar
Kirst, G. O. (1990). Salinity tolerance of eukaryotic marine algae. Annual Review in Plant Physiology and Plant Molecular Biology 41: 2153.CrossRefGoogle Scholar
Kirst, G. O. & Wiencke, C. (1995). Ecophysiology of polar algae. Journal of Phycology 31: 181199.CrossRefGoogle Scholar
Kremer, B. P. (1976). Distribution and biochemistry of alditols in the genus Pelvetia (Phaeophyceae, Fucales). British Phycological Journal 11: 239243.CrossRefGoogle Scholar
Kremer, B. P. (1978). Patterns of photoassimilatory products in Pacific Rhodophyceae. Canadian Journal of Botany 56: 16551659.CrossRefGoogle Scholar
Lang, I., Sassmann, S., Schmidt, B. et al. (2014). Plasmolysis: Loss of turgor and beyond. Plants 3: 583593.CrossRefGoogle ScholarPubMed
Maathuis, F. J. M. & Amtmann, A. (1999). K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Annals of Botany 84: 123133.CrossRefGoogle Scholar
Meng, J., Rosell, K. G. & Srivastava, L. M. (1987). Chemical characterization of floridosides from Porphyra perforata. Carbohydrate Research 161: 171180.CrossRefGoogle Scholar
Mostaert, A. S. & King, R. J. (1993). The cell wall of the halotolerant red alga Caloglossa leprieurii (Montagne) J. Agardh (Ceramiales, Rhodophyta) from freshwater and marine habitats: Effect of changing salinity. Cryptogamic Botany 4: 4046.Google Scholar
Nygard, C. A. & Dring, M. J. (2008). Influence of salinity, temperature and dissolved inorganic carbon and nutrient concentration on the photosynthesis and growth on Fucus vesiculosus from Baltic and Irish Seas. European Journal of Phycology 43: 253262.CrossRefGoogle Scholar
Oren, A. (2005). A hundred years of Dunaliella research: 1905–2005. Saline Systems 1: 2.CrossRefGoogle ScholarPubMed
Raven, J. A. (2020). Chloride involvement in the synthesis, functioning and repair of the photosynthetic apparatus in vivo. New Phytologist 227: 334342.CrossRefGoogle ScholarPubMed
Raven, J. A. & Beardall, J. (2020). Energizing the plasmalemma of photosynthetic organisms: The role of primary active transport. Journal of the Marine Biological Association UK 100: 333346.CrossRefGoogle Scholar
Reed, R. H. (1984). The effects of extreme hyposaline stress upon Polysiphonia lanosa (L.) Tandy from marine and estuarine sites. Journal of Marine Biology and Ecology 76: 131144.CrossRefGoogle Scholar
Rietema, H. (1993). Ecotypic differences between Baltic and North Sea populations of Delesseria sanguinea and Membranoptera alata. Botanica Marina 36: 1521.CrossRefGoogle Scholar
Ritchie, R. J. (1988). The ionic relations of Ulva lactuca. Journal of Plant Physiology 33: 183192.CrossRefGoogle Scholar
Roberts, M. F. (2005). Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1: 5.CrossRefGoogle ScholarPubMed
Rueness, J. & Kornfeldt, R. A. (1992). Ecotypic differentiation in salinity responses of Ceramium strictum (Rhodophyta) from Scandinavian waters. Sarsia 77: 207212.CrossRefGoogle Scholar
Russell, G. (1987). Salinity and seaweed vegetation. In: Crawford, R. M. M. (ed.) The Physiological Ecology of Amphibious and Intertidal Plants. Blackwell, Oxford, pp. 3552.Google Scholar
Satoh, K., Smith, C. M. & Fork, D. C. (1983). Effects of salinity on primary processes of photosynthesis in the red alga Porphyra perforata. Plant Physiology 73: 643647.CrossRefGoogle ScholarPubMed
Smiatek, J., Harishchandra, R. K., Rubner, O. et al. (2012). Properties of compatible solutes in aqueous solution. Biophysical Chemistry 160: 6268.CrossRefGoogle ScholarPubMed
Smith, C. M., Satoh, K. & Fork, D. C. (1986). The effects of osmotic tissue dehydration and air drying in morphology and energy transfer in two species of Porphyra. Plant Physiology 80: 843847.CrossRefGoogle ScholarPubMed
Timasheff, S. N. (2002). Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry 41: 1347313482.CrossRefGoogle ScholarPubMed
Turesson, G. (1922). The genotypical response of the plant species to the habitat. Hereditas 3: 211350.CrossRefGoogle Scholar
Verret, F., Wheeler, G., Taylor, A. R. et al. (2010). Calcium channels in photosynthetic eukaryotes: Implications for evolution of calcium-based signalling. New Phytologist 187: 2343.CrossRefGoogle ScholarPubMed
Wiencke, C. & Läuchli, A. (1980). Growth, cell volume, and fine structure of Porphyra umbilicalis in relation to osmotic tolerance. Planta 150: 303311.CrossRefGoogle ScholarPubMed
Wiencke, C. (1982). Effect of osmotic stress on thylakoid fine structure in Porphyra umbilicalis. Protoplasma 111: 215220.CrossRefGoogle Scholar
Wright, P. J., Clayton, M. N., Chudek, J. A. et al. (1987). Low molecular weight carbohydrates in marine brown algae from the southern hemisphere: The occurrence of altritol in Bifurcariopsis capensis, Hormosira banksii, Notheia anomala and Xiphophora chondrophylla. Phycologia 26: 429434.CrossRefGoogle Scholar
Wright, D. G., Pawlowicz, R., McDougall, T. J. et al. (2010). Absolute salinity, ‘density salinity’ and the reference-composition salinity scale: Present and future use in the seawater standard TEOS-10. Ocean Science Discussions 7: 15591625.Google Scholar
Yancey, P. H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology 208: 28192830.CrossRefGoogle ScholarPubMed
Young, A. J., Collins, J. C. & Russell, G. (1987). Solute regulation in the euryhaline marine alga Enteromorpha prolifera (O.F. Mull) J. Ag. Journal of Experimental Botany 38: 12981308.CrossRefGoogle Scholar
Zimmermann, U. & Steudle, E. (1978). Physical aspects of water relations of plant cells. Advances in Botanical Research 6: 45117.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×