Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T23:12:56.389Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  30 March 2024

Julian G. Elliott
Affiliation:
Durham University
Elena L. Grigorenko
Affiliation:
University of Houston
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1000 Genomes Project Consortium. (2010). A map of human genome variation from population-scale sequencing. Nature, 467, 10611073.CrossRefGoogle Scholar
Aaron, P. G., Joshi, R. M., Ayotollah, M., et al. (1999). Decoding and sight-word naming: Are they independent components of word recognition skill? Reading and Writing, 11, 89127.CrossRefGoogle Scholar
Aboud, K. S., Bailey, S. K., Petrill, S. A., & Cutting, L. E. (2016). Comprehending text versus reading words in young readers with varying reading ability: Distinct patterns of functional connectivity from common processing hubs. Developmental Science, 19, 632656.CrossRefGoogle ScholarPubMed
Aboud, K. S., Barquero, L. A., & Cutting, L. E. (2018). Prefrontal mediation of the reading network predicts intervention response in dyslexia. Cortex, 101, 96106.CrossRefGoogle ScholarPubMed
Ackerman, B. P., Izard, C. E., Kobak, R., Brown, E. D., & Smith, C. (2007). Relation between reading problems and internalizing behavior in school for preadolescent children from economically disadvantaged families. Child Development, 78(2), 581596.CrossRefGoogle ScholarPubMed
Ackerman, P. T., Holloway, C. A., Youngdahl, P. L., & Dykman, R. A. (2001). The double-deficit theory of reading disability does not fit all. Learning Disabilities Research & Practice, 16, 152160.CrossRefGoogle Scholar
Acunzo, D. J., Low, D. M., & Fairhall, S. L. (2022). Deep neural networks reveal topic-level representations of sentences in medial prefrontal cortex, lateral anterior temporal lobe, precuneus, and angular gyrus. Neuroimage, 251, 119005.CrossRefGoogle ScholarPubMed
Adams, M. J. (1990). Beginning to Read: Thinking and Learning about Print. Cambridge, MA: MIT Press.Google Scholar
Adlof, S. M. (2020). Promoting reading achievement in children with developmental language disorders: What can we learn from research on specific language impairment and dyslexia? Journal of Speech, Language, and Hearing Research, 63(10), 3277–3292.CrossRefGoogle ScholarPubMed
Adlof, S. M., & Hogan, T. P. (2018). Understanding dyslexia in the context of developmental language disorders. Language, Speech, and Hearing Services in Schools, 49(4), 762773.CrossRefGoogle ScholarPubMed
Adlof, S. M., Catts, H. W., & Lee, J. (2010). Kindergarten predictors of second versus eighth grade reading comprehension impairments. Journal of Learning Disabilities, 43(4), 332345.CrossRefGoogle ScholarPubMed
Ahissar, M. (2007). Dyslexia and the anchoring-deficit hypothesis. Trends in Cognitive Sciences, 11, 458465.CrossRefGoogle ScholarPubMed
Ahissar, M., Lubin, Y., Putter-Katz, H., & Banai, K. (2006). Dyslexia and the failure to form a perceptual anchor. Nature Neuroscience, 9, 15581564.CrossRefGoogle Scholar
Al Dahhan, N. Z., Halverson, K., Peek, C. P., et al. (2022). Dissociating executive function and ADHD influences on reading ability in children with dyslexia. Cortex, 153, 126142.CrossRefGoogle ScholarPubMed
Al Dahhan, N. Z., Mesite, L., Feller, M. J., & Christodoulou, J. A. (2021). Identifying reading disabilities: A survey of practitioners. Learning Disability Quarterly, 44(4), 235247.CrossRefGoogle Scholar
Al Otaiba, S., Allor, J. H., Baker, K., et al. (2019). Teaching phonemic awareness and word reading skills: Focusing on explicit and systematic approaches. Perspectives on Language and Literacy, 45(3), 1116.Google Scholar
Al Otaiba, S., Baker, K., Lan, P., et al. (2019). Elementary teachers’ knowledge of response to intervention implementation: A preliminary factor analysis. Annals of Dyslexia, 69(1), 3453.CrossRefGoogle ScholarPubMed
Al Otaiba, S., Connor, C. M., Folsom, J. S., et al. (2014). To wait in tier 1 or intervene immediately: A randomized experiment examining first-grade response to intervention in reading. Exceptional Children, 81(1), 1127.CrossRefGoogle ScholarPubMed
Al Otaiba, S., Folsom, S. J., Schatschneider, C., et al. (2011). Predicting first-grade reading performance from kindergarten response to Tier 1 instruction. Exceptional Children, 77, 453470.CrossRefGoogle ScholarPubMed
Al Otaiba, S., McMaster, K., Wanzek, J., & Zaru, M. W. (2022). What we know and need to know about literacy interventions for elementary students with reading difficulties and disabilities, including dyslexia. Reading Research Quarterly, 58(2), 313332.CrossRefGoogle ScholarPubMed
Al Otaiba, S., Rouse, A., & Baker, K. (2018). Elementary grade intervention approaches to treat specific learning disabilities, including dyslexia. Language, Speech, and Hearing Services in Schools, 49(4), 829842.CrossRefGoogle ScholarPubMed
Al Otaiba, S., Russell-Freudenthal, D., & Zaru, M. W. (2024). Effective instruction and intervention for word-level reading for students with and at-risk for learning disabilities. In Okolo, C., Patton-Terry, N., & Cutting (eds.), L., Handbook of Learning Disabilities. 3rd edition. New York: Guilford Press.Google Scholar
Al Otaiba, S., Wanzek, J., Zaru, M., et al. (2022). Reading achievement and growth mindset of students with reading difficulties or reading disabilities: Contemporary research and implications for research and practice. In Lemons, C. J., Powell, S. R., Lane, K. L., & Aceves, T. C. (eds.), Handbook of Special Education Research, Volume II: Research-Based Practices and Intervention Innovations (pp. 3142). New York: Routledge.CrossRefGoogle Scholar
Albon, E., Adi, Y., & Hyde, C. (2008). The Effectiveness and Cost-Effectiveness of Colored Filters for Reading Disability: Systematic Review. Birmingham, AL: University of Birmingham Department of Public Health and Epidemiology.Google Scholar
Alexander-Passe, N. (2015). The dyslexia experience: Difference, disclosure, labelling, discrimination and stigma. Asia Pacific Journal of Developmental Differences, 2(2), 202233.CrossRefGoogle Scholar
Alexander-Passe, N. (2016). The school’s role in creating successful and unsuccessful dyslexics. Journal of Psychology and Psychotherapy, 6(238), 113.CrossRefGoogle Scholar
Alexander-Passe, N. (2018). Should “developmental dyslexia” be understood as a disability or a difference? Asia Pacific Journal of Developmental Differences, 5(2), 247271.CrossRefGoogle Scholar
Allington, R. L. (2019). The hidden push for phonics legislation. Tennessee Literacy Journal, 1(1), 720.Google Scholar
Allington, R. L., & McGill-Franzen, A. M. (2021). Reading volume and reading achievement: A review of recent research. Reading Research Quarterly, 56, S231–S238.CrossRefGoogle Scholar
Alloway, T. P. (2007). Automated Working Memory Assessment (AWMA). London: Harcourt Assessment.Google Scholar
Alloway, T. P., Gathercole, S. E., Kirkwood, H. J., & Elliott, J. G. (2009). The cognitive and behavioral characteristics of children with low working memory. Child Development, 80, 606621.CrossRefGoogle ScholarPubMed
Alloway, T. P., Gathercole, S. E., & Pickering, S. J. (2006). Verbal and visuospatial short‐term and working memory in children: Are they separable? Child Development, 77(6), 16981716.CrossRefGoogle ScholarPubMed
Alt, M., Fox, A., Levy, R., et al. (2021). Phonological working memory and central executive function differ in children with typical development and dyslexia. Dyslexia, 28(1), 2039.CrossRefGoogle ScholarPubMed
Altarelli, I., Leroy, F., Monzalvo, K., et al. (2014). Planum temporale asymmetry in developmental dyslexia: Revisiting an old question. Human Brain Mapping, 35, 57175735.CrossRefGoogle ScholarPubMed
Altarelli, I., Monzalvo, K., Iannuzzi, S., et al. (2013). A functionally guided approach to the morphometry of occipitotemporal regions in developmental dyslexia: Evidence for differential effects in boys and girls. Journal of Neuroscience, 33, 11296–11301.CrossRefGoogle Scholar
American Academy of Pediatrics. (1982). The doman-delacato treatment of neurologically handicapped children: A policy statement by the American Academy of Pediatrics. Pediatrics, 70, 810812.CrossRefGoogle Scholar
American Academy of Pediatrics (Section on Ophthalmology & Council on Children with Disabilities, Ophthalmology, American Academy of Ophthalmology, American Association for Pediatric Ophthalmology and Strabismus, & American Association of Certified Orthoptists). (2009). Learning disabilities, dyslexia, and vision. Pediatrics, 124, 837844.CrossRefGoogle Scholar
American Educational Research Association (AERA), American Psychological Association (APA), & National Council on Measurement in Education (NCME). (2014). Educational and Psychological Testing. AERA.Google Scholar
American Psychiatric Association (APA). (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th edition. (DSM-5). Arlington, VA: American Psychiatric Association.Google Scholar
Amitay, S., Ben-Yehudah, G., Banai, K., & Ahissar, M. (2002). Disabled readers suffer from visual and auditory impairments but not from a specific magnocellular deficit. Brain, 125, 22722285.CrossRefGoogle Scholar
Amitay, S., Ben-Yehudah, G., Banai, K., & Ahissar, M. (2003). Visual magnocellular deficits in dyslexia: Reply to the Editor. Brain, 126, e3.CrossRefGoogle Scholar
Amland, T., Lervåg, A., & Melby-Lervåg, M. (2021). Comorbidity between math and reading problems: Is phonological processing a mutual factor? Frontiers in Human Neuroscience, 14, 577304, 592.CrossRefGoogle ScholarPubMed
Amtmann, D., Abbott, R. D., & Berninger, V. W. (2007). Mixture growth models of RAN and RAS row by row: Insight into the reading system at work over time. Reading and Writing, 20, 785813.CrossRefGoogle Scholar
Anderson, C. A. (2007). Belief perseverance. In Baumeister, R. F., & Vohs, K. D. (eds.), Encyclopedia of Social Psychology (pp. 109110). Thousand Oaks, CA: Sage.Google Scholar
Anderson, K. (2000, June 18th). The reading wars: Understanding the debate over how best to teach children to read. Los Angeles Times Book Review. Available at SSRN: https://ssrn.com/abstract=935776.Google Scholar
Anderson, N. J., Rozenman, M., Pennington, B. F., Willcutt, E. G., & McGrath, L. M. (2023). Compounding effects of domain-general cognitive weaknesses and word reading difficulties on anxiety symptoms in youth. Journal of Learning Disabilities, 56(5), 343358.CrossRefGoogle ScholarPubMed
Andreola, C., Mascheretti, S., Belotti, R., et al. (2021). The heritability of reading and reading-related neurocognitive components: A multi-level meta-analysis. Neuroscience & Biobehavioral Reviews, 121, 175200.CrossRefGoogle ScholarPubMed
Andrews, J. S., Ben-Shachar, M., Yeatman, J. D., et al. (2010). Reading performance correlates with white-matter properties in preterm and term children. Developmental Medicine & Child Neurology, 52, 505506.CrossRefGoogle ScholarPubMed
Angrilli, A., Elbert, T., Cusumano, S., Stegagno, L., & Rockstroh, B. (2003). Temporal dynamics of linguistic processes are reorganized in aphasics’ cortex: An EEG mapping study. Neuroimage, 20, 657666.CrossRefGoogle ScholarPubMed
Angrilli, A., & Spironelli, C. (2005). Cortical plasticity of language measured by EEG in a case of anomic aphasia. Brain and Language, 95, 3233.CrossRefGoogle Scholar
Annamma, S. A., Connor, D., & Ferri, B. (2013). Dis/ability critical race studies (DisCrit): Theorizing at the intersections of race and dis/ability. Race Ethnicity and Education, 16(1), 131.CrossRefGoogle Scholar
Antal, A., Luber, B., Brem, A. K., et al. (2022). Non-invasive brain stimulation and neuroenhancement. Clinical Neurophysiology Practice, 7, 146165.CrossRefGoogle ScholarPubMed
Araújo, S., & Faísca, L. (2019). A meta-analytic review of naming-speed deficits in developmental dyslexia. Scientific Studies of Reading, 23(5), 349368.CrossRefGoogle Scholar
Araújo, S., Reis, A., Petersson, K. M., & Faísca, L. (2015). Rapid automatized naming and reading performance: A meta-analysis. Journal of Educational Psychology, 107(3), 868883.CrossRefGoogle Scholar
Archer, A. L., Gleason, M. M., & Vachon, V. L. (2003). Decoding and fluency: Foundation skills for struggling older readers. Learning Disability Quarterly, 26, 89101.CrossRefGoogle Scholar
Arnett, A. B., Pennington, B. F., Peterson, R. L. et al. (2017). Explaining the sex difference in dyslexia. Journal of Child Psychology and Psychiatry, 58, 719727CrossRefGoogle ScholarPubMed
Arnoutse, C., van Leeuwe, J., & Verhoeven, L. (2005). Early literacy from a longitudinal perspective. Educational Review and Research, 11, 253275.Google Scholar
Arns, M., Peters, S., Breteler, R., & Verhoeven, L. (2007). Different brain activation patterns in dyslexic children: Evidence from EEG power and coherence patterns for the double-deficit theory of dyslexia. Journal of Integrative Neuroscience, 6, 175190.CrossRefGoogle ScholarPubMed
Aro, T., Eklund, K., Eloranta, A. K., Ahonen, T., & Rescorla, L. (2022). Learning disabilities elevate children’s risk for behavioral-emotional problems: Differences between LD types, genders, and contexts. Journal of Learning Disabilities, 55(6), 465481.CrossRefGoogle ScholarPubMed
Arredondo, M. M., Ip, K. I., Shih Ju Hsu, L., Tardif, T., & Kovelman, I. (2015). Brain bases of morphological processing in young children. Human Brain Mapping, 36, 28902900.CrossRefGoogle ScholarPubMed
Arrow, A. W., & Tunmer, W. E. (2012). Contemporary reading acquisition theory: The conceptual basis for differentiated reading instruction. In Suggate, S., & Reese, E. (eds.), Contemporary Debates in Childhood Education and Development (pp. 241249). London: Routledge.Google Scholar
Asbury, K., & Plomin, R. (2013). G Is for Genes: The Impact of Genes on Education and Achievement. Chichester: Wiley-Blackwell.CrossRefGoogle Scholar
Asbury, K., & Wai, J. (2020). Viewing education policy through a genetic lens. Journal of School Choice, 14(2), 301315.CrossRefGoogle Scholar
Asghar, Z. B., Siriwardena, A. N., Elfes, C., et al. (2018). Performance of candidates disclosing dyslexia with other candidates in a UK medical licensing examination: Cross-sectional study. Postgraduate Medical Journal, 94(1110), 198203.CrossRefGoogle Scholar
Asghar, Z. B., Williams, N., Denney, M., & Siriwardena, A. N. (2019). Performance in candidates declaring versus those not declaring dyslexia in a licensing clinical examination. Medical Education, 53(12), 12431252.CrossRefGoogle ScholarPubMed
Ashburn, S. M., Flowers, D. L., Napoliello, E. M., & Eden, G. F. (2020). Cerebellar function in children with and without dyslexia during single word processing. Human Brain Mapping, 41(1), 120138.CrossRefGoogle ScholarPubMed
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry – The methods. Neuroimage, 11, 805821.CrossRefGoogle ScholarPubMed
Ashton, C. (1996). In defence of discrepancy definitions of specific learning difficulties. Educational Psychology in Practice, 12, 131140.CrossRefGoogle Scholar
Ashton, C. (1997). SpLD, discrepancies and dyslexia: A response to Solity and the Stanoviches. Educational Psychology in Practice, 13, 911.CrossRefGoogle Scholar
Astle, D. E., Bathelt, J., CALM Team, & Holmes, J. (2019). Remapping the cognitive and neural profiles of children who struggle at school. Developmental Science, 22, e12747.CrossRefGoogle ScholarPubMed
Astle, D. E., & Fletcher-Watson, S. (2020). Beyond the core-deficit hypothesis in developmental disorders. Current Directions in Psychological Science, 29(5), 431437.CrossRefGoogle ScholarPubMed
Astle, D. E., Holmes, J., Kievit, R., & Gathercole, S. E. (2022). Annual Research Review: The transdiagnostic revolution in neurodevelopmental disorders. Journal of Child Psychology and Psychiatry, 63(4), 397417.CrossRefGoogle ScholarPubMed
Au, A., & Lovegrove, B. (2001). Temporal processing ability in above average and average readers. Perception & Psychophysics, 63, 148155.CrossRefGoogle ScholarPubMed
Austin, C. R., Vaughn, S., & McClelland, A. M. (2017). Intensive reading interventions for inadequate responders in grades K–3: A synthesis. Learning Disability Quarterly, 40(4), 191210.CrossRefGoogle Scholar
Axelrud, L. K., Hoffmann, M. S., Vosberg, D. E., et al. (2023). Disentangling the influences of parental genetics on offspring’s cognition, education, and psychopathology via genetic and phenotypic pathways. Journal of Child Psychology and Psychiatry, 64, 408416.CrossRefGoogle ScholarPubMed
Aylward, E., Richards, T., Berninger, V., et al. (2003). Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology, 61, 212219.CrossRefGoogle ScholarPubMed
Ayres, A. J. (1963). The development of perceptual-motor abilities: A theoretical basis for treatment of dysfunction. American Journal of Occupational Therapy, 17, 221225.Google ScholarPubMed
Ayres, A. J. (1979). Sensory Integration and the Child. Los Angeles: Western Psychological Services.Google Scholar
Bach, S., Brandeis, D., Hofstetter, C., et al. (2010). Early emergence of deviant frontal fMRI activity for phonological processes in poor beginning readers. Neuroimage, 53, 682693.CrossRefGoogle ScholarPubMed
Badcock, N. A., & Kidd, J. C. (2015). Temporal variability predicts the magnitude of between-group attentional blink differences in developmental dyslexia: A meta-analysis. PeerJ, 3, e746.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417422.CrossRefGoogle ScholarPubMed
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Bower, G. (ed.), The Psychology of Learning and Motivation: Vol. 8 (pp. 47–90). New York: Academic Press.Google Scholar
Badian, N. A. (1997). Dyslexia and the double deficit hypothesis. Annals of Dyslexia, 47, 6987.CrossRefGoogle Scholar
Badzakova-Trajkov, G., Hamm, J. P., & Waldie, K. E. (2005). The effects of redundant stimuli on visuospatial processing in developmental dyslexia. Neuropsychologia, 43, 473478.CrossRefGoogle ScholarPubMed
Bailey, D. H., Duncan, G. J., Cunha, F., Foorman, B. R., & Yeager, D. S. (2020). Persistence and fade-out of educational-intervention effects: Mechanisms and potential solutions. Psychological Science in the Public Interest, 21(2), 5597.CrossRefGoogle ScholarPubMed
Bakhtin, M. (1981). The Dialogic Imagination: Four Essays. Translated by C. Emerson & M. Holquist. Austin: University of Texas Press.Google Scholar
Balow, B. (1971). Perceptual-motor activities in the treatment of severe reading disability. The Reading Teacher, 24, 513525.Google Scholar
Balow, B. (1996). Perceptual-motor activities in the treatment of severe reading disability. The Reading Teacher, 50, 8897.Google Scholar
Balu, R., Zhu, P., Doolittle, F., et al. (2015). Evaluation of Response to Intervention Practices for Elementary Reading (NCEE 2016‐4000). Washington, DC: US Department of Education, Institute of Education Sciences.Google Scholar
Banai, K., & Ahissar, M. (2004). Poor frequency discrimination probes dyslexics with particularly impaired working memory. Audiology & Neurotology, 9, 328340.CrossRefGoogle ScholarPubMed
Banai, K., & Ahissar, M. (2010). On the importance of anchoring and the consequences of its impairment in dyslexia. Dyslexia, 16, 240257.CrossRefGoogle ScholarPubMed
Banai, K., & Ahissar, M. (2018). Poor sensitivity to sound statistics impairs the acquisition of speech categories in dyslexia. Language, Cognition and Neuroscience, 33(3), 321332.CrossRefGoogle Scholar
Banfi, C., Kemény, F., Gangl, M., et al. (2018). Visual attention span performance in German-speaking children with differential reading and spelling profiles: No evidence of group differences. PLoS One, 13(6), e0198903.CrossRefGoogle ScholarPubMed
Barela, J. A., Dias, J. L., Godoi, D., Viana, A. R., & de Freitas, P. B. (2011). Postural control and automaticity in dyslexic children: The relationship between visual information and body sway. Research in Developmental Disabilities, 32, 18141821.CrossRefGoogle ScholarPubMed
Barešić, A., Nash, A. J., Dahoun, T., Howes, O., & Lenhard, B. (2020). Understanding the genetics of neuropsychiatric disorders: The potential role of genomic regulatory blocks. Molecular Psychiatry, 25, 618.CrossRefGoogle ScholarPubMed
Barkley, R. A. (2015). Attention-Deficit Hyperactivity Disorder: A Handbook for Diagnosis and Treatment. 4th edition. New York: Guilford Press.Google Scholar
Barkovich, A. J., & Kuzniecky, R. I. (2000). Gray matter heterotopia. Neurology, 55, 16031608.CrossRefGoogle ScholarPubMed
Barnes, Z., & Peltier, T. (2022). Translating the science of reading screening into practice: Policies and their implications. Perspectives on Language and Literacy, 48(1), 4248Google Scholar
Barquero, L. A., Davis, N., & Cutting, L. E. (2014). Neuroimaging of reading intervention: A systematic review and activation likelihood estimate meta-analysis. PLoS ONE, 9, e83668.CrossRefGoogle ScholarPubMed
Barrett, C. A., Burns, M. K., Maki, K. E. et al. (2022). Language used in school psychological evaluation reports as predictors of SLD identification within a response to intervention model. School Psychology, 37(2), 107118.CrossRefGoogle ScholarPubMed
Barth, A. E., Denton, C. A., Stuebing, K. K., et al. (2010). A test of the cerebellar hypothesis of dyslexia in adequate and inadequate responders to reading intervention. Journal of International Neuropsychological Society, 16, 526536.CrossRefGoogle ScholarPubMed
Bates, T. C., Luciano, M., Castles, A., et al. (2007). Replication of reported linkages for dyslexia and spelling and suggestive evidence for novel regions on chromosomes 4 and 17. European Journal of Human Genetics, 15, 194203.CrossRefGoogle ScholarPubMed
Battisti, A., Lazzaro, G., Costanzo, F., et al. (2022). Effects of a short and intensive transcranial direct current stimulation treatment in children and adolescents with developmental dyslexia: A crossover clinical trial. Frontiers in Psychology, 13.CrossRefGoogle Scholar
Bavelier, D., & Green, C. S. (2019). Enhancing attentional control: Lessons from action video games. Neuron, 104(1), 147163.CrossRefGoogle ScholarPubMed
Baye, A., Inns, A., Lake, C., & Slavin, R. E. (2019). A synthesis of quantitative research on reading programs for secondary students. Reading Research Quarterly, 54(2), 133166.CrossRefGoogle Scholar
Bazen, L., van den Boer, M., de Jong, P. F., & de Bree, E. H. (2020). Early and late diagnosed dyslexia in secondary school: Performance on literacy skills and cognitive correlates. Dyslexia, 26(4), 359376.CrossRefGoogle ScholarPubMed
Beach, S. D., Ozernov-Palchik, O., May, S. C., et al. (2022). The neural representation of a repeated standard stimulus in syslexia. Frontiers of Human Neuroscience, 16, 823627.CrossRefGoogle Scholar
Beaton, A. A. (1997). The relation of planum temporale asymmetry and morphology of the corpus callosum to handedness, gender, and dyslexia: A review of the evidence. Brain and Language, 60, 255322.CrossRefGoogle ScholarPubMed
Beattie, R. L., Lu, Z. L., & Manis, F. R. (2011). Dyslexic adults can learn from repeated stimulus presentation but have difficulties in excluding external noise. PloS one, 6(11), e27893.CrossRefGoogle ScholarPubMed
Beattie, R. L., & Manis, F. R. (2014). The relationship between prosodic perception, phonological awareness and vocabulary in emergent literacy. Journal of Research in Reading, 37(2), 119137.CrossRefGoogle Scholar
Beaujean, A. A., Benson, N. F., McGill, R. J., & Dombrowski, S. C. (2018). A misuse of IQ scores: Using the dual discrepancy/consistency model for identifying specific learning disabilities. Journal of Intelligence, 6(3), 36.CrossRefGoogle ScholarPubMed
Beaulieu, C., Plewes, C., Paulson, L. A., Roy, D., Snook, L., Concha, L., & Phillips, L. (2005). Imaging brain connectivity in children with diverse reading ability. Neuroimage, 25(4), 12661271.CrossRefGoogle ScholarPubMed
Beck, S. (2022). Evaluating the use of reasonable adjustment plans for students with a specific learning difficulty. British Journal of Special Education, 49(3), 399419.CrossRefGoogle Scholar
Becker, J., Czamara, D., Scerri, T. S., et al. (2014). Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort. European Journal of Human Genetics, 22, 675680.CrossRefGoogle ScholarPubMed
Becker, N., Vasconcelos, M., Oliveira, V., et al. (2017). Genetic and environmental risk factors for developmental dyslexia in children: Systematic review of the last decade. Developmental Neuropsychology, 42(7–8), 423445.CrossRefGoogle ScholarPubMed
Bedo, N., Ender-Fox, D., Chow, J., Siegel, L., Ribary, U., & Ward, L. M. (2021). Effects of a phonological intervention on EEG connectivity dynamics in dyslexic children. In Glazzard, J., & Stones, S. (eds.), Dyslexia IntechOpen. www.intechopen.com/chapters/75089. Accessed December 3, 2023.CrossRefGoogle Scholar
Bégel, V., Dalla Bella, S., Devignes, Q., et al. (2022). Rhythm as an independent determinant of developmental dyslexia. Developmental Psychology, 58(2), 339358.CrossRefGoogle ScholarPubMed
Begemann, M. J., Brand, B. A., Ćurčić-Blake, B., Aleman, A., & Sommer, I. E. (2020). Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: A meta-analysis. Psychological Medicine, 50(15), 24652486.CrossRefGoogle ScholarPubMed
Bejerano, G., Lowe, C. B., Ahituv, N., et al. (2006). A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature, 441, 8790.CrossRefGoogle Scholar
Bellini, G., Bravaccio, C., Calamoneri, F., et al. (2005). No evidence for association between dyslexia and DYX1C1 functional variants in a group of children and adolescents from Southern Italy. Journal of Molecular Neuroscience, 27, 311314.CrossRefGoogle Scholar
Benassi, M., Simonelli, L., Giovagnoli, S., & Bolzani, R. (2010). Coherence motion perception in developmental dyslexia: A meta-analysis of behavioral studies. Dyslexia, 16, 341357CrossRefGoogle ScholarPubMed
Benner, G. J., Nelson, J. R., Stage, S. A., & Ralston, N. C. (2011). The influence of fidelity of implementation on the reading outcomes of middle school students experiencing reading difficulties. Remedial and Special Education, 32, 7988.CrossRefGoogle Scholar
Ben-Shachar, M., Dougherty, R. F., & Wandell, B. A. (2007). White matter pathways in reading. Current Opinion in Neurobiology, 17, 258270.CrossRefGoogle ScholarPubMed
Benson, N. F., Floyd, R. G., Kranzler, J. H., et al. (2019). Test use and assessment practices of school psychologists in the United States: Findings from the 2017 National Survey. Journal of School Psychology, 72, 2948.CrossRefGoogle ScholarPubMed
Benson, N. F., Maki, K. E., Floyd, R. G., et al. (2020). A national survey of school psychologists’ practices in identifying specific learning disabilities. School Psychology, 35(2), 146157.CrossRefGoogle ScholarPubMed
Benton, A. L., & Pearl, D. (eds.). (1978). Dyslexia: An Appraisal of Current Knowledge. New York: Oxford University Press.Google Scholar
Berent, I, Vaknin-Nusbaum, V., Balaban, E., & Galaburda, A. M. (2012). Dyslexia impairs speech recognition but can spare phonological competence. PLoS ONE, 7(9), e44875.CrossRefGoogle ScholarPubMed
Berent, I., & Platt, M. (2021). Public misconceptions about dyslexia: The role of intuitive psychology. PloS ONE, 16(12), e0259019.CrossRefGoogle ScholarPubMed
Bergmann, T. O., & Hartwigsen, G. (2021). Inferring causality from noninvasive brain stimulation in cognitive neuroscience. Journal of Cognitive Neuroscience, 33, 195225.CrossRefGoogle ScholarPubMed
Berkeley, S., Scanlon, D., Bailey, T. R., Sutton, J. C., & Sacco, D. M. (2020). A snapshot of RTI implementation a decade later: New picture, same story. Journal of Learning Disabilities, 53(5), 332342.CrossRefGoogle ScholarPubMed
Berlin, R. (1887). Eine besondre Art der Wortblindheit [A particular kind of word-blindness]. Verlag von J. F. Beckmann.Google Scholar
Berninger, V. W., Abbott, R. D., Nagy, W., & Carlisle, J. (2010). Growth in phonological, orthographic, and morphological awareness in grades 1 to 6. Journal of Psycholinguistic Research, 39, 141163.CrossRefGoogle Scholar
Berninger, V. W., Raskind, W., Richards, T., Abbott, R., & Stock, P. (2008). A multidisciplinary approach to understanding developmental dyslexia within working-memory architecture: Genotypes, phenotypes, brain, and instruction. Developmental Neuropsychology, 33, 707744.CrossRefGoogle ScholarPubMed
Bertoni, S., Franceschini, S., Puccio, G., et al. (2021). Action video games enhance attentional control and phonological decoding in children with developmental dyslexia. Brain Sciences, 11(2), 171.CrossRefGoogle ScholarPubMed
Bertoni, S., Franceschini, S., Ronconi, L., Gori, S., & Facoetti, A. (2019). Is excessive visual crowding causally linked to developmental dyslexia? Neuropsychologia, 130, 107117.CrossRefGoogle ScholarPubMed
Bestmann, S. (2008). The physiological basis of transcranial magnetic stimulation. Trends in Cognitive Sciences, 8183.CrossRefGoogle ScholarPubMed
Betjemann, R. S., Willcutt, E. G., Olson, R. K., et al. (2008). Word reading and reading comprehension: Stability, overlap and independence. Reading and Writing, 21, 539558.CrossRefGoogle Scholar
Bevilacqua, D., Davidesco, I., Wan, L., et al. (2019). Brain-to-brain synchrony and learning outcomes vary by student-teacher dynamics: Evidence from a real-world classroom electroencephalography study. Journal of Cognitive Neuroscience, 31, 401411.CrossRefGoogle ScholarPubMed
Bianco, M., Bressoux, P., Doyen, A., et al. (2010). Early training in oral comprehension and phonological skills: Results of a three-year longitudinal study. Scientific Studies of Reading, 14, 211246.CrossRefGoogle Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 27672796.CrossRefGoogle ScholarPubMed
Bishop, D. V. M. (2006). Dyslexia: What’s the problem?. Developmental Science, 9, 256257.CrossRefGoogle ScholarPubMed
Bishop, D. V. M. (2007). Curing dyslexia and ADHD by training motor coordination: Miracle or myth? Journal of Paediatrics and Child Health, 43, 653655.CrossRefGoogle ScholarPubMed
Bishop, D. V. M., Mcdonald, D., Bird, S., & Hayiou-Thomas, M. E. (2009). Children who read accurately despite language impairment: Who are they and how do they do it? Child Development, 80, 593605.CrossRefGoogle ScholarPubMed
Bishop, D. V. M., Snowling, M. J., Thompson, P. A., & Greenhalgh, T. (2017). Phase 2 of CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. Journal of Child Psychology and Psychiatry, 58, 10681080.CrossRefGoogle ScholarPubMed
Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI Magnetic Resonance in Medicine, 34, 537541.CrossRefGoogle ScholarPubMed
Blackmore, S. (1999). The Meme Machine. Oxford: Oxford University Press.Google Scholar
Blampain, E., Gosse, C., & Van Reybroeck, M. (2021). Copying skills in children with and without dyslexia. Reading and Writing, 34(4), 859885.CrossRefGoogle Scholar
Blanchett, W. J. (2010). Telling it like it is: The role of race, class, & culture in the perpetuation of learning disability as a privileged category for the white middle class. Disability Studies Quarterly, 30(2).CrossRefGoogle Scholar
Blasi, D. E., Henrich, J., Adamou, E., Kemmerer, D., & Majid, A. (2022). Over-reliance on English hinders cognitive science. Trends in Cognitive Sciences, 26(12), 11531170.CrossRefGoogle ScholarPubMed
Blau, V., Reithler, J., van Atteveldt, N., et al. (2010). Deviant processing of letters and speech sounds as proximate cause of reading failure: A functional magnetic resonance imaging study of dyslexic children. Brain, 133, 868879.CrossRefGoogle ScholarPubMed
Blau, V., van Atteveldt, N., Ekkebus, M., Goebel, R., & Blomert, L. (2009). Reduced neural integration of letters and speech sounds links phonological and reading deficits in adult dyslexia. Current Biology, 19, 503508.CrossRefGoogle ScholarPubMed
Blythe, P. (1992). A Physical Approach to Resolving Specific Learning Difficulties. Chester: Institute for Neuro-Physiological Psychology.Google Scholar
Boardman, A. G., Vaughn, S., Buckley, P., et al. (2016). Collaborative strategic reading for students with learning disabilities in upper elementary classrooms. Exceptional Children, 82(4), 409427.CrossRefGoogle Scholar
Boardman, K. (2020). An exploration of teachers’ perceptions and the value of multisensory teaching and learning: A perspective on the influence of Specialist Dyslexia Training in England. Education 3–13, 48(7), 795806.Google Scholar
Boets, B. (2014). Dyslexia: Reconciling controversies within an integrative developmental perspective. Trends in Cognitive Sciences, 18(10), 501503.CrossRefGoogle ScholarPubMed
Boets, B., De Smedt, B., Cleuren, L., et al. (2010). Towards a further characterization of phonological and literacy problems in Dutch-speaking children with dyslexia. British Journal of Developmental Psychology, 28, 531.CrossRefGoogle ScholarPubMed
Boets, B., Ghesquière, P., van Wieringen, A., & Wouters, J. (2007). Speech perception in preschoolers at family risk for dyslexia: Relations with low-level auditory processing and phonological ability. Brain and Language, 101, 1930.CrossRefGoogle ScholarPubMed
Boets, B., Op de Beeck, H. P., Vandermosten, M., et al. (2013). Intact but less accessible phonetic representations in adults with dyslexia. Science, 342(6163), 12511254.CrossRefGoogle ScholarPubMed
Boets, B., Wouters, J., van Wieringen, A., & Ghesquière, P. (2007). Auditory processing, speech perception and phonological ability in preschool children at high-risk of dyslexia: A longitudinal study of the auditory temporal processing theory. Neuropsychologia, 45, 16081620.CrossRefGoogle ScholarPubMed
Bogaerts, L., Szmalec, A., De Maeyer, M., Page, M. P., & Duyck, W. (2016). The involvement of long-term serial-order memory in reading development: A longitudinal study. Journal of Experimental Child Psychology, 145, 139156.CrossRefGoogle ScholarPubMed
Bogaerts, L., Szmalec, A., Hachmann, W. M., Page, M. P., & Duyck, W. (2015). Linking memory and language: Evidence for a serial-order learning impairment in dyslexia. Research in Developmental Disabilities, 43, 106122.CrossRefGoogle ScholarPubMed
Bogon, J., Finke, K., Schulte‐Körne, G., et al. (2014). Parameter‐based assessment of disturbed and intact components of visual attention in children with developmental dyslexia. Developmental Science, 17(5), 697713.CrossRefGoogle ScholarPubMed
Bonacina, S., Cancer, A., Lanzi, P. L., Lorusso, M. L., & Antonietti, A. (2015). Improving reading skills in students with dyslexia: The efficacy of a sublexical training with rhythmic background. Frontiers in Psychology, 6, 1510.CrossRefGoogle ScholarPubMed
Booth, J. N., Boyle, J. M., & Kelly, S. W. (2014). The relationship between inhibition and working memory in predicting children’s reading difficulties. Journal of Research in Reading, 37(1), 84101.CrossRefGoogle Scholar
Booth, J. R., Burman, D. D., Santen, F. W. V., et al. (2001). The development of specialized brain systems in reading and oral language. Child Neuropsychology, 7, 119141.CrossRefGoogle ScholarPubMed
Borasio, F., Syren, M. L., Turolo, S., et al. (2022). Direct and indirect effects of blood levels of Omega-3 and Omega-6 fatty acids on reading and writing (dis) abilities. Brain Sciences, 12(2), 169.CrossRefGoogle ScholarPubMed
Borchers, L. R., Bruckert, L., Dodson, C. K., et al. (2019). Microstructural properties of white matter pathways in relation to subsequent reading abilities in children: A longitudinal analysis. Brain Structure and Function, 224, 891905.CrossRefGoogle ScholarPubMed
Bosse, M. L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: The visual attention span deficit hypothesis. Cognition, 104, 198230.CrossRefGoogle ScholarPubMed
Boucher, A. N., Bhat, B. H., Clemens, N. H., Vaughn, S., & O’Donnell, K. (2023). Reading interventions for students in Grades 3–12 with significant word reading difficulties. Journal of Learning Disabilities. https://doi.org/10.1177/00222194231207556CrossRefGoogle ScholarPubMed
Boulton, K. A., Coghill, D., Silove, N., et al. (2021). A national harmonised data collection network for neurodevelopmental disorders: A transdiagnostic assessment protocol for neurodevelopment, mental health, functioning and well‐being. JCPP Advances, 1(4), e12048.CrossRefGoogle Scholar
Bouton, B., McConnell, J. R., Barquero, L. A., Gilbert, J. K., & Compton, D. L. (2018). Upside‐down response to intervention: A quasi‐experimental study. Learning Disabilities Research & Practice, 33(4), 229236.CrossRefGoogle ScholarPubMed
Bowers, J. S. (2016a). The practical and principled problems with educational neuroscience. Psychological Review, 123(5), 600.CrossRefGoogle ScholarPubMed
Bowers, J. S. (2016b). Psychology, not educational neuroscience, is the way forward for improving educational outcomes for all children: Reply to Gabrieli (2016) and Howard-Jones et al. (2016). Psychological Review, 123(5), 628635CrossRefGoogle Scholar
Bowers, J. S. (2020). Reconsidering the evidence that systematic phonics is more effective than alternative methods of reading instruction. Educational Psychology Review, 32(3), 681705.CrossRefGoogle Scholar
Bowers, P. G., Sunseth, K., & Golden, J. (1999). The route between rapid naming and reading progress. Scientific Studies of Reading, 3, 3153.CrossRefGoogle Scholar
Bowers, P. G., & Wolf, M. (1993). Theoretical links among naming speed, precise timing mechanisms and orthographic skill in dyslexia. Reading and Writing, 5, 6985.CrossRefGoogle Scholar
Braaten, E. (2020). Playing the insurance game: When is testing covered? MGH Clay Center for Young Heathy Minds. https://bit.ly/3GwAXPD. Accessed August 28, 2022.Google Scholar
Bradley, L., & Bryant, P. E. (1983). Categorizing sounds and learning to read – A causal connection. Nature, 301, 419421.CrossRefGoogle Scholar
Brady, S. (2019). The 2003 IDA definition of dyslexia: A call for changes. Perspectives on Language and Literacy, 45(1), 1521.Google Scholar
Brambati, S. M., Termine, C., Ruffino, M., et al. (2004). Regional reductions of gray matter volume in familial dyslexia. Neurology, 63, 742745.CrossRefGoogle ScholarPubMed
Bramlett, R. K., Murphy, J. J., Johnson, J., & Wallingsford, L. (2002). Contemporary practices in school psychology: A national survey of roles and referral problems. Psychology in the Schools, 39, 327335.CrossRefGoogle Scholar
Brandenburg, J., Klesczewski, J., Fischbach, A., et al. (2015). Working memory in children with learning disabilities in reading versus spelling: Searching for overlapping and specific cognitive factors. Journal of Learning Disabilities, 48(6), 622634.CrossRefGoogle ScholarPubMed
Brantlinger, E. (1997). Using ideology: Cases of nonrecognition of the politics of research and practice in special education. Review of Educational Research, 67, 425459.CrossRefGoogle Scholar
Brem, S., Bach, S., Kucian, K., et al. (2010). Brain sensitivity to print emerges when children learn letter–speech sound correspondences. Proceedings of the National Academy of Sciences, 107, 79397944.CrossRefGoogle ScholarPubMed
Brem, S., Maurer, U., Kronbichler, M., et al. (2020). Visual word form processing deficits driven by severity of reading impairments in children with developmental dyslexia. Scientific Reports, 10, 18728.CrossRefGoogle ScholarPubMed
Brennan, J., Nir, Y., Hasson, U., et al. (2012). Syntactic structure building in the anterior temporal lobe during natural story listening. Brain and Language, 120, 163173.CrossRefGoogle ScholarPubMed
Breteler, M. H. M., Arns, M., Peters, S., Giepmans, I., & Verhoeven, J. (2010). Improvements in spelling after QEEG-based neurofeedback in dyslexia: A randomized controlled treatment study. Applied Psychophysiological Biofeedback, 35, 511.CrossRefGoogle ScholarPubMed
Breznitz, Z., & Misra, M. (2003). Speed of processing of the visual–orthographic and auditory–phonological systems in adult dyslexics: The contribution of “asynchrony” to word recognition deficits. Brain and Language, 85, 486502.CrossRefGoogle Scholar
Brice, H., Frost, S. J., Bick, A. S., et al. (2021). Tracking second language immersion across time: Evidence from a bi-directional longitudinal cross-linguistic fMRI study. Neuropsychologia, 154, 107796.CrossRefGoogle ScholarPubMed
Brimo, K., Dinkler, L., Gillberg, C., et al. (2021). The co‐occurrence of neurodevelopmental problems in dyslexia. Dyslexia, 27(3), 277293.CrossRefGoogle ScholarPubMed
British Psychological Society. (1999). Dyslexia, Literacy and Psychological Assessment: Report by a Working Party of the Division of Educational and Child Psychology of the British Psychological Society. Leicester: British Psychological Society.Google Scholar
Brooks, G. (1984). The teaching of silent reading to beginners. In Brooks, G., & Pugh, A. K. (eds.), Studies in the History of Reading (pp. 85–96). Reading: Centre for the Teaching of Reading, University of Reading and UK Reading Association.Google Scholar
Brooks, G. (2015). A response to Elliott. The Psychology of Education Review, 39(1), 1719.CrossRefGoogle Scholar
Brooks, G. (2022). Current debates over the teaching of phonics. Oxford Research Encyclopedia of Education. Published online, July 18, 2022.CrossRefGoogle Scholar
Brooks, G. (2023). Disputing recent attempts to reject the evidence in favour of systematic phonics instruction. Review of Education, 11(2), e3408.CrossRefGoogle Scholar
Brown, W. E., Eliez, S., Menon, V., et al. (2001). Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology, 56, 781783.CrossRefGoogle ScholarPubMed
Brown Waesche, J. S., Schatschneider, C., Maner, J. K., Ahmed, Y., & Wagner, R. K. (2011). Examining agreement and longitudinal stability among traditional and RTI-based definitions of reading disability using the affected-status agreement statistic. Journal of Learning Disabilities, 44, 296307.CrossRefGoogle ScholarPubMed
Bruckert, L., Borchers, L. R., Dodson, C. K., et al. (2019). White matter plasticity in reading-related pathways differs in children born preterm and at term: A longitudinal analysis. Frontiers in Human Neuroscience, 13.CrossRefGoogle ScholarPubMed
Bruno, J. L., Lu, Z. L., & Manis, F. R. (2013). Phonological processing is uniquely associated with neuro-metabolic concentration. Neuroimage, 67, 175181.CrossRefGoogle ScholarPubMed
Brunswick, N., McCrory, E., Price, C. J., Frith, C. D., & Frith, U. (1999). Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke’s Wortschatz? Brain, 122, 19011917.CrossRefGoogle ScholarPubMed
Bryant, P. E., Maclean, L., Bradley, L., & Crossland, J. (1990). Rhyme and alliteration, phoneme detection, and learning to read. Developmental Psychology, 26, 429438.CrossRefGoogle Scholar
Bucci, M. P. (2021). Visual training could be useful for improving reading capabilities in dyslexia. Applied Neuropsychology: Child, 10(3), 199208.CrossRefGoogle ScholarPubMed
Buchanan, D. M., Bogdanowicz, T., Khanna, N., et al. (2021). Systematic review on the safety and tolerability of transcranial direct current stimulation in children and adolescents. Brain Sciences, 11(2), 212.CrossRefGoogle ScholarPubMed
Buckingham, J., Wheldall, K., & Beaman-Wheldall, R. (2013). Why poor children are more likely to become poor readers: The school years. Australian Journal of Education, 57(3), 190213.CrossRefGoogle Scholar
Bull, L. (2009). Survey of complementary and alternative therapies used by children with specific learning difficulties (dyslexia). International Journal of Language & Communication Disorders, 44(2), 224235.CrossRefGoogle ScholarPubMed
Bunbury, S. (2019). Unconscious bias and the medical model: How the social model may hold the key to transformative thinking about disability discrimination. International Journal of Discrimination and the Law, 19(1), 2647.CrossRefGoogle Scholar
Buonincontri, R., Bache, I., Silahtaroglu, A., et al. (2011). A cohort of balanced reciprocal translocations associated with dyslexia: Identification of two putative candidate genes at DYX1. Behavior Genetics, 41, 125133.CrossRefGoogle ScholarPubMed
Burbridge, T. J., Wang, Y., Volz, A. J., et al. (2008). Postnatal analysis of the effect of embryonic knockdown and overexpression of candidate dyslexia susceptibility gene homolog Dcdc2 in the rat. Neuroscience, 152(3), 723733.CrossRefGoogle ScholarPubMed
Burden, R. L. (2005). Dyslexia and Self-Concept. London: Whurr.Google Scholar
Burden, R. L. (2008). Is dyslexia necessarily associated with negative feelings of self-worth? A review and implications for future research. Dyslexia, 14, 188196.CrossRefGoogle ScholarPubMed
Burenkova, O. V., Naumova, O. Y., & Grigorenko, E. L. (2021). Stress in the onset and aggravation of learning disabilities. Developmental Review, 61, 100968.CrossRefGoogle ScholarPubMed
Burgoyne, K., Lervåg, A., Malone, C., & Hulme, C. (2019). Speech difficulties at school entry are a significant risk factor for later reading difficulties. Early Childhood Research Quarterly, 49, 4048.CrossRefGoogle Scholar
Burnett, J. R., (1998). Phonics controversy in Texas. Radio broadcast, October 19. National Public Radio.Google Scholar
Burns, M. K., Petersen-Brown, S., Haegele, K., et al. (2016). Meta-analysis of academic interventions derived from neuropsychological data. School Psychology Quarterly, 31(1), 2842.CrossRefGoogle ScholarPubMed
Burns, M. K., VanDerHeyden, A. M., Duesenberg-Marshall, M. D., et al. (2022). Decision accuracy of commonly used dyslexia screeners among students who are potentially at-risk for reading difficulties. Learning Disability Quarterly, 46(4), 306–316.Google Scholar
Burns, M. K., Young, H., McCollom, E. M., Stevens, M. A., & Izumi, J. T. (2022). Predicting intervention effects with preintervention measures of decoding: Evidence for a skill-by-treatment interaction with kindergarten and first-grade students. Learning Disability Quarterly, 45(4), 320330.CrossRefGoogle Scholar
Burt, C. (1937). The Backward Child. London: University of London Press.Google Scholar
Butterfuss, R., & Kendeou, P. (2018). The role of executive functions in reading comprehension. Educational Psychology Review, 30(3), 801826.CrossRefGoogle Scholar
Byrne, B., Coventry, W., Olson, R., et al. (2008). A behaviour-genetic analysis of orthographic learning, spelling and decoding. Journal of Research in Reading, 31, 821.CrossRefGoogle Scholar
Byrne, B., Coventry, W. L., Olson, R. K., et al. (2009). Genetic and environmental influences on aspects of literacy and language in early childhood: Continuity and change from preschool to Grade 2. Journal of Neurolinguistics, 22, 219236.CrossRefGoogle ScholarPubMed
Byrne, B., Delaland, C., Fielding-Barnsley, R., & Quain, P. (2002). Longitudinal twins study of early reading development in three countries: Preliminary results. Annals of Dyslexia, 52, 4973.CrossRefGoogle Scholar
Cabbage, K. L., Farquharson, K., Iuzzini-Seigel, J., Zuk, J., & Hogan, T. P. (2018). Exploring the overlap between dyslexia and speech sound production deficits. Language, Speech, and Hearing Services in Schools, 49(4), 774786.CrossRefGoogle ScholarPubMed
Caffarra, S., Karipidis, I., Yablonski, M., & Yeatman, J. D. (2021). Anatomy and physiology of word-selective visual cortex: From visual features to lexical processing. Brain Structure and Function, 226, 30513065.CrossRefGoogle ScholarPubMed
Caglar‐Ryeng, Ø., Eklund, K., & Nergård‐Nilssen, T. (2020). The effects of book exposure and reading interest on oral language skills of children with and without a familial risk of dyslexia. Dyslexia, 26(4), 394410.CrossRefGoogle ScholarPubMed
Cain, K., Oakhill, J., & Bryant, P. (2004). Children’s reading comprehension ability: Concurrent prediction by working memory, verbal ability, and component skills. Journal of Educational Psychology, 96(1), 31.CrossRefGoogle Scholar
Calcus, A., Lorenzi, C., Collet, G., Colin, C., & Kolinsky, R. (2016). Is there a relationship between speech identification in noise and categorical perception in children with dyslexia? Journal of Speech, Language, and Hearing Research, 59(4), 835852.CrossRefGoogle Scholar
Caldani, S., Gerard, C. L., Peyre, H., & Bucci, M. P. (2020). Visual attentional training improves reading capabilities in children with dyslexia: An eye tracker study during a reading task. Brain Sciences, 10(8), 558.CrossRefGoogle ScholarPubMed
Calfee, R. C., & Drum, P. (1986). Research on teaching reading. In Whittock, M. C. (ed.), Handbook of Research on Teaching (pp. 804849). New York: Macmillan.Google Scholar
Calfee, R. C., & Norman, K. A. (1998). Psychological perspectives on the early reading wars: The case of phonological awareness. Teachers College Record, 100, 242274.CrossRefGoogle Scholar
Calvi, M., Vieira, A. P. A., Georgiou, G., & Parrila, R. (2023). Systematic review on quality indicators of randomised controlled trial reading intervention studies for students in years 7–12. Australasian Journal of Special and Inclusive Education, 112.Google Scholar
Cameron, H. (2021). “It’s been taken away”: An experience of a disappearing dyslexia diagnosis. International Journal of Inclusive Education, 115.Google Scholar
Cameron, H., & Billington, T. (2015). The discursive construction of dyslexia by students in higher education as a moral and intellectual good. Disability & Society, 30(8), 12251240.CrossRefGoogle Scholar
Cameron, H., & Billington, T. (2017). “Just deal with it”: Neoliberalism in dyslexic students’ talk about dyslexia and learning at university. Studies in Higher Education, 42(8), 13581372.CrossRefGoogle Scholar
Camilleri, S., Chetcuti, D., & Falzon, R. (2020). “They labelled me ignorant”: The role of neuroscience to support students with a profile of dyslexia. In El-Baz, A., & Suri, J. (eds.), Neurological Disorders and Imaging Physics: Vol. 5: Applications in Dyslexia, Epilepsy and Parkinson’s (pp. 356389). Bristol: IOP Publishing Ltd.Google Scholar
Campbell, T. (2011). From Aphasia to Dyslexia, a fragment of a genealogy: An analysis of the formation of a “Medical Diagnosis.” Health Sociology Review, 20(4), 450461.CrossRefGoogle Scholar
Cancer, A., & Antonietti, A. (2018). tDCS modulatory effect on reading processes: A review of studies on typical readers and individuals with dyslexia. Frontiers in Behavioral Neuroscience, 12, 162.CrossRefGoogle ScholarPubMed
Cancer, A., & Antonietti, A. (2022). Music-based and auditory-based interventions for reading difficulties: A literature review. Heliyon, e09293.CrossRefGoogle ScholarPubMed
Cao, F., Bitan, T., Chou, T. L., Burman, D. D., & Booth, J. R. (2006). Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. Journal of Child Psychology and Psychiatry, 47, 10411050.CrossRefGoogle ScholarPubMed
Cao, F., Yan, X., Wang, Z., et al. (2017). Neural signatures of phonological deficits in Chinese developmental dyslexia. Neuroimage, 146, 301311.CrossRefGoogle ScholarPubMed
Capin, P., Roberts, G., Clemens, N. H., & Vaughn, S. (2022). When treatment adherence matters: Interactions among treatment adherence, instructional quality, and student characteristics on reading outcomes. Reading Research Quarterly, 57(2), 753774.CrossRefGoogle ScholarPubMed
Capin, P., Walker, M. A., Vaughn, S., & Wanzek, J. (2018). Examining how treatment fidelity is supported, measured, and reported in K–3 reading intervention research. Educational Psychology Review, 30, 885919.CrossRefGoogle ScholarPubMed
Caravolas, M., Lervåg, A., Mousikou, P., et al. (2012). Common patterns of prediction of literacy development in different alphabetic orthographies. Psychological Science, 23(6), 678686.CrossRefGoogle ScholarPubMed
Cardon, L. R., Smith, S. D., Fulker, D. W., et al. (1994). Quantitative trait locus for reading disability on chromosome 6. Science, 226, 276279.CrossRefGoogle Scholar
Cardon, L. R., Smith, S. D., Fulker, D. W., et al. (1995). Quantitative trait locus for reading disability: Correction. Science, 268, 1553.CrossRefGoogle ScholarPubMed
Carrion-Castillo, A., Estruch, S. B., Maassen, B., et al. (2021). Whole-genome sequencing identifies functional noncoding variation in SEMA3C that cosegregates with dyslexia in a multigenerational family. Human Genetics, 140, 11831200.CrossRefGoogle Scholar
Carroll, J. M., Maughan, B., Goodman, R., & Meltzer, H. (2005). Literacy difficulties and psychiatric disorders: Evidence for comorbidity. Journal of Child Psychology and Psychiatry, 46(5), 524532.CrossRefGoogle ScholarPubMed
Carroll, J. M., Snowling, M. J., Stevenson, J., & Hulme, C. (2003). The development of phonological awareness in preschool children. Developmental Psychology, 39, 913923.CrossRefGoogle ScholarPubMed
Carroll, J. M., Solity, J., & Shapiro, L. R. (2016). Predicting dyslexia using prereading skills: The role of sensorimotor and cognitive abilities. Journal of Child Psychology and Psychiatry, 57(6), 750758.CrossRefGoogle ScholarPubMed
Casanova, M. F., Araque, J., Giedd, J., & Rumsey, J. M. (2004). Reduced brain size and gyrification in the brains of dyslexic patients. Journal of Child Neurology, 19, 275281.CrossRefGoogle ScholarPubMed
Cassar, M., Trieman, R., Moats, L., Pollo, T. C., & Kessler, B. (2005). How do the spellings of children with dyslexia compare with those of nondyslexic children? Reading and Writing: An Interdisciplinary Journal, 18, 2749.CrossRefGoogle Scholar
Cassidy, J., Grote-Garcia, S., & Ortlieb, E. (2022). What’s hot in 2021: Beyond the science of reading. Literacy Research and Instruction, 61(1), 117.CrossRefGoogle Scholar
Cassidy, L., Reggio, K., Shaywitz, B. A., Holahan, J. M., & Shaywitz, S. E. (2021). Dyslexia in incarcerated men and women: A new perspective on reading disability in the prison population. Journal of Correctional Education, 72(2), 6181.Google Scholar
Castles, A., & Coltheart, M. (1993). Varieties of developmental dyslexia. Cognition, 47, 149180.CrossRefGoogle ScholarPubMed
Castles, A., Rastle, K., & Nation, K. (2018). Ending the reading wars: Reading acquisition from novice to expert. Psychological Science in the Public Interest, 19(1), 551.CrossRefGoogle ScholarPubMed
Castro-Villareal, F., Rodriguez, B. J., & Moore, S. (2014). Teachers’ perceptions and attitudes about response to intervention (RTI) in their schools: A qualitative analysis. Teaching and Teacher Education, 40, 104112.CrossRefGoogle Scholar
Cattinelli, I., Borghese, N. A., Gallucci, M., & Paulesu, E. (2013). Reading the reading brain: A new meta-analysis of functional imaging data on reading. Journal of Neurolinguistics, 26, 214238.CrossRefGoogle Scholar
Catts, H. W. (2021). Commentary: The critical role of oral language deficits in reading disorders: Reflections on Snowling and Hulme (2021). Journal of Child Psychology and Psychiatry, 62(5), 654656.CrossRefGoogle ScholarPubMed
Catts, H. W., Adlof, S. M., Hogan, T. P., & Weismer, S. E. (2005). Are specific language impairment and dyslexia distinct disorders? Journal of Speech Language and Hearing Research, 48, 13781396.CrossRefGoogle ScholarPubMed
Catts, H. W., Compton, D., Tomblin, J. B., & Bridges, M. S. (2012). Prevalence and nature of late-emerging poor readers. Journal of Educational Psychology, 104(1), 166.CrossRefGoogle ScholarPubMed
Catts, H. W., Gillispie, M., Leonard, L., Kail, R. V., & Miller, C. A. (2002). The role of speed of processing, rapid naming, and phonological awareness in reading achievement. Journal of Learning Disabilities, 35, 509524.CrossRefGoogle ScholarPubMed
Catts, H. W., & Hogan, T. (2021). Dyslexia: An ounce of prevention is better than a pound of diagnosis. The Reading League Journal, 2, 613.Google Scholar
Catts, H. W., McIlraith, A., Bridges, M. S., & Nielsen, D. C. (2017). Viewing a phonological deficit within a multifactorial model of dyslexia. Reading and Writing, 30(3), 613629.CrossRefGoogle Scholar
Catts, H. W., Nielsen, D. C., Bridges, M. S., Liu, Y. S., & Bontempo, D. E. (2015). Early identification of reading disabilities within an RTI framework. Journal of Learning Disabilities, 48(3), 281297.CrossRefGoogle ScholarPubMed
Catts, H. W., & Petscher, Y. (2022). A cumulative risk and resilience model of dyslexia. Journal of Learning Disabilities, 55(3), 171184.CrossRefGoogle ScholarPubMed
Catts, H. W., Petscher, Y., Schatschneider, C., Bridges, M. S., & Mendoza, K. (2009). Floor effects associated with universal screening and their impact on the early identification of reading disabilities. Journal of Learning Disabilities, 42, 163176.CrossRefGoogle ScholarPubMed
Catts, H. W., Terry, N. P., Lonigan, C. J., et al. (2024). Revisiting the definition of dyslexia. Annals of Dyslexia, 121.Google ScholarPubMed
Cavalli, E., Colé, P., Badier, J. M., et al. (2016). Spatiotemporal dynamics of morphological processing in visual word recognition. Journal of Cognitive Neuroscience, 28, 12281242.CrossRefGoogle ScholarPubMed
Cavalli, E., Duncan, L. G., Elbro, C., El Ahmadi, A., & Colé, P. (2017). Phonemic—Morphemic dissociation in university students with dyslexia: An index of reading compensation? Annals of Dyslexia, 67(1), 6384.CrossRefGoogle ScholarPubMed
Caverzasi, E., Mandelli, M. L., Hoeft, F., et al. (2018). Abnormal age-related cortical folding and neurite morphology in children with developmental dyslexia. NeuroImage: Clinical, 18, 814821.CrossRefGoogle ScholarPubMed
Cederlöf, M., Maughan, B., Larsson, H., D’Onofrio, B. M., & Plomin, R. (2017). Reading problems and major mental disorders – Co-occurrences and familial overlaps in a Swedish nationwide cohort. Journal of Psychiatric Research, 91, 124129.CrossRefGoogle Scholar
Chaix, Y., Albaret, J., Brassard, C., et al. (2007). Motor impairment in dyslexia: The influence of attention disorders. European Journal of Paediatric Neurology, 11, 368374.CrossRefGoogle ScholarPubMed
Chall, J. S. (1996). Learning to Read: The great debate. 3rd edition. Orlando, FL: Harcourt Brace.Google Scholar
Chall, J. S. (2000). The Academic Achievement Challenge. New York: Guilford Press.Google Scholar
Chamberlain, R., Brunswick, N., Siev, J., & McManus, I. C. (2018). Meta‐analytic findings reveal lower means but higher variances in visuospatial ability in dyslexia. British Journal of Psychology, 109(4), 897916.CrossRefGoogle ScholarPubMed
Chapman, J. W., & Tunmer, W. E. (2015). Submission on the Inquiry into the identification and support for students with the significant challenges of dyslexia, dyspraxia, and autism spectrum disorders in primary and secondary schools. (Presented to the New Zealand Education and Science Select Committee).Google Scholar
Chapman, J. W., & Tunmer, W. E. (2019a). Dyslexia and equity: A more inclusive approach to reading difficulties. LDA Bulletin, 51(2 & 3), 2832.Google Scholar
Chapman, J. W., & Tunmer, W. E. (2019b). Reading Recovery’s unrecovered learners: Characteristics and issues. Review of Education, 7(2), 237265.CrossRefGoogle Scholar
Charlton, C. T., Sabey, C. V., Young, E. L., & Moulton, S. E. (2020). Interpreting critical incidents in implementing a multi-tiered system of supports through an active implementation framework. Exceptionality, 28(3), 161175.CrossRefGoogle Scholar
Che, A., Truong, D. T., Fitch, R. H., & LoTurco, J. J. (2016). Mutation of the dyslexia-associated gene Dcdc2 enhances glutamatergic synaptic transmission between layer 4 neurons in mouse meocortex. Cerebral Cortex, 26, 37053718.CrossRefGoogle Scholar
Cheema, K., & Cummine, J. (2018). The relationship between white matter and reading acquisition, refinement and maintenance. Developmental Neuroscience, 40, 209222.CrossRefGoogle ScholarPubMed
Cheema, K., Ostevik, A. V., Westover, L., Hodgetts, W. E., & Cummine, J. (2021). Resting-state networks and reading in adults with and without reading impairments. Journal of Neurolinguistics, 60, 101016.CrossRefGoogle Scholar
Cheesman, R., Hunjan, A., Coleman, J. R., et al. (2020). Comparison of adopted and nonadopted individuals reveals gene–environment interplay for education in the UK Biobank. Psychological Science, 31(5), 582591.CrossRefGoogle ScholarPubMed
Chen, N. T., Zheng, M., & Ho, C. S. H. (2019). Examining the visual attention span deficit hypothesis in Chinese developmental dyslexia. Reading and Writing, 32(3), 639662.CrossRefGoogle Scholar
Cheung, A. C., & Slavin, R. E. (2016). How methodological features affect effect sizes in education. Educational Researcher, 45(5), 283292.CrossRefGoogle Scholar
Cheung, C. H., Wood, A. C., Paloyelis, Y., et al. (2012). Aetiology for the covariation between combined type ADHD and reading difficulties in a family study: The role of IQ. Journal of Child Psychology and Psychiatry, 53(8), 864873.CrossRefGoogle Scholar
Chiappe, P., Stringer, R., Siegel, L. S., & Stanovich, K. E. (2002). Why the timing deficit hypothesis does not explain reading disability in adults. Reading and Writing, 15, 73107.CrossRefGoogle Scholar
Chiarello, C., Lombardino, L. J., Kacinik, N. A., Otto, R., & Leonard, C. M. (2006). Neuroanatomical and behavioral asymmetry in an adult compensated dyslexic. Brain and Language, 98, 169181.CrossRefGoogle Scholar
Chirkina, G. V., & Grigorenko, E. L. (2014). Tracking citations: A science detective story. Journal of Learning Disabilities, 47(4), 366373.CrossRefGoogle ScholarPubMed
Christodoulou, J. A., Murtagh, J., Cyr, A., et al. (2017). Relation of white-matter microstructure to reading ability and disability in beginning readers. Neuropsychology, 31, 508515.CrossRefGoogle ScholarPubMed
Christopher, M. E., Miyake, A., Keenan, J. M., et al. (2012). Predicting word reading and comprehension with executive function and speed measures across development: A latent variable analysis. Journal of Experimental Psychology: General, 141(3), 470488.CrossRefGoogle ScholarPubMed
Church, J. A., Grigorenko, E. L., & Fletcher, J. M. (2021). The role of neural and genetic processes in learning to read and specific reading disabilities: Implications for instruction. Reading Research Quarterly. 58(2), 203219.CrossRefGoogle ScholarPubMed
Chyl, K., Kossowski, B., Wang, S., et al. (2021). The brain signature of emerging reading in two contrasting languages. Neuroimage, 225, 117503.CrossRefGoogle ScholarPubMed
Cirino, P. T., Ahmed, Y., Miciak, J., et al. (2018). A framework for executive function in the late elementary years. Neuropsychology, 32(2), 176.CrossRefGoogle ScholarPubMed
Cirino, P. T., Barnes, M. A., Roberts, G., Miciak, J., & Gioia, A. (2022). Visual attention and reading: A test of their relation across paradigms. Journal of Experimental Child Psychology, 214, 105289.CrossRefGoogle Scholar
Cirino, P. T., Church, J. A., Miciak, J., & Fletcher, J. M. (2020). The role of executive functions in reading development, reading disability, and intervention response. In Grigorenko, E., Shtyrov, Y., & McCardle, P. (eds.), All about Language: Science, Theory, and Practice (pp. 126140). Baltimore: Paul H. Brookes Publishing Co.Google Scholar
Clamp, M., Fry, B., Kamal, M., et al. (2007). Distinguishing protein-coding and noncoding genes in the human genome. PNAS, 104, 19428–19433.CrossRefGoogle ScholarPubMed
Clark, K. A., Helland, T., Specht, K., et al. (2014). Neuroanatomical precursors of dyslexia identified from pre-reading through to age 11. Brain, 137, 31363141.CrossRefGoogle ScholarPubMed
Clay, M. M. (1985). The Early Detection of Reading Difficulties. 3rd edition. Portsmouth, NH: Heinemann.Google Scholar
Clayton, F. J., West, G., Sears, C., Hulme, C., & Lervåg, A. (2020). A longitudinal study of early reading development: Letter–sound knowledge, phoneme awareness and RAN, but not letter–sound integration, predict variations in reading development. Scientific Studies of Reading, 24(2), 91107.CrossRefGoogle Scholar
Clemens, N. H., Lee, K., Liu, X., Boucher, A., Al Otaiba, S., & Simmons, L. (2023). The relations of kindergarten early literacy skill trajectories on common progress monitoring measures to subsequent word reading skills for students at risk for reading difficulties. Journal of Educational Psychology, 115(8), 10451106.CrossRefGoogle Scholar
Clemens, N. H., Solari, E., Kearns, , et al. (2021). They say you can do phonemic awareness instruction “in the dark,” but should you? A critical evaluation of the trend toward advanced phonemic awareness training. PsyArXiv. https://doi.org/10.31234/osf.io/ajxbvCrossRefGoogle Scholar
Clemens, N. H., & Vaughn, S. (2023). Understandings and misunderstandings about dyslexia: Introduction to the special issue. Reading Research Quarterly, 58(2), 181187.CrossRefGoogle Scholar
Cohen-Mimran, R., & Sapir, S. (2007). Deficits in working memory in young adults with reading disabilities. Journal of Communication Disorders, 40(2), 168183.CrossRefGoogle ScholarPubMed
Colenbrander, D., Kohnen, S., Beyersmann, E., et al. (2022). Teaching children to read irregular words: A comparison of three instructional methods. Scientific Studies of Reading, 26(6), 545564.CrossRefGoogle Scholar
Collinson, C. (2020). Ordinary language use and the social construction of dyslexia. Disability & Society, 35(6), 9931006.CrossRefGoogle Scholar
Collis, N. L., Kohnen, S., & Kinoshita, S. (2013): The role of visual spatial attention in adult developmental dyslexia. The Quarterly Journal of Experimental Psychology, 66(2), 245260.CrossRefGoogle ScholarPubMed
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204256.CrossRefGoogle ScholarPubMed
Compton, D. L. (2021). Focusing our view of dyslexia through a multifactorial lens: A commentary. Learning Disability Quarterly, 44(3), 225230.CrossRefGoogle Scholar
Compton, D. L., Fuchs, D., Fuchs, L. S., et al. (2010). Selecting at-risk first-grade readers for early intervention: Eliminating false positives and exploring the promise of a two-stage gated screening process. Journal of Educational Psychology, 102, 327340.CrossRefGoogle ScholarPubMed
Compton, D. L., Gilbert, J. K., Jenkins, J. R., et al. (2012). Accelerating chronically unresponsive children to Tier 3 instruction: What level of data is necessary to ensure selection accuracy? Journal of Learning Disabilities, 45, 204216.CrossRefGoogle ScholarPubMed
Conlon, E. G. (2012). Visual discomfort and reading. In Stein, J., & Kapoula, Z. (eds.), Visual Aspects of Dyslexia (pp. 7990). Oxford: Oxford University Press.CrossRefGoogle Scholar
Conlon, E. G., Lilleskaret, G., Wright, C. M., & Power, G. F. (2012). The influence of contrast on coherent motion processing in dyslexia. Neuropsychologia, 50, 16721681.CrossRefGoogle ScholarPubMed
Conlon, E. G., Lovegrove, W., Chekaluk, E., & Pattison, P. (1999). Measuring visual discomfort. Visual Cognition, 6, 637663.CrossRefGoogle Scholar
Connor, C. M. (2011). Child by instruction interactions: Language and literacy connections. In Neuman, S. B., & Dickinson, D. K. (eds.), Handbook on Early Literacy Research. 3rd edition. (pp. 256–275). New York: Guilford.Google Scholar
Connor, C. M., & Morrison, F. J. (2016). Individualizing student instruction in reading: Implications for policy and practice. Policy Insights from the Behavioral and Brain Sciences, 3(1), 5461.CrossRefGoogle ScholarPubMed
Connor, C. M., Morrison, F. J., Fishman, B. J., Schatschneider, C., & Underwood, P. (2007). Algorithm-guided individualized reading instruction. Science, 315, 464465.CrossRefGoogle ScholarPubMed
Connor, C. M., Morrison, F. J., & Katch, E. L. (2004). Beyond the reading wars: Exploring the effect of child–instruction interaction on growth in early reading. Scientific Studies of Reading, 8, 305336.CrossRefGoogle Scholar
Connor, C. M., Piasta, S. B., Fishman, B., et al. (2009). Individualizing student instruction precisely: Effects of child by instruction interactions on first graders’ literacy development. Child Development, 80, 77100.CrossRefGoogle ScholarPubMed
Cooper, G. M., Coe, B. P., Girirajan, S., et al. (2011). A copy number variation morbidity map of developmental delay. Nature Genetics, 43, 838846.CrossRefGoogle ScholarPubMed
Cope, N., Eicher, J. D., Meng, H., et al. (2012). Variants in the DYX2 locus are associated with altered brain activation in reading-related brain regions in subjects with reading disability. Neuroimage, 63, 148156.CrossRefGoogle ScholarPubMed
Cope, N., Hill, G., van den Bree, M., et al. (2004). No support for association between dyslexia susceptibility 1 candidate 1 and developmental dyslexia. Molecular Psychiatry, 10, 237238.CrossRefGoogle Scholar
Cordray, D., Pion, G., Brandt, C., Molefe, A., & Toby, M. (2012). The Impact of the Measures of Academic Progress (MAP) Program on Student Reading Achievement. Final Report. NCEE 2013–4000. National Center for Education Evaluation and Regional Assistance.Google Scholar
Corina, D. P., Richards, T. L., Serafini, S., et al. (2001). fMRI auditory language differences between dyslexic and able reading children. Neuroreport, 12, 11951201.CrossRefGoogle ScholarPubMed
Corriveau, K. H., Goswami, U., & Thomson, J. M. (2010). Auditory processing and early literacy skills in a preschool and kindergarten population. Journal of Learning Disabilities, 43, 369382CrossRefGoogle Scholar
Costanzo, F., Menghini, D., Caltagirone, C., Oliveri, M., & Vicari, S. (2013). How to improve reading skills in dyslexics: The effect of high frequency rTMS. Neuropsychologia, 51, 29532959.CrossRefGoogle ScholarPubMed
Costanzo, F., Varuzza, C., Rossi, S., et al. (2016). Reading changes in children and adolescents with dyslexia after transcranial direct current stimulation. Neuroreport, 27, 295300.CrossRefGoogle ScholarPubMed
Coventry, W. L., Byrne, B., Olson, R. K., Corley, R., & Samuelsson, S. (2011). Dynamic and static assessment of phonological awareness in preschool: A behavior-genetic study. Journal of Learning Disabilities, 44, 322329.CrossRefGoogle ScholarPubMed
Covington, M. V. (1992). Making the Grade: A Self-Worth Perspective on Motivation and School Reform. New York: Cambridge University Press.CrossRefGoogle Scholar
Cowan, N. (2017). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 24(4), 11581170.CrossRefGoogle ScholarPubMed
Cowan, N., Elliott, E. M., Saults, J. S., et al. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51, 42100CrossRefGoogle ScholarPubMed
Coward, S. (2015). High school readers: A study of sustained silent reading and academic progress Unpublished doctoral dissertation, Capella University, Minneapolis, MN.Google Scholar
Coyne, M. D., Oldham, A., Dougherty, S. M., et al. (2018). Evaluating the effects of supplemental reading intervention within an MTSS or RTI reading reform initiative using a regression discontinuity design. Exceptional Children, 84(4), 350367.CrossRefGoogle Scholar
Critchley, M. (1970). Developmental dyslexia: A constitutional disorder of symbolic perception. Research Publications – Association for Research in Nervous and Mental Disease, 48, 266271.Google ScholarPubMed
Crombie, M., & Reid, G. (2009). The role of early identification research: Models from research and practice. In Reid, G. (ed.), The Routledge Companion to Dyslexia (pp. 7179). London: Routledge.Google Scholar
Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30, 116127.CrossRefGoogle Scholar
Cronbach, L. J., & Snow, R. E. (1977). Aptitudes and Instructional Methods: A Handbook for Research on Interactions. New York: Irvington.Google Scholar
Cross, A. M., Ramdajal, R., Peters, L., et al. (2021). Resting-state functional connectivity and reading subskills in children. Neuroimage, 243, 118529.CrossRefGoogle ScholarPubMed
Crow, L. (1994). Including all of our lives: Renewing the social model of disability. In Barnes, C., & Mercer, G. (eds.), Exploring the Divide (pp. 5572). Leeds: The Disability Press.Google Scholar
Cruz, R. A., Kramarczuk Voulgarides, C. M., Firestone, A. R., McDermott, L., & Feng, Z. (2023). Is Dis-ability a foregone conclusion? Research and policy solutions to disproportionality. Review of Educational Research, 00346543231212935.CrossRefGoogle Scholar
Cui, Z., Xia, Z., Su, M., Shu, H., & Gong, G. (2016). Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach. Human Brain Mapping, 37, 14431458.CrossRefGoogle ScholarPubMed
Cunningham, A. E., & Stanovich, K. E. (1998). The impact of print exposure on word recognition. In Metsala, J. L., & Ehri, L. C. (eds.), Word Recognition in Beginning Literacy (pp. 235262). Mahwah, NJ: Erlbaum.Google Scholar
Cunningham, A. J., Burgess, A. P., Witton, C., Talcott, J. B., & Shapiro, L. R. (2021). Dynamic relationships between phonological memory and reading: A five-year longitudinal study from age 4 to 9. Developmental Science, 24(1), e12986.CrossRefGoogle Scholar
Curtis, M. (2004). Adolescents who struggle with word identification: Research and practice. In Jetton, T. L., & Dole, J. A. (eds.), Adolescent Literacy Research and Practice (pp. 119134). New York: Guilford.Google Scholar
Cutting, L. E. (2014). What is in a word? Science, 345(6202), 1252.CrossRefGoogle Scholar
Cutting, L. E., & Denckla, M. B. (2001). The relationship of rapid serial naming and word reading in normally developing readers: An exploratory model. Reading and Writing, 14, 673705.CrossRefGoogle Scholar
Cyhlarova, E., Bell, J. G., Dick, J. R., et al. (2007). Membrane fatty acids, reading and spelling in dyslexic and non-dyslexic adults. European Neuropsychopharmacology, 17, 116121.CrossRefGoogle ScholarPubMed
Dahl-Leonard, K., Hall, C., Capin, P., et al. (2023). Examining fidelity reporting within studies of foundational reading interventions for elementary students with or at risk for dyslexia. Annals of Dyslexia, 73, 288313.CrossRefGoogle ScholarPubMed
Daikhin, L., Raviv, O., & Ahissar, M. (2017). Auditory stimulus processing and task learning are adequate in dyslexia, but benefits from regularities are reduced. Journal of Speech, Language, and Hearing Research, 60(2), 471479.CrossRefGoogle ScholarPubMed
Dailey, S., & Bergelson, E. (2022). Language input to infants of different socioeconomic statuses: A quantitative meta‐analysis. Developmental Science, 25(3), e13192.CrossRefGoogle ScholarPubMed
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9, 179194.CrossRefGoogle ScholarPubMed
Daley, S. G., & Rappolt-Schlichtmann, G. (2018). Stigma consciousness among adolescents with learning disabilities: Considering individual experiences of being stereotyped. Learning Disability Quarterly, 41(4), 200212.CrossRefGoogle Scholar
Dane, A. V., & Schneider, B. H. (1998). Program integrity in primary and early secondary prevention: Are implementation effects out of control? Clinical Psychology Review, 18, 2345.CrossRefGoogle ScholarPubMed
Daniel, J., Capin, P., & Steinle, P. (2021). A synthesis of the sustainability of remedial reading intervention effects for struggling adolescent readers. Journal of Learning Disabilities, 54(3), 170186.CrossRefGoogle ScholarPubMed
Daniel, J., Vaughn, S., Roberts, G., & Grills, A. (2022). The importance of baseline word reading skills in examining student response to a multicomponent reading intervention. Journal of Learning Disabilities, 55(4), 259271.CrossRefGoogle ScholarPubMed
Darling, K. E., Benore, E. R., & Webster, E. E. (2020). Biofeedback in pediatric populations: A systematic review and meta-analysis of treatment outcomes. Translational Behavioral Medicine, 10(6), 14361449.Google ScholarPubMed
Daucourt, M. C., Erbeli, F., Little, C. W., Haughbrook, R., & Hart, S. A. (2020). A meta-analytical review of the genetic and environmental correlations between reading and attention-deficit hyperactivity disorder symptoms and reading and math. Scientific Studies of Reading, 24, 2356.CrossRefGoogle ScholarPubMed
Daucourt, M. C., Schatschneider, C., Connor, C. M., Al Otaiba, S., & Hart, S. A. (2018). Inhibition, updating working memory, and shifting predict reading disability symptoms in a hybrid model: Project KIDS. Frontiers in Psychology, 9, 238.CrossRefGoogle Scholar
Davidesco, I., Matuk, C., Bevilacqua, D., Poeppel, D., & Dikker, S. (2021). Neuroscience research in the classroom: Portable brain technologies in education research. Educational Researcher, 50, 649656.CrossRefGoogle Scholar
Davis, N., Fan, Q., Compton, D., et al. (2010). Influences of neural pathway integrity on children’s response to reading instruction. Frontiers in Systems Neuroscience, 4.CrossRefGoogle ScholarPubMed
Davis, O. S. P., Band, G., Pirinen, M., et al. (2014). The correlation between reading and mathematics ability at age twelve has a substantial genetic component. Nature Communications, 5, 42044204.CrossRefGoogle Scholar
Davis, R. D. (1997). The Gift of Dyslexia. London: Souvenir Press.Google Scholar
Davison, K. E., Zuk, J., Mullin, L. J., et al. (2023). Examining shared reading and white matter organization in kindergarten in relation to subsequent language and reading abilities: A longitudinal investigation. Journal of Cognitive Neuroscience, 35(2), 259275.CrossRefGoogle ScholarPubMed
Dawkins, R. (1976). The Selfish Gene. Oxford: Oxford University Press.Google Scholar
De Beer, J., Heerkens, Y., Engels, J., & van der Klink, J. (2022). Factors relevant to work participation from the perspective of adults with developmental dyslexia: A systematic review of qualitative studies. BMC Public Health, 22(1), 120.CrossRefGoogle ScholarPubMed
De Clercq-Quaegebeur, M., Casalis, S., Lemaitre, M., et al. (2010). Neuropsychological profile on the WISC-IV of French children with dyslexia. Journal of Learning Disabilities, 43, 563574.CrossRefGoogle ScholarPubMed
De Clercq-Quaegebeur, M., Casalis, S., Vilette, B., Lemaitre, M. P., & Vallée, L. (2018). Arithmetic abilities in children with developmental dyslexia: Performance on French ZAREKI-R test. Journal of Learning Disabilities, 51(3), 236249.CrossRefGoogle ScholarPubMed
de Graaff, S. E. H., Bosman, A. M. T., Hasselman, F., & Verhoeven, L. (2009). Benefits of systematic phonics instruction. Scientific Studies of Reading, 13, 318333.CrossRefGoogle Scholar
de Jong, P. F. (2023). The validity of WISC-V profiles of strengths and weaknesses. Journal of Psychoeducational Assessment, 41(4), 363379.CrossRefGoogle Scholar
de Jong, P. F., & van Bergen, E. (2017). Issues in diagnosing dyslexia. In Segers, E., & van den Broek, P. (eds.), Developmental Perspectives in Written Language and Literacy (pp. 349361). Amsterdam: John Benjamins.Google Scholar
de Kovel, C. G. F., Franke, B., Hol, F. A., et al. (2008). Confirmation of dyslexia susceptibility loci on chromosomes 1p and 2p, but not 6p in a Dutch sib-pair collection. American Journal of Medical Genetics (Neuropsychiatric Genetics), 147B, 294300.CrossRefGoogle Scholar
de Kovel, C. G. F., Hol, F. A., Heister, J., et al. (2004). Genomewide scan identifies susceptibility locus for dyslexia on Xq27 in an extended Dutch family. Journal of Medical Genetics, 41, 652657.CrossRefGoogle Scholar
de la Calle, A. M., Guzmán-Simón, F., García-Jiménez, E., & Aguilar, M. (2021). Precursors of reading performance and double-and triple-deficit risks in Spanish. Journal of Learning Disabilities, 54(4), 300313.CrossRefGoogle ScholarPubMed
de Weerdt, F., Desoete, A., & Roeyers, H. (2013). Working memory in children with reading disabilities and/or mathematical disabilities. Journal of Learning Disabilities, 46(5), 461472.CrossRefGoogle ScholarPubMed
de Zeeuw, E. L., de Geus, E. J. C., & Boomsma, D. I. (2015). Meta-analysis of twin studies highlights the importance of genetic variation in primary school educational achievement. Trends in Neuroscience and Education, 4(3), 6976.CrossRefGoogle Scholar
Dębska, A., Łuniewska, M., Zubek, J., et al. (2022). The cognitive basis of dyslexia in school‐aged children: A multiple case study in a transparent orthography. Developmental Science, 25(2), e13173.CrossRefGoogle Scholar
Deffenbacher, K. E., Kenyon, J. B., Hoover, D. M., et al. (2004). Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: Linkage and association analyses. Human Genetics, 115, 128138.CrossRefGoogle ScholarPubMed
DeFries, J. C., Fulker, D. W., & LaBuda, M. C. (1987). Evidence for a genetic aetiology in reading disability of twins. Nature, 329, 537539.CrossRefGoogle ScholarPubMed
Dehaene, S. (2009). Reading in the Brain. New York: Viking.Google Scholar
Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16, 234244.CrossRefGoogle ScholarPubMed
Delacato, C. H. (1959). The Treatment and Prevention of Reading Problems. Springfield, IL: Thomas.Google Scholar
Delacato, C. H. (1963). The Diagnosis and Treatment of Speech and Reading Problems. Springfield, IL: Thomas.Google Scholar
Demb, J. B., Boynton, G. M., Best, M., & Heeger, D. J. (1998). Psychophysical evidence for a magnocellular pathway deficit in dyslexia. Vision Research, 38, 15551559.CrossRefGoogle ScholarPubMed
Demb, J. B., Boynton, G. M., & Heeger, D. J. (1998). Functional magnetic resonance imaging of early visual pathways in dyslexia. Journal of Neuroscience, 18, 6939–695’.CrossRefGoogle ScholarPubMed
D’Mello, A. M., & Gabrieli, J. D. E. (2018). Cognitive neuroscience of dyslexia. Language, Speech, and Hearing Services in Schools, 49(4), 798809CrossRefGoogle ScholarPubMed
Démonet, J.-F., Taylor, M. J., & Chaix, Y. (2004). Developmental dyslexia. Lancet, 363, 14511460.CrossRefGoogle ScholarPubMed
Denckla, M. B. (1972). Color-naming deficits in dyslexic boys. Cortex, 8(2), 164176.CrossRefGoogle Scholar
Denckla, M., & Rudel, R. (1974). Rapid “automatized” naming of pictured objects, colors, letters and numbers by normal children. Cortex, 10, 186202.CrossRefGoogle ScholarPubMed
Denckla, M., & Rudel, R. (1976a). Naming of object-drawings by dyslexic and other learning disabled children. Brain and Language, 3, 115.CrossRefGoogle ScholarPubMed
Denckla, M., & Rudel, R. (1976b). Rapid “automatized” naming (R.A.N.): Dyslexia differentiated from other learning disabilities. Neuropsychologia, 14, 471479.CrossRefGoogle ScholarPubMed
Deng, K. G., Zhao, H., & Zuo, P. X. (2019). Association between KIAA0319 SNPs and risk of dyslexia: A meta-analysis. Journal of Genetics, 98(1).CrossRefGoogle ScholarPubMed
Denton, C. A. (2012). Response to intervention for reading difficulties in the primary grades: Some answers and lingering questions. Journal of Learning Disabilities, 45(3), 232243.CrossRefGoogle ScholarPubMed
Denton, C. A., & Hocker, J. L. (2006). Responsive Reading Instruction: Flexible Intervention for Struggling Readers in the Early Grades. Longmont, CO: Sopris West.Google Scholar
Denton, C. A., Tamm, L., Schatschneider, C., & Epstein, J. N. (2020). The effects of ADHD treatment and reading intervention on the fluency and comprehension of children with ADHD and word reading difficulties: A randomized clinical trial. Scientific Studies of Reading, 24(1), 7289.CrossRefGoogle ScholarPubMed
Denton, C. A., Tolar, T. D., Fletcher, J. M., et al. (2013). Effects of tier 3 intervention for students with persistent reading difficulties and characteristics of inadequate responders. Journal of Educational Psychology, 105(3), 633648.CrossRefGoogle ScholarPubMed
Denton, K., Coneway, B., Simmons, M., Behl, M., & Shin, M. (2022). Parents’ voices matter: A mixed‐method study on the dyslexia diagnosis process. Psychology in the Schools, 59(11), 22672286.CrossRefGoogle Scholar
Denton, T. F., & Meindl, J. N. (2016). The effect of colored overlays on reading fluency in individuals with dyslexia. Behavior Analysis in Practice, 9(3), 191198.CrossRefGoogle ScholarPubMed
Department of Education and Science. (1975). A Language for Life. The Bullock Report. London: HMSO.Google Scholar
Destokya, F., Bertels, J., Niesena, M., et al. (2022). The role of reading experience in atypical cortical tracking of speech and speech-in-noise in dyslexia. Neuroimage, 253.Google Scholar
Deutsch, G. K., Dougherty, R. F., Bammer, R., et al. (2005). Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex, 41, 354363.CrossRefGoogle ScholarPubMed
Di Folco, C., Guez, A., Peyre, H., & Ramus, F. (2022). Epidemiology of reading disability: A comparison of DSM-5 and ICD-11 criteria. Scientific Studies of Reading, 26(4), 337355.CrossRefGoogle Scholar
Di Liberto, G. M., Peter, V., Kalashnikova, M., et al. (2018). Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. Neuroimage, 175, 7079.CrossRefGoogle ScholarPubMed
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.CrossRefGoogle ScholarPubMed
Dickman, E. (2017). Do we need a new definition of dyslexia? The Examiner (International Dyslexia Association), 6(1).Google Scholar
Dikker, S., Haegens, S., Bevilacqua, D., et al. (2020). Morning brain: Real-world neural evidence that high school class times matter. Social Cognitive Affective Neuroscience, 15, 11931202.CrossRefGoogle ScholarPubMed
Dikker, S., Wan, L., Davidesco, I., et al. (2017). Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology, 27, 13751380.CrossRefGoogle ScholarPubMed
Ding, Y., Zhao, J., He, T., et al. (2016). Selective impairments in covert shifts of attention in Chinese dyslexic children. Dyslexia, 22(4), 362378.CrossRefGoogle ScholarPubMed
Dirks, E., Spyer, G., van Lieshout, E. C., & de Sonneville, L. (2008). Prevalence of combined reading and arithmetic disabilities. Journal of Learning Disabilities, 41(5), 460473.CrossRefGoogle ScholarPubMed
Dobson Waters, S., & Torgerson, C. J. (2021). Dyslexia in higher education: A systematic review of interventions used to promote learning. Journal of Further and Higher Education, 45(2), 226256.CrossRefGoogle Scholar
Doehring, D. G. (1978). The tangled web of behavioral research on developmental dyslexia. In Benton, A. L., & Pearl, D. (eds.), Dyslexia: An Appraisal of Current Knowledge (pp. 123137). New York: Oxford University Press.Google Scholar
Doman, G., & Delacato, C. H. (1968). Learning and human achievement: Philosophy and concepts. Human Potential, 1, 113116.Google Scholar
Dombrowski, S. C., Kamphaus, R. W., & Reynolds, C. R. (2004). After the demise of the discrepancy: Proposed learning disabilities diagnostic criteria. Professional Psychology: Research and Practice, 35(4), 364.CrossRefGoogle Scholar
Dombrowski, S. C., McGill, J., Farmer, R., Kranzler, R. L., J. H., & Canivez, G. L. (2022). Beyond the rhetoric of evidence-based assessment: A framework for critical thinking in clinical practice. School Psychology Review, 51(6), 771–784.CrossRefGoogle Scholar
Dombrowski, S. C., McGill, R. J., Watkins, M. W., et al. (2022). Will the real theoretical structure of the WISC-V please stand up? Implications for clinical interpretation. Contemporary School Psychology, 26(4), 492503.CrossRefGoogle Scholar
Donegan, R. E., & Wanzek, J. (2021). Effects of reading interventions implemented for upper elementary struggling readers: A look at recent research. Reading and Writing, 34(8), 19431977.CrossRefGoogle Scholar
Donegan, R. E., Wanzek, J., & Al Otaiba, S. (2020). Effects of a reading intervention implemented at differing intensities for upper elementary students. Learning Disabilities Research & Practice, 35(2), 6271.CrossRefGoogle Scholar
Donegan, R. E., Wanzek, J., Petscher, Y., & Otaiba, S. A. (2023). The impact of student race, sex, and mindset on reading intervention response at the upper elementary level. The Elementary School Journal, 123(3), 437456.CrossRefGoogle Scholar
Donolato, E., Cardillo, R., Mammarella, I. C., & Melby-Lervåg, M. (2022). Research review: Language and specific learning disorders in children and their co-occurrence with internalizing and externalizing problems: A systematic review and meta-analysis. Journal of Child Psychology and Psychiatry, 63(5), 507518.CrossRefGoogle ScholarPubMed
Dore, W., & Brookes, D. (2006). Dyslexia: The Miracle Cure. London: Blake.Google Scholar
Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12, 99105.CrossRefGoogle ScholarPubMed
Downing, C., & Caravolas, M. (2020). Prevalence and cognitive profiles of children with comorbid literacy and motor disorders. Frontiers in Psychology, 3347.Google ScholarPubMed
Dougherty, R. F., Ben-Shachar, M., Deutsch, G. K., et al. (2007). Temporal-callosal pathway diffusivity predicts phonological skills in children. Proceedings of the National Academy of Sciences of the United States of America, 104, 85568561.CrossRefGoogle ScholarPubMed
Doust, C., Fontanillas, P., Eising, E., et al. (2022). Discovery of 42 genome-wide significant loci associated with dyslexia. Nature Genetics, 54, 16211629.CrossRefGoogle ScholarPubMed
Doyon, J., Song, A. W., Karni, A., et al. (2002). Experience-dependent changes in cerebellar contributions to motor sequence learning. Proceedings of the National Academy of Sciences of the United States of America, 99, 10171022.CrossRefGoogle ScholarPubMed
Drake, W. E. (1968). Clinical and pathological finding in a child with a developmental learning disability. Journal of Learning Disabilities, 1, 486502.CrossRefGoogle Scholar
Dresher, B. E. (2011). The phoneme. In van Oostendorp, M., Ewen, C. J., Hume, E., & Rice, K. (eds.), The Blackwell Companion to Phonology: Vol. 1 (pp. 241–266). Oxford: Wiley-Blackwell.Google Scholar
Duara, R., Kushch, A., Gross-Glenn, K., et al. (1991). Neuroanatomic differences between dyslexic and normal readers on magnetic resonance imaging scans. Archives of Neurology, 48, 410416.CrossRefGoogle ScholarPubMed
Dubois, M., Kyllingsboek, S., Prado, C., et al. (2010). Fractionating the multi-character processing deficit in developmental dyslexia: Evidence from two case studies. Cortex, 46, 717738.CrossRefGoogle ScholarPubMed
Duff, F. J., Hayiou-Thomas, M. E., & Hulme, C. (2012). Evaluating the effectiveness of a phonologically based reading intervention for struggling readers with varying language profiles. Reading and Writing, 25, 621640.CrossRefGoogle Scholar
Duff, F. J., Nation, K., Plunkett, K., & Bishop, D. (2015). Early prediction of language and literacy problems: Is 18 months too early? PeerJ, 3, e1098.CrossRefGoogle ScholarPubMed
Dufor, O., Serniclaes, W., Sprenger-Charolles, L., & Demonet, J. F. (2007). Top-down processes during auditory phoneme categorization in dyslexia: A PET study. Neuroimage, 34, 16921707.CrossRefGoogle ScholarPubMed
Duncan, C. C., Rumsey, J. M., Wilkniss, S. M., et al. (1994). Developmental dyslexia and attention dysfunction in adults: Brain potential indices of information processing. Psychophysiology, 31, 386401.CrossRefGoogle ScholarPubMed
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14, 172179.CrossRefGoogle ScholarPubMed
Dvorsky, M., Tamm, L., Denton, C. A., Epstein, J. N., & Schatschneider, C. (2021). Trajectories of response to treatments in children with ADHD and word reading difficulties. Research on Child and Adolescent Psychopathology, 49(8), 10151030.CrossRefGoogle ScholarPubMed
Dwyer, P. (2022). The neurodiversity approach(es): What are they and what do they mean for researchers? Human Development, 66(2), 7392.CrossRefGoogle ScholarPubMed
Dymock, S., & Nicholson, T. (2022). Dyslexia seen through the eyes of teachers: An exploratory survey. Reading Research Quarterly, 58(2), 333344.CrossRefGoogle Scholar
Dyslexia Foundation of New Zealand. (2008). Dealing with Dyslexia: The Way Forward for New Zealand Educators. Christchurch, New Zealand: Dyslexia Foundation of New Zealand.Google Scholar
Dyson, H., Best, W., Solity, J., & Hulme, C. (2017). Training mispronunciation correction and word meanings improves children’s ability to learn to read words. Scientific Studies of Reading, 21(5), 392407.CrossRefGoogle Scholar
Ebrahimi, L., Pouretemad, H., Stein, J., Alizadeh, E., & Khatibi, A. (2022). Enhanced reading abilities is modulated by faster visual spatial attention. Annals of Dyslexia, 72(1), 125146.CrossRefGoogle ScholarPubMed
Eckert, M. A., Berninger, V. W., Vaden, K. I., Gebregziabher, M., & Tsu, L. (2016). Gray matter features of reading disability: A combined meta-analytic and direct analysis approach. ENeuro, 3(1).CrossRefGoogle ScholarPubMed
Eckert, M. A., Leonard, C. M., Richards, T. L., et al. (2003). Anatomical correlates of dyslexia: Frontal and cerebellar findings. Brain, 126, 482494.CrossRefGoogle ScholarPubMed
Eckert, M. A., Leonard, C. M., Wilke, M., et al. (2005). Anatomical signatures of dyslexia in children: Unique information from manual and voxel based morphometry brain measures. Cortex, 41, 304315.CrossRefGoogle ScholarPubMed
Eden, G. F., VanMeter, J. W., Rumsey, J. M., et al. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 382, 6669.CrossRefGoogle ScholarPubMed
Edwards, J. (1994). The Scars of Dyslexia: Eight Case Studies in Emotional Reactions. London: Continuum.Google Scholar
Ehm, J. H., Schmitterer, A. M., Nagler, T., & Lervåg, A. (2023). The underlying components of growth in decoding and reading comprehension: Findings from a 5-year longitudinal study of German-speaking children. Scientific Studies of Reading, 27(4), 311333.CrossRefGoogle Scholar
Ehri, L. C. (1999). Phases of development in learning to read words. In Oakhill, J., & Beard, R. (eds.), Reading Development and the Teaching of Reading: A Psychological Perspective (pp. 79108). Oxford: Blackwell.Google Scholar
Ehri, L. C. (2002). Phases of acquisition in learning to read words and implications for teaching. British Journal of Educational Psychology: Monograph Series, 1, 728.Google Scholar
Ehri, L. C. (2020). The science of learning to read words: A case for systematic phonics instruction. Reading Research Quarterly, 55, S45–S60.CrossRefGoogle Scholar
Ehri, L. C., Nunes, S. R., Stahl, S. A., & Willows, D. M. (2001). Systematic phonics instruction helps students learn to read: Evidence from the National Reading Panel’s meta-analysis. Review of Educational Research, 71, 393447.CrossRefGoogle Scholar
Eicher, J. D., Powers, N. R., Miller, L. L., et al. (2013). Genome-wide association study of shared components of reading disability and language impairment. Genes, Brain and Behavior, 12, 792801.CrossRefGoogle ScholarPubMed
Eicher, J. D., Stein, C. M., Deng, F., et al. (2015). The DYX2 locus and neurochemical signaling genes contribute to speech sound disorder and related neurocognitive domains. Genes, Brain and Behavior, 14(4), 377385.CrossRefGoogle ScholarPubMed
Eide, B. L., & Eide, F. F. (2011). The Dyslexic Advantage: Unlocking the Hidden Potential of the Dyslexic Brain. New York: Hudson Street Press.Google Scholar
Eising, E., Mirza-Schreiber, N., de Zeeuw, E. L., et al. (2022). Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people. Proceedings of the National Academy of Sciences, 119, e2202764119.CrossRefGoogle Scholar
Einarsdottir, E., Svensson, I., Darki, F., et al. (2015). Mutation in CEP63 co-segregating with developmental dyslexia in a Swedish family. Human Genetics, 134, 12391248.CrossRefGoogle Scholar
Eising, E., Mirza-Schreiber, N., de Zeeuw, E. L., et al. (2022). Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people. Proceedings of the National Academy of Sciences, 119, e2202764119.CrossRefGoogle Scholar
Ekert, J. O., Lorca-Puls, D. L., Gajardo-Vidal, A., et al. (2021). A functional dissociation of the left frontal regions that contribute to single word production tasks. Neuroimage, 245, 118734.CrossRefGoogle ScholarPubMed
Elbeheri, G., & Everatt, J. (2009). Dyslexia and IQ: From research to practice. In Reid, G. (ed.), The Routledge Companion to Dyslexia (pp. 2232). London: Routledge.Google Scholar
Elbeheri, G., & Siang, L. (eds.). (2023). The Routledge International Handbook of Dyslexia in Education. London: Routledge.Google Scholar
Elliott, J. G. (2020). It’s time to be scientific about dyslexia. Reading Research Quarterly, 55, S61–S75.CrossRefGoogle Scholar
Elliott, J. G., Gathercole, S. E., Alloway, T. P., Kirkwood, H., & Holmes, J. (2010). An evaluation of a classroom-based intervention to help overcome working memory difficulties. Journal of Cognitive Education and Psychology, 9, 227250.CrossRefGoogle Scholar
Elliott, J. G., & Gibbs, S. J. (2008). Does dyslexia exist? Journal of Philosophy of Education, 42(3–4), 475491.CrossRefGoogle Scholar
Elliott, J. G., & Grigorenko, E. L. (2014). The Dyslexia Debate. New York: Cambridge University Press.CrossRefGoogle Scholar
Elliott, J. G., & Place, M. (2019). Practitioner review: School refusal: Developments in conceptualisation and treatment since 2000. Journal of Child Psychology and Psychiatry, 60(1), 415.CrossRefGoogle ScholarPubMed
Elliott, J. G., & Place, M. (2021). Children in Difficulty: A Guide to Understanding and Helping. 4th edition. London: Routledge.CrossRefGoogle Scholar
Elliott, J. G., & Resing, W. C. (2015). Can intelligence testing inform educational intervention for children with reading disability? Journal of Intelligence, 3(4), 137157.CrossRefGoogle Scholar
Elliott, J. G., & Resing, W. C. (2019). Extremes of intelligence. In Sternberg, R. J. (ed.). Human Intelligence, (pp. 317–348). New York: Cambridge University Press.Google Scholar
Ellis, C., Holston, S., Drake, G., Putman, H., Swisher, A., & Peske, H. (2023). Teacher Prep Review: Strengthening Elementary Reading Instruction. Washington, DC: National Council on Teacher Quality.Google Scholar
Elston, R. C., & Johnson, W. D. (2008). Basic Biostatistics for Geneticists and Epidemiologists. Chichester: Wiley.Google Scholar
Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 1923.CrossRefGoogle Scholar
Erbeli, F., Hart, S. A., & Taylor, J. (2018). Longitudinal associations among reading-related skills and reading comprehension: A twin study. Child Development, 89, e480–e493.CrossRefGoogle ScholarPubMed
Erbeli, F., Hart, S. A., & Taylor, J. (2019). Genetic and environmental influences on achievement outcomes based on family history of learning disabilities status. Journal of Learning Disabilities, 52, 135145.CrossRefGoogle ScholarPubMed
Erbeli, F., Peng, P., & Rice, M. (2022). No evidence of creative benefit accompanying dyslexia: A meta-analysis. Journal of Learning Disabilities, 55(3), 242253.CrossRefGoogle ScholarPubMed
Erbeli, F., & Rice, M. (2022). Examining the effects of silent independent reading on reading outcomes: A narrative synthesis review from 2000 to 2020. Reading & Writing Quarterly, 38(3), 253271.CrossRefGoogle Scholar
Erbeli, F., Rice, M., & Paracchini, S. (2022). Insights into dyslexia genetics research from the last two decades. Brain Sciences, 12, 27.CrossRefGoogle Scholar
Ercan-Sencicek, A. G., Davis Wright, N. R., Sanders, S. S., et al. (2012). A balanced t(10;15) translocation in a male patient with developmental language disorder. European Journal of Medical Genetics, 55, 128131.CrossRefGoogle Scholar
Essex, M. J., Boyce, W. T., Hertzman, C., et al. (2013). Epigenetic vestiges of early developmental adversity: Childhood stress exposure and DNA methylation in adolescence. Child Development, 84, 5875.CrossRefGoogle ScholarPubMed
Evans, B. J., & Allen, P. M. (2016). A systematic review of controlled trials on visual stress using Intuitive Overlays or the Intuitive Colorimeter. Journal of Optometry, 9(4), 205218.CrossRefGoogle ScholarPubMed
EY (Ernst and Young). (2018). The Value of Dyslexia: Dyslexic Strengths and the Changing World of Work. London: EY.Google Scholar
Fabbro, F., Pesenti, S., Facoetti, A., et al. (2001). Callosal transfer in different subtypes of developmental dyslexia. Cortex, 37, 6573.CrossRefGoogle ScholarPubMed
Facoetti, A., Franceschini, S., & Gori, S. (2019). Role of visual attention in developmental dyslexia. In Verhoeven, L., Perfetti, C., & Pugh, K. (eds.), Developmental Dyslexia across Languages and Writing Systems (pp. 307326). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Facoetti, A., Trussardi, A. N., Ruffino, M., et al. (2009). Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. Journal of Cognitive Neuroscience, 22, 10111025.CrossRefGoogle Scholar
Fagerheim, T., Raeymaekers, P., Tonnessen, F. E., et al. (1999). A new gene (DYX3) for dyslexia is located on chromosome 2. Journal of Medical Genetics, 35, 664669.Google Scholar
Farmer, M. E., & Klein, R. M. (1995). The evidence for a temporal processing deficit linked to dyslexia: A review. Psychonomic Bulletin & Review, 2, 460493.CrossRefGoogle ScholarPubMed
Farmer, R. L., McGill, R. J., Dombrowski, S. C., & Canivez, G. L. (2021). Why questionable assessment practices remain popular in school psychology: Instructional materials as pedagogic vehicles. Canadian Journal of School Psychology, 36(2), 98114.CrossRefGoogle Scholar
Farris, E. A., Odegard, T. N., Miller, H. L., et al. (2011). Functional connectivity between the left and right inferior frontal lobes in a small sample of children with and without reading difficulties. Neurocase, 17, 425439.CrossRefGoogle Scholar
Farris, E. A., Ring, J., Black, J., Lyon, G. R., & Odegard, T. N. (2016). Predicting growth in word level reading skills in children with developmental dyslexia using an object rhyming functional neuroimaging task. Developmental Neuropsychology, 41, 145161.CrossRefGoogle ScholarPubMed
Favell, J. E. (2005). Sifting sound practice from snake oil. In Jacobson, J. W., Foxx, R. M., & Mulick, J. A. (eds.), Controversial Therapies for Developmental Disabilities: Fad, Fashion and Science in Professional Practice (pp. 1930). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Fawcett, A. J., & Nicolson, R. I. (1999). Performance of dyslexic children on cerebellar and cognitive tests. Journal of Motor Behavior, 31, 6878.CrossRefGoogle ScholarPubMed
Fawcett, A. J., Nicolson, R. I., & Maclagan, F. (2001). Cerebellar tests differentiate between groups of poor readers with and without IQ discrepancy. Journal of Learning Disabilities, 34(2), 119135.CrossRefGoogle ScholarPubMed
Fawcett, A. J., & Reid, G. (2009). Dyslexia and alternative interventions for dyslexia: A critical commentary. In Reid, G. (ed.), The Routledge Companion to Dyslexia (pp. 157174). New York: Routledge.Google Scholar
Feldman, H. M., Yeatman, J. D., Lee, E. S., Barde, L. H., & Gaman-Bean, S. (2010). Diffusion tensor imaging: A review for pediatric researchers and clinicians. Journal of Developmental & Behavioral Pediatrics, 31, 346356.CrossRefGoogle ScholarPubMed
Feldon, D. F., & Litson, K. (2021). Modeling theories and theorizing models: An attempted replication of Miller-Cotto & Byrnes’ (2019) comparison of working memory models using ECLS-K Data. Educational Psychology Review, 33(4), 19071934.CrossRefGoogle Scholar
Feng, X., Altarelli, I., Monzalvo, K., et al. (2020). A universal reading network and its modulation by writing system and reading ability in French and Chinese children. eLife, 9, e54591.CrossRefGoogle ScholarPubMed
Feng, X., Monzalvo, K., Dehaene, S., & Dehaene-Lambertz, G. (2022). Evolution of reading and face circuits during the first three years of reading acquisition. Neuroimage, 259, 119394.CrossRefGoogle ScholarPubMed
Fernald, G. M., & Keller, H. (1921). The effect of kinaesthetic factors in the development of word recognition in the case of non-readers. The Journal of Educational Research, 4, 355377.CrossRefGoogle Scholar
Fernandez-Duque, D. (2017). Lay theories of the mind/brain relationship and the allure of neuroscience. In Zedelius, C. M., Müller, B., & Schooler, J. W. (eds.), The Science of Lay Theories: How Beliefs Shape Our Cognition, Behavior, and Health (pp. 207227). Cham, Switzerland: Springer.CrossRefGoogle Scholar
Fernandez-Duque, D., Evans, J., Christian, C., & Hodges, S. D. (2015). Superfluous neuroscience information makes explanations of psychological phenomena more appealing. Journal of Cognitive Neuroscience, 27(5), 926944.CrossRefGoogle ScholarPubMed
Ferrer, E., Shaywitz, B. A., Holahan, J. M., Marchione, K., & Shaywitz, S. E. (2010). Uncoupling of reading and IQ over time: Empirical evidence for a definition of dyslexia. Psychological Science, 21, 93101.CrossRefGoogle ScholarPubMed
Ferrer, E., Shaywitz, B. A., Holahan, J. M., & Shaywitz, S. E. (2022). Family history is not useful in screening children for dyslexia. Journal of Pediatric Neuropsychology, 8(1), 1521.CrossRefGoogle Scholar
Field, L. L., Shumansky, K., Ryan, J., et al. (2013). Dense-map genome scan for dyslexia supports loci at 4q13, 16p12, 17q22; suggests novel locus at 7q36. Genes, Brain and Behavior, 12, 5669.CrossRefGoogle ScholarPubMed
Fields, R. D. (2008). White matter matters. Scientific American, 298, 4249.Google ScholarPubMed
Fiez, J. A., Tranel, D., Seager-Frerichs, D., & Damasio, H. (2006). Specific reading and phonological processing deficits are associated with damage to the left frontal operculum. Cortex, 42(4), 624643.CrossRefGoogle Scholar
Filderman, M. J., Toste, J. R., Didion, L. A., Peng, P., & Clemens, N. H. (2018). Data-based decision making in reading interventions: A synthesis and meta-analysis of the effects for struggling readers. The Journal of Special Education, 52(3), 174187.CrossRefGoogle Scholar
Filderman, M. J., Toste, J. R., Didion, L., & Peng, P. (2022). Data literacy training for K–12 teachers: A meta-analysis of the effects on teacher outcomes. Remedial and Special Education, 43(5), 328343.CrossRefGoogle Scholar
Finch, A. J., Nicolson, R. I., & Fawcett, A. J. (2002). Evidence for a neuroanatomical difference within the olivo-cerebellar pathway of adults with dyslexia. Cortex, 38, 529539.CrossRefGoogle ScholarPubMed
Finlay-Jones, A., Varcin, K., Leonard, H., et al. (2019). Very early identification and intervention for infants at risk of neurodevelopmental disorders: A transdiagnostic approach. Child Development Perspectives, 13(2), 97103.CrossRefGoogle Scholar
Finn, E. S., Shen, X., Holahan, J. M., et al. (2014). Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity. Biological Psychiatry, 76, 397404.CrossRefGoogle ScholarPubMed
First Step Act of 2018, Pub.L. No. 115-391. (2018). www.congress.gov/115/plaws/pub1391/PLAW-115pub1391.pdfGoogle Scholar
Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9, 195207.CrossRefGoogle Scholar
Fish, R. E. (2019). Standing out and sorting in: Exploring the role of racial composition in racial disparities in special education. American Educational Research Journal, 56(6), 25732608.CrossRefGoogle Scholar
Fish, R. E. (2022a). Stratified medicalization of schooling difficulties. Social Science & Medicine, 115039.CrossRefGoogle ScholarPubMed
Fish, R. E. (2022b). The role of socioeconomic and ethnic disparities for dyslexia and dyscalculia. In Skeide, M. A. (ed.), The Cambridge Handbook of Dyslexia and Dyscalculia (pp. 251262). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fisher, S. E., Francks, C., Marlow, A. J., et al. (2002). Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nature Genetics, 30, 8691.CrossRefGoogle ScholarPubMed
Flanagan, D. P., Costa, M., Palma, K., Leahy, M. A., Alfonso, V. C., & Ortiz, S. O. (2018). Cross-battery assessment, the cross-battery assessment software system, and the assessment–intervention connection. In Flanagan, D. P., & McDonough, E. M. (eds.), Contemporary Intellectual Assessment: Theories, Tests, and Issues (pp. 731776). New York: Guilford Press.Google Scholar
Flannery, K. A., Liederman, J., Daly, L., & Schultz, J. (2000). Male prevalence for reading disability is found in a large sample of Black and White children free from ascertainment bias. Journal of the International Neuropsychological Society, 6, 433442.CrossRefGoogle Scholar
Flaugnacco, E., Lopez, L., Terribili, C., et al. (2015). Music training increases phonological awareness and reading skills in developmental dyslexia: A randomized control trial. PloS one, 10(9), e0138715.CrossRefGoogle ScholarPubMed
Flesch, R. (1955). Why Johnny Can’t Read and What You Can Do about It. New York: Harper & Row.Google Scholar
Fletcher, J. M. (2009). Dyslexia: The evolution of a scientific concept. Journal of the International Neuropsychological Society, 15(4), 501508.CrossRefGoogle ScholarPubMed
Fletcher, J. M., Francis, D. J., Foorman, B. R., & Schatschneider, C. (2021). Early detection of dyslexia risk: Development of brief, teacher-administered screens. Learning Disability Quarterly, 44(3), 145157.CrossRefGoogle ScholarPubMed
Fletcher, J. M., Lyon, G. R., Fuchs, L. S., & Barnes, M. A. (2007). Learning Disabilities: From Identification to Intervention. New York: Guilford Publications.Google Scholar
Fletcher, J. M., Lyon, G. R., Fuchs, L. S., & Barnes, M. A. (2019). Learning Disabilities: From Identification to Intervention. 2nd edition. New York: Guilford Press.Google Scholar
Fletcher, J. M., & Miciak, J. (2017). Comprehensive cognitive assessments are not necessary for the identification and treatment of learning disabilities. Archives of Clinical Neuropsychology, 32(1), 27.CrossRefGoogle Scholar
Fletcher, J. M., Morris, R. D., & Lyon, G. R. (2003). Classification and definition of learning disabilities: An integrative perspective. In Swanson, H. L., Harris, K. R., & Graham, S. (eds.), Handbook of Learning Disabilities (pp. 3056). New York: Guilford Press.Google Scholar
Fletcher, J. M., Savage, R., & Vaughn, S. (2021). A commentary on Bowers (2020) and the role of phonics instruction in reading. Educational Psychology Review, 33(3), 12491274.CrossRefGoogle ScholarPubMed
Fletcher, J. M., Stuebing, K. K., Barth, A. E., et al. (2011). Cognitive correlates of inadequate response to reading intervention. School Psychology Review, 40, 322.CrossRefGoogle ScholarPubMed
Fletcher, J. M., Stuebing, K. K., Barth, A. E., Mi et al. (2014). Agreement and coverage of indicators of response to intervention: A multi-method comparison and simulation. Topics in Language and Learning Disorders, 34, 7489.CrossRefGoogle ScholarPubMed
Fletcher, J. M., Stuebing, K. K., Morris, R. D., & Lyon, G. R. (2013). Classification and definition of learning disabilities: A hybrid model. In Swanson, H. L., Harris, K. R., & Graham, S. (eds.), Handbook of Learning Disabilities. 2nd edition (pp. 3350). New York: Guilford Press.Google Scholar
Fletcher, J. M., & Vaughn, S. (2009). Response to intervention: Preventing and remediating academic difficulties. Child Development Perspectives, 3, 3037.CrossRefGoogle ScholarPubMed
Fletcher-Watson, S. (2022). Transdiagnostic research and the neurodiversity paradigm: Commentary on the transdiagnostic revolution in neurodevelopmental disorders by Astle et al. Journal of Child Psychology and Psychiatry, 63(4), 418420.CrossRefGoogle ScholarPubMed
Fliedner, A., Kirchner, P., Wiesener, A., et al. (2020). Variants in SCAF4 cause a neurodevelopmental disorder and are associated with impaired mRNA processing. American Journal of Human Genetics, 107, 544554.CrossRefGoogle Scholar
Flowers, L., Meyer, M., Lovato, J., Wood, F., & Felton, R. (2001). Does third grade discrepancy status predict the course of reading development? Annals of Dyslexia, 51, 4971.CrossRefGoogle Scholar
Flynn, J. M., & Rahbar, M. H. (1994). Prevalence of reading failure in boys compared with girls. Psychology in the Schools, 31, 6670.3.0.CO;2-J>CrossRefGoogle Scholar
Flynn, L. J., Zheng, X., & Swanson, H. L. (2012). Instructing struggling older readers: A selective meta-analysis of intervention research. Learning Disabilities Research & Practice, 27(1), 2132.CrossRefGoogle Scholar
Follmer, D. J. (2018). Executive function and reading comprehension: A meta-analytic review. Educational Psychologist, 53(1), 4260.CrossRefGoogle Scholar
Foorman, B. R. (2003). Preventing and Remediating Reading Difficulties: Bringing Science to Scale. Baltimore, MD: York Press.Google Scholar
Foorman, B. R., Anthony, J., Seals, L., & Mouzaki, A. (2002). Language development and emergent literacy in preschool. Seminars in Pediatric Neurology, 9, 172183.CrossRefGoogle ScholarPubMed
Foorman, B. R., York, M., Santi, K. L., & Francis, D. (2008). Contextual effects on predicting risk for reading difficulties in first and second grade. Reading and Writing, 21, 371394.CrossRefGoogle Scholar
Foucault, M. (1989) The Birth of the Clinic: An Archaeology of Medical Perception. London: Routledge.Google Scholar
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Review Neuroscience, 8, 700711.CrossRefGoogle ScholarPubMed
Franceschini, S., Bertoni, S., Puccio, G., et al. (2022). Visuo-spatial attention deficit in children with reading difficulties. Scientific Reports, 12(1), 110.CrossRefGoogle ScholarPubMed
Franceschini, S., Bertoni, S., Ronconi, L., et al. (2015). “Shall we play a game?”: Improving reading through action video games in developmental dyslexia. Current Developmental Disorders Reports, 2(4), 318329.CrossRefGoogle Scholar
Franceschini, S., Gori, S., Ruffino, M., Pedrolli, K., & Facoetti, A. (2012). A causal link between visual spatial attention and reading acquisition. Current Biology, 22, 814819.CrossRefGoogle ScholarPubMed
Franceschini, S., Gori, S., Ruffino, M., et al. (2013). Action video games make dyslexic children read better. Current Biology, 23(6), 462466.CrossRefGoogle ScholarPubMed
Franceschini, S., Mascheretti, S., Bertoni, S., et al. (2018). Sluggish dorsally-driven inhibition of return during orthographic processing in adults with dyslexia. Brain and Language, 179, 110.CrossRefGoogle ScholarPubMed
Franceschini, S., Trevisan, P., Ronconi, L., et al. (2017). Action video games improve reading abilities and visual-to-auditory attentional shifting in English-speaking children with dyslexia. Scientific Reports, 7(1), 112.CrossRefGoogle ScholarPubMed
Francis, D. A., Caruana, N., Hudson, J. L., & McArthur, G. M. (2019). The association between poor reading and internalising problems: A systematic review and meta-analysis. Clinical Psychology Review, 67, 4560.CrossRefGoogle ScholarPubMed
Francis, D. J., Shaywitz, S. E., Stuebing, K. K., Shaywitz, B. A., & Fletcher, J. M. (1996). Developmental lag versus deficit models of reading disability: A longitudinal individual growth curves analysis. Journal of Educational Psychology, 88, 317.CrossRefGoogle Scholar
Franks, K., & Frederick, H. (2013). Dyslexic and entrepreneur: Typologies, commonalities, and differences. Journal of Asia Entrepreneurship and Sustainability, 11(1), 95115.Google Scholar
Franquinho, F., Nogueira-Rodrigues, J., Duarte, J. M., et al. (2017). The dyslexia-susceptibility protein KIAA0319 inhibits axon growth through Smad2 signaling. Cerebral Cortex, 27, 17321747.CrossRefGoogle ScholarPubMed
Friend, A., DeFries, J. C., & Olson, R. K. (2008). Parental education moderates genetic influences on reading disability. Psychological Science, 19, 17.CrossRefGoogle ScholarPubMed
Frith, U. (1997). Brain, mind and behaviour in dyslexia. In Hulme, C., & Snowling, M. J. (eds.), Dyslexia: Biology, Cognition, and Intervention (pp. 119). London: Whurr.Google Scholar
Froehlich, T. E., Fogler, J., Barbaresi, W. J., et al. (2018). Using ADHD medications to treat coexisting ADHD and reading disorders: A systematic review. Clinical Pharmacology & Therapeutics, 104(4), 619637.CrossRefGoogle ScholarPubMed
Frost, R., Katz, L., & Bentin, S. (1987). Strategies for visual word recognition and orthographical depth: A multilingual comparison. Journal of Experimental Psychology: Human Perception and Performance, 13, 104115.Google ScholarPubMed
Frye, R. E., Hasan, K., Xue, L., et al. (2008). Splenium microstructure is related to two dimensions of reading skill. Neuroreport, 19, 16271631.CrossRefGoogle ScholarPubMed
Frye, R. E., Liederman, J., Malmberg, B., et al. (2010). Surface area accounts for the relation of gray matter volume to reading-related skills and history of dyslexia. Cerebral Cortex, 20, 26252635.CrossRefGoogle ScholarPubMed
Fu, W., Zhao, J., Ding, Y., & Wang, Z. (2019). Dyslexic children are sluggish in disengaging spatial attention. Dyslexia, 25(2), 158172.CrossRefGoogle ScholarPubMed
Fuchs, D., & Fuchs, L. S. (2017). Critique of the national evaluation of response to intervention: A case for simpler frameworks. Exceptional Children, 83(3), 255268.CrossRefGoogle Scholar
Fuchs, D., Fuchs, L. S., & Compton, D. L. (2012). Smart RTI: A next generation approach to multilevel prevention. Exceptional Children, 78(3), 263279.CrossRefGoogle ScholarPubMed
Fuchs, D., McMaster, K. L., Fuchs, L. S., & Al Otaiba, S. (2013). Data-based individualization as a means of providing intensive instruction to students with serious learning disorders. In Swanson, H. L., Harris, K. R., & Graham, S. (eds.), Handbook of Learning Disabilities. 2nd edition (pp. 526544). New York: Guilford Press.Google Scholar
Fuchs, L. S., Fuchs, D., Hamlett, C. L., & Stecker, P. M. (2021). Bringing data-based individualization to scale: A call for the next-generation technology of teacher supports. Journal of Learning Disabilities, 54(5), 319333.CrossRefGoogle Scholar
Fuchs, L. S., & Vaughn, S. (2012). Responsiveness-to-intervention: A decade later. Journal of Learning Disabilities, 45(3), 195203.CrossRefGoogle ScholarPubMed
Fuller, M., Healey, M., Bradley, A., & Hall, T. (2004) Barriers to learning: A systematic study of the experience of disabled students in one university. Studies in Higher Education, 29, 303318.CrossRefGoogle Scholar
Furnes, B., & Samuelsson, S. (2010). Predicting reading and spelling difficulties in transparent and opaque orthographies: A comparison between Scandinavian and US/Australian children. Dyslexia, 16, 119142.CrossRefGoogle ScholarPubMed
Furnes, B., Elwér, Å., Samuelsson, S., Olson, R. K., & Byrne, B. (2019). Investigating the double-deficit hypothesis in more and less transparent orthographies: A longitudinal study from preschool to grade 2. Scientific Studies of Reading, 23(6), 478493.CrossRefGoogle Scholar
Future Market Insights. (2022). Dyslexia Treatment Market Size, Share, Outlook, Trend and Forecast (www.marketresearchintellect.com) (Rep-GB-5281). Accessed June 1, 2023.Google Scholar
Gaab, N., & Petscher, Y. (2022). Screening for early literacy milestones and reading disabilities: The why, when, whom, how, and where. Perspectives on Language and Literacy, 1118.Google Scholar
Gabay, Y., & Holt, L. L. (2021). Adaptive plasticity under adverse listening conditions is disrupted in developmental dyslexia. Journal of the International Neuropsychological Society, 27(1), 1222.CrossRefGoogle ScholarPubMed
Gabel, L. A., Gibson, C. J., Gruen, J. R., & LoTurco, J. J. (2010). Progress towards a cellular neurobiology of reading disability. Neurobiology of Disease, 38, 173180.CrossRefGoogle Scholar
Gabriel, R. E. (2020a). Converting to privatization: A discourse analysis of dyslexia policy narratives. American Educational Research Journal, 57(1), 305338.CrossRefGoogle Scholar
Gabriel, R. E. (2020b). The future of the science of reading. The Reading Teacher, 74(1), 1118.CrossRefGoogle Scholar
Gabriel, R., & Kelley, S. L. (2021) It’s about time: Constructing dyslexia in higher education. In Lester, J. N. (ed.), Discursive Psychology and Disability (pp. 143168). London: Palgrave Macmillan,CrossRefGoogle Scholar
Gabrieli, J. D. (2016). The promise of educational neuroscience: Comment on Bowers (2016). Psychological Review, 123, 613619.CrossRefGoogle ScholarPubMed
Gabrieli, J. D. E. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325, 280283.CrossRefGoogle ScholarPubMed
Galaburda, A. M. (1993). Neuroanatomic basis of developmental dyslexia. Neurology Clinics, 11, 161173.CrossRefGoogle ScholarPubMed
Galaburda, A. M., & Kemper, T. L. (1979). Cytoarchitectonic abnormalities in developmental dyslexia: A case study. Annals of Neurology, 6, 94100.CrossRefGoogle ScholarPubMed
Galaburda, A. M., LoTurco, J. J., Ramus, F., Fitch, R. H., & Rosen, G. D. (2006). From genes to behavior in developmental dyslexia. Nature Neuroscience, 9, 12131217.CrossRefGoogle ScholarPubMed
Galaburda, A. M., Menard, M. T., & Rosen, G. D. (1994). Evidence for aberrant auditory anatomy in developmental dyslexia. PNAS, 91, 80108013.CrossRefGoogle ScholarPubMed
Galaburda, A. M., Schrott, L. M., & Sherman, G. F. Rosen, G. D., & Denenberg, V. H. (1996). Animal models of developmental dyslexia. In Chase, C. H., Rosen, G. D., & Sherman, G. F. (eds.), Developmental Dyslexia (pp. 3–14). Baltimore: York Press.Google Scholar
Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Gerschwin, N. (1985). Developmental dyslexia: Four consecutive patients with cortical anomalies. Annals of Neurology, 18, 222233.CrossRefGoogle ScholarPubMed
Gallagher, A., & Frederickson, N. 1995. The Phonological Assessment Battery (PhAB): An initial assessment of its theoretical and practical utility. Educational and Child Psychology, 12, 5367.CrossRefGoogle Scholar
Galliussi, J., Perondi, L., Chia, G., Gerbino, W., & Bernardis, P. (2020). Inter-letter spacing, inter-word spacing, and font with dyslexia-friendly features: Testing text readability in people with and without dyslexia. Annals of Dyslexia, 70(1), 141152.CrossRefGoogle ScholarPubMed
Galuschka, K., Ise, E., Krick, K., & Schulte-Körne, G. (2014). Effectiveness of treatment approaches for children and adolescents with reading disabilities: A meta-analysis of randomized controlled trials. PloS one, 9(2), e89900.CrossRefGoogle ScholarPubMed
Gao, F., Wang, R., Armada-da-Silva, P., et al. (2022). How the brain encodes morphological constraints during Chinese word reading: An EEG-fNIRS study. Cortex, 154, 184196.CrossRefGoogle ScholarPubMed
Garcini, L. M., Arredondo, M. M., Berry, O., et al. (2022). Increasing diversity in developmental cognitive neuroscience: A roadmap for increasing representation in pediatric neuroimaging research. Developmental Cognitive Neuroscience, 58, 101167.CrossRefGoogle ScholarPubMed
Gartland, D., & Strosnider, R. (2020). The use of response to intervention to inform special education eligibility decisions for students with specific learning disabilities. Learning Disability Quarterly, 43(4), 195200.CrossRefGoogle Scholar
Gathercole, S. E., & Alloway, T. P. (2008). Working Memory & Learning: A Practical Guide for Teachers. London: SAGE.Google Scholar
Gathercole, S. E., Dunning, D. L., Holmes, J., & Norris, D. (2019). Working memory training involves learning new skills. Journal of Memory and Language, 105, 1942.CrossRefGoogle Scholar
Gathercole, S. E., Woolgar, F., Kievit, R. A., et al. (2016). How common are WM deficits in children with difficulties in reading and mathematics? Journal of Applied Research in Memory and Cognition, 5(4), 384394.CrossRefGoogle ScholarPubMed
Gavril, L., Roșan, A., & Szamosközi, Ș. (2021). The role of visual-spatial attention in reading development: A meta-analysis. Cognitive Neuropsychology, 38(6), 387407.CrossRefGoogle ScholarPubMed
Gayán, J., & Olson, R. K. (1999). Reading disability: Evidence for a genetic etiology. European Child and Adolescent Psychiatry, 8, 5255.CrossRefGoogle ScholarPubMed
Gayán, J., & Olson, R. K. (2001). Genetic and environmental influences on orthographic and phonological skills in children with reading disabilities. Developmental Neurology, 20, 483507.Google ScholarPubMed
Gayán, J., & Olson, R. K. (2003). Genetic and environmental influences on individual differences in printed word recognition. Journal of Experimental Child Psychology, 84, 97123.CrossRefGoogle ScholarPubMed
Gearin, B., Petscher, Y., Stanley, C., Nelson, N. J., & Fien, H. (2022). Document analysis of state dyslexia legislation suggests likely heterogeneous effects on student and school outcomes. Learning Disability Quarterly, 45(4), 267279.CrossRefGoogle Scholar
Gebauer, D., Fink, A., Kargl, R., et al. (2012). Differences in brain function and changes with intervention in children with poor spelling and reading abilities. PLoS ONE, 7, e38201.CrossRefGoogle ScholarPubMed
Georgiewa, P., Rzanny, R., Gaser, C., et al. (2002). Phonological processing in dyslexic children: A study combining functional imaging and event related potentials. Neuroscience Letters, 318, 58.CrossRefGoogle ScholarPubMed
Georgiewa, P., Rzanny, R., Hopf, J. M., et al. (1999). fMRI during word processing in dyslexic and normal reading children. Neuroreport, 10, 34593465.CrossRefGoogle ScholarPubMed
Georgiou, G. K., Aro, M., Liao, C. H., & Parrila, R. (2016). Modeling the relationship between rapid automatized naming and literacy skills across languages varying in orthographic consistency. Journal of Experimental Child Psychology, 143, 4864.CrossRefGoogle ScholarPubMed
Georgiou, G. K., Inoue, T., & Parrila, R. (2021). Developmental relations between home literacy environment, reading interest, and reading skills: Evidence from a 3-year longitudinal study. Child Development, 92(5), 20532068.CrossRefGoogle ScholarPubMed
Georgiou, G. K., Inoue, T., & Parrila, R. (2023). Are vocabulary and word reading reciprocally related? Scientific Studies of Reading, 27(2), 160168.CrossRefGoogle Scholar
Georgiou, G. K., Martinez, D., Vieira, A. P. A., et al. (2022). A meta-analytic review of comprehension deficits in students with dyslexia. Annals of Dyslexia, 72(2), 204248.CrossRefGoogle ScholarPubMed
Georgiou, G. K., Martinez, D., Vieira, A. P. A., & Guo, K. (2021). Is orthographic knowledge a strength or a weakness in individuals with dyslexia? Evidence from a meta-analysis. Annals of Dyslexia, 71(1), 527.CrossRefGoogle ScholarPubMed
Georgiou, G. K., Papadopoulos, T. C., Zarouna, E., & Parrila, R. (2012). Are auditory and visual processing deficits related to developmental dyslexia? Dyslexia, 18(2), 110129.CrossRefGoogle ScholarPubMed
Georgiou, G. K., & Parrila, R., (2013). Rapid automatized naming and reading: A review. In Swanson, H. L., Harris, K. R., & Graham, S. (eds.), Handbook of Learning Disabilities (pp. 169185). New York: Guilford Press.Google Scholar
Georgiou, G. K., Parrila, R., Cui, Y., & Papadopoulos, T. C. (2013). Why is rapid automatized naming related to reading? Journal of Experimental Child Psychology, 115(1), 218225.CrossRefGoogle ScholarPubMed
Georgiou, G. K., Parrila, R., & Kirby, J. R. (2009). RAN components and reading development from grade 3 to grade 5: What underlies their relationship? Scientific Studies of Reading, 13, 508534.CrossRefGoogle Scholar
Georgiou, G. K., Parrila, R., & Papadopoulos, T. C. (2016). The anatomy of the RAN-reading relationship. Reading and Writing, 29(9), 17931815.CrossRefGoogle Scholar
Georgiou, G. K., Protopapas, A., Papadopoulos, T. C., Skaloumbakas, C., & Parrila, (2010). Auditory temporal processing and dyslexia in an orthographically consistent language. Cortex, 46, 13301344.CrossRefGoogle Scholar
Georgiou, G. K., Vieira, A. P. A., Rothou, K. M., et al. (2023). A meta-analysis of morphological awareness deficits in developmental dyslexia. Scientific Studies of Reading, 27(3), 253271.CrossRefGoogle Scholar
Georgitsi, M., Dermitzakis, I., Soumelidou, E., & Bonti, E. (2021). The polygenic nature and complex genetic architecture of specific learning disorder. Brain Sciences, 11, 631.CrossRefGoogle ScholarPubMed
Gerber, P. J., & Raskind, M. H. (2013). Leaders, Visionaries, Dreamers: Extraordinary People with Dyslexia and Other Learning Disabilities. New York: Nova Science.Google Scholar
Gerst, E. H., Cirino, P. T., Macdonald, K. T., et al. (2021). The structure of processing speed in children and its impact on reading. Journal of Cognition and Development, 22(1), 84107.CrossRefGoogle ScholarPubMed
Gersten, R., Haymond, K., Newman-Gonchar, R., Dimino, J., & Jayanthi, M. (2020). Meta-analysis of the impact of reading interventions for students in the primary grades. Journal of Research on Educational Effectiveness, 13(2), 401427.CrossRefGoogle Scholar
Gersten, R., Jayanthi, M., & Dimino, J. (2017). Too much, too soon? Unanswered questions from national response to intervention evaluation. Exceptional Children, 83(3), 244254.CrossRefGoogle Scholar
Geschwind, N., & Levitsky, W. (1968). Human brain: Left-right asymmetries in temporal speech region. Science, 161, 186187.CrossRefGoogle ScholarPubMed
Getchell, N., Pabreja, P., Neeld, K., & Carrio, V. (2007). Comparing children with and without dyslexia on the movement assessment battery for children and the test of gross motor development. Perceptual and Motor Skills, 105, 207214.CrossRefGoogle ScholarPubMed
Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., et al. (2020). Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 30043017.Google ScholarPubMed
Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., et al. (2021). Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 26, 30043017.CrossRefGoogle ScholarPubMed
Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., et al. (2019). Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 9, 77.CrossRefGoogle ScholarPubMed
Gialluisi, A., Newbury, D. F., Wilcutt, E. G., et al. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13, 686701.CrossRefGoogle ScholarPubMed
Gibbs, S. J., & Elliott, J. G. (2015). The differential effects of labelling: How do “dyslexia” and “reading difficulties” affect teachers’ beliefs. European Journal of Special Needs Education, 30(3), 323337.CrossRefGoogle Scholar
Gibbs, S. J., & Elliott, J. G. (2020). The dyslexia debate: Life without the label. Oxford Review of Education, 46(4), 487500.CrossRefGoogle Scholar
Gibby-Leversuch, R., Hartwell, B. K., & Wright, S. (2021). Dyslexia, literacy difficulties and the self-perceptions of children and young people: A systematic review. Current Psychology, 40(11), 55955612.CrossRefGoogle Scholar
Gilger, J. W., Allen, K., & Castillo, A. (2016). Reading disability and enhanced dynamic spatial reasoning: A review of the literature. Brain and Cognition, 105, 5565.CrossRefGoogle ScholarPubMed
Gilger, J. W., Pennington, B. F., & DeFries, J. C. (1992). A twin study of the etiology of comorbidity: Attention deficit-hyperactivity disorder and dyslexia. Journal of the American Academy of Child and Adolescent Psychiatry, 31, 343348.CrossRefGoogle ScholarPubMed
Gillam, R. B., Loeb, D. F., Hoffman, L. M., et al. (2008). The efficacy of Fast ForWord language intervention in school-age children with language impairment: A randomized controlled trial. Journal of Speech, Language, and Hearing Research, 52, 97119.CrossRefGoogle Scholar
Gillingham, A., & Stillman, B. W. (1997). The Gillingham Manual: Remedial Training for Children with Specific Disability in Reading, Spelling, and Penmanship. 8th edition. Cambridge, MA: Educators Publishing Service.Google Scholar
Gilmore, J. H., Knickmeyer, R. C., & Gao, W. (2018). Imaging structural and functional brain development in early childhood. Nature Reviews Neuroscience, 19(3), 123137.CrossRefGoogle ScholarPubMed
Gilroy, D. E., & Miles, T. R. (1996) Dyslexia at College. 2nd edition. London: Whurr.Google Scholar
Gioia, G. A., Isquith, P. K., Kenworthy, L., & Barton, R. M. (2002). Profiles of everyday executive function in acquired and developmental disorders. Child Neuropsychology, 8(2), 121137.CrossRefGoogle ScholarPubMed
Giovagnoli, S., Mandolesi, L., Magri, S., et al. (2020). Internalizing symptoms in developmental dyslexia: A comparison between primary and secondary school. Frontiers in Psychology, 11, 461.CrossRefGoogle ScholarPubMed
Girirajan, S., Brkanac, Z., Coe, B. P., et al. (2011). Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLOS GENET, 7, e1002334.CrossRefGoogle ScholarPubMed
Gladwell, M. (2013). David and Goliath: Underdogs, Misfits and the Art of Battling Giants. New York: Little, Brown and Company.Google Scholar
Glazzard, J. (2010). The impact of dyslexia on pupils’ self-esteem. Support for Learning, 25(2), 6369.CrossRefGoogle Scholar
Goddard Blythe, S. (2005). Releasing educational potential through movement: A summary of individual studies carried out using the INPP test battery and developmental exercise programme for use in schools with children with special needs. Child Care in Practice, 11, 415432.CrossRefGoogle Scholar
Goddard Blythe, S., Duncombe, R., Preedy, P., & Gorely, T. (2022). Neuromotor readiness for school: The primitive reflex status of young children at the start and end of their first year at school in the United Kingdom. Education 3–13, 50(5), 654667.Google Scholar
Goddard, R. (1991). Why LINC matters. English in Education, 25, 3239.CrossRefGoogle Scholar
Goldman, S. R., Snow, C., & Vaughn, S. (2016). Common themes in teaching reading for understanding: Lessons from three projects. Journal of Adolescent & Adult Literacy, 60(3), 255264.CrossRefGoogle Scholar
Gonda, Y., Andrews, W. D., Tabata, H., et al. (2013). Robo1 regulates the migration and laminar distribution of upper-layer pyramidal neurons of the cerebral cortex. Cerebral Cortex, 23, 14951508.CrossRefGoogle ScholarPubMed
Gonzaga-Jauregui, C., Lupski, J. R., & Gibbs, R. A. (2012). Human genome sequencing in health and disease. Annual Review of Medicine, 63, 3561.CrossRefGoogle ScholarPubMed
Good, R. H., & Kaminski, R. A. (2003). Dynamic Indicators of Basic Early Literacy Skills. Longmont, CO: Sopris West Educational Services.Google Scholar
Good, R. H., Kaminski, R. A., Shinn, M., et al. (2004). Technical Adequacy and Decision Making Utility of DIBELS. Technical Report No. 7. Eugene, OR: University of Oregon.Google Scholar
Goodman, I., Libenson, A., & Wade-Woolley, L. (2010). Sensitivity to linguistic stress, phonological awareness and early reading ability in preschoolers. Journal of Research in Reading, 33(2), 113127.CrossRefGoogle Scholar
Goodman, K. S. (1965). A linguistic study of cues and miscues in reading. Elementary English, 42, 639643.Google Scholar
Goodman, K. S. (1967). Reading: A psycholinguistic guessing game. Journal of the Reading Specialist, 6, 126135.CrossRefGoogle Scholar
Goodman, K. S. (1969). Analysis of oral reading miscues: Applied psycholinguistics. Reading Research Quarterly, 5(1), 9–30.CrossRefGoogle Scholar
Goodman, K. S. (1970). Reading: A psycholinguistic guessing game. In Singer, H., & Ruddell, R. B. (eds.), Theoretical Models and Processes of Reading (pp. 259272). Newark, DE: International Reading Association.Google Scholar
Goodman, K. S. (1986). What’s Whole in Whole Language? Portsmouth, NH: Heinemann.Google Scholar
Goodman, K. S. (1992). Why whole language is today’s agenda in education. Language Arts, 69, 354363.Google Scholar
Gordon, P. C., & Hoedemaker, R. S. (2016). Effective scheduling of looking and talking during rapid automatized naming. Journal of Experimental Psychology: Human Perception and Performance, 42(5), 742.Google ScholarPubMed
Gori, S., Bertoni, S., Sali, M., et al. (2016b). Dyslexia prevention by action video game training: Behavioural and neurophysiological evidence. Journal of Vision, 16(12), 489.CrossRefGoogle Scholar
Gori, S., & Facoetti, A. (2015). How the visual aspects can be crucial in reading acquisition: The intriguing case of crowding and developmental dyslexia. Journal of Vision, 15(1), 8.CrossRefGoogle ScholarPubMed
Gori, S., Seitz, A. R., Ronconi, L., Franceschini, S., & Facoetti, A. (2016a). Multiple causal links between magnocellular–dorsal pathway deficit and developmental dyslexia. Cerebral Cortex, 26(11), 43564369.CrossRefGoogle ScholarPubMed
Gorman, S. E., & Gorman, J. M. (2021). Denying to the Grave: Why We Ignore the Science That Will Save Us. Oxford: Oxford University Press.CrossRefGoogle Scholar
Gosse, C., & Van Reybroeck, M. (2020). Do children with dyslexia present a handwriting deficit? Impact of word orthographic and graphic complexity on handwriting and spelling performance. Research in Developmental Disabilities, 97, 103553.CrossRefGoogle Scholar
Goswami, U. (2002). Phonology, reading development and dyslexia: A cross-linguistic perspective. Annals of Dyslexia, 52, 123.CrossRefGoogle Scholar
Goswami, U. (2015). Sensory theories of developmental dyslexia: Three challenges for research. Nature Reviews Neuroscience, 16(1), 4354.CrossRefGoogle ScholarPubMed
Goswami, U. (2019). A neural oscillations perspective on phonological development and phonological processing in developmental dyslexia. Language and Linguistics Compass, 13(5), e12328.CrossRefGoogle Scholar
Goswami, U. (2022). Language acquisition and speech rhythm patterns: An auditory neuroscience perspective. Royal Society Open Science, 9(7), 211855.CrossRefGoogle ScholarPubMed
Goswami, U., Gerson, D., & Astruc, L. (2010). Amplitude envelope perception, phonology and prosodic sensitivity in children with developmental dyslexia. Reading & Writing, 23, 9951019.CrossRefGoogle Scholar
Goswami, U., Huss, M., Mead, N., & Fosker, T. (2021). Auditory sensory processing and phonological development in high IQ and exceptional readers, typically developing readers, and children with dyslexia: A longitudinal study. Child Development, 92(3), 10831098.CrossRefGoogle ScholarPubMed
Goswami, U., Thomson, J., Richardson, U., et al. (2002). Amplitude envelope onsets and developmental dyslexia: A new hypothesis. Proceedings of the National Academy of Sciences, 99(16), 10911–10916.CrossRefGoogle ScholarPubMed
Goswami, U., Wang, H. L., Cruz, A., et al. (2011). Language-universal sensory deficits in developmental dyslexia: English, Spanish, and Chinese. Journal of Cognitive Neuroscience, 23(2), 325337.CrossRefGoogle ScholarPubMed
Gotlieb, R. J., Immordino-Yang, M. H., Gonzalez, E., et al. (2022). Becoming literate: Educational implications of coordinated neuropsychological development of reading and social-emotional functioning among diverse youth. Literacy Research: Theory, Method, and Practice, 71(1), 80132.Google Scholar
Goto, M., Abe, O., Hagiwara, A., et al. (2022). Advantages of using both voxel- and surface-based morphometry in cortical morphology analysis: A review of various applications. Magnetic Resonance in Medical Sciences, 21, 4157.CrossRefGoogle ScholarPubMed
Gough, P. B. (1983). Context, form and interaction. In Rayner, K. (ed.), Eye Movements in Reading: Perceptual and Language Processes (pp. 203211). San Diego: Academic Press.CrossRefGoogle Scholar
Gough, P. B., & Tunmer, W. E. (1986). Decoding, reading and reading disability. Remedial and Special Education, 7, 610.CrossRefGoogle Scholar
Grainger, J., Dufau, S., & Ziegler, J. C. (2016). A vision of reading. Trends in Cognitive Sciences, 20(3), 171179.CrossRefGoogle ScholarPubMed
Grainger, J., Lété, B., Bertand, D., Dufau, S., & Ziegler, J. C. (2012). Evidence for multiple routes in learning to read. Cognition, 123, 280292.CrossRefGoogle ScholarPubMed
Gray, S., Fox, A. B., Green, S., et al. (2019). Working memory profiles of children with dyslexia, developmental language disorder, or both. Journal of Speech, Language, and Hearing Research, 62(6), 18391858.CrossRefGoogle ScholarPubMed
Gray, S., Green, S., Alt, M., et al. (2017). The structure of working memory in young children and its relation to intelligence. Journal of Memory and Language, 92, 183201.CrossRefGoogle ScholarPubMed
Green, E. A. (2022). Continuing the debate: A response to the Literacy Research Association’s dyslexia research report. International Journal of Education and Literacy Studies, 10(3), 7279.CrossRefGoogle Scholar
Greenspan, S. (2005). Credulity and gullibility among service providers: An attempt to understand why snake oil sells. In Jacobson, J. W., Foxx, R. M., & Mulick, J. A. (eds.), Controversial Therapies for Developmental Disabilities: Fad, Fashion and Science in Professional Practice (pp. 129138). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Gresham, F. M. (2009). Using response to intervention for identification of specific learning disabilities. In Akin-Little, A., Little, S. G., Bray, M. A., & Kehl, T. J. (eds.), Behavioral Interventions in Schools: Evidence-Based Positive Strategies (pp. 205220). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Gresham, F. M., & Vellutino, F. R. (2010). What is the role of intelligence in the identification of specific learning disabilities? Issues and clarifications. Learning Disabilities Research & Practice, 25(4), 194206.CrossRefGoogle Scholar
Griffiths, P. G., Taylor, R. H., Henderson, L. M., & Barrett, B. T. (2016). The effect of coloured overlays and lenses on reading: A systematic review of the literature. Ophthalmic and Physiological Optics, 36(5), 519544.CrossRefGoogle Scholar
Grigorenko, E. L. (2004). Genetic bases of developmental dyslexia: A capsule review of heritability estimates. Enfance, 3, 273287.CrossRefGoogle Scholar
Grigorenko, E. L. (2005). A conservative meta-analysis of linkage and linkage-association studies of developmental dyslexia. Scientific Studies of Reading, 9, 285316.CrossRefGoogle Scholar
Grigorenko, E. L. (2007). Triangulating developmental dyslexia: Behavior, brain, and genes. In Coch, D., Dawson, G., & Fischer, K. (eds.), Human Behavior and the Developing Brain (pp. 117144). New York: Guilford Press.Google Scholar
Grigorenko, E. L. (2009). At the height of fashion: What genetics can teach us about neurodevelopmental disabilities. Current Opinion in Neurology, 22, 126130.CrossRefGoogle ScholarPubMed
Grigorenko, E. L. (2011). Language-based learning disabilities. In Seel, N. (ed.), Encyclopedia of the Sciences of Learning. New York: Springer.Google Scholar
Grigorenko, E. L. (2012). Commentary: Translating quantitative genetics into molecular genetics: Decoupling reading disorder and ADHD – Reflections on Greven et al. and Rosenberg et al. Journal of Child Psychology and Psychiatry, 53(3), 252253.CrossRefGoogle ScholarPubMed
Grigorenko, E. L. (2022). The role of genetic factors in reading and its development across languages and writing systems. Scientific Studies of Reading, 26, 96110.CrossRefGoogle Scholar
Grigorenko, E. L. (2023). The never-ending innovativeness of the Wise Man. In Preiss, D. D., Kaufman, J. C., & Singer, M. (eds.), Innovation, Creativity and Change across Cultures. London: Palgrave Macmillan.Google Scholar
Grigorenko, E. L., Compton, D. L., Fuchs, L. S., et al. (2020). Understanding, educating, and supporting children with specific learning disabilities: 50 years of science and practice. American Psychologist, 75(1), 3751.CrossRefGoogle ScholarPubMed
Grigorenko, E. L., Hart, L., Hein, S., Kovalenko, J., & Naumova, O. Y. (2019). Improved educational achievement as a path to desistance. New Directions for Child and Adolescent Development, 2019(165), 111135.CrossRefGoogle ScholarPubMed
Grigorenko, E. L., Macomber, D., Hart, L., et al. (2015). Academic achievement among juvenile detainees. Journal of Learning Disabilities, 48(4), 359368.CrossRefGoogle ScholarPubMed
Grigorenko, E. L., & Naples, A. (eds.). (2008). Single-Word Reading: Biological and Behavioral Perspectives. New York: Lawrence Erlbaum Associates.Google Scholar
Grigorenko, E. L., & Naples, A. J. (2009). The devil is in the details: Decoding the genetics of reading. In McCardle, P., & Pugh, K. (eds.), Helping Children Learn to Read: Current Issues and New Directions in the Integration of Cognition, Neurobiology and Genetics of Reading and Dyslexia (pp. 133148). New York: Psychological Press.Google Scholar
Grigorenko, E. L., Wood, F. B., Meyer, M. S., et al. (1997). Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. American Journal of Human Genetics, 60, 2739.Google ScholarPubMed
Grigorenko, E. L., Wood, F. B., Meyer, M. S., et al. (2001). Linkage studies suggest a possible locus for developmental dyslexia on chromosome 1p. American Journal of Medical Genetics (Neuropsychiatric Genetics), 105, 120129.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Grills, A. E., Fletcher, J. M., Vaughn, S. R., & Bowman, C., 2022. Internalizing symptoms and reading difficulties among early elementary school students. Child Psychiatry & Human Development, 111.Google ScholarPubMed
Grills-Taquechel, A. E., Fletcher, J. M., Vaughn, S. R., & Stuebing, K. K. (2012). Anxiety and reading difficulties in early elementary school: Evidence for unidirectional- or bi-directional relations? Child Psychiatry & Human Development, 43, 3547.CrossRefGoogle ScholarPubMed
Grimm, T., Garshasbi, M., Puettmann, L., et al. (2020). A novel locus and candidate gene for familial developmental dyslexia on chromosome 4q. The German Journal for Child and Adolescent Psychiatry and Psychotherapy, 48, 478489.Google ScholarPubMed
Groß, C., Serrallach, B. L., Möhler, E., et al. (2022). Musical performance in adolescents with ADHD, ADD and dyslexia – Behavioral and neurophysiological aspects. Brain Sciences, 12(2), 127.CrossRefGoogle ScholarPubMed
Grosjean, F. (2021). Life as a Bilingual. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gross-Glenn, K., Skottun, B. C., Glenn, W., et al. (1995). Contrast sensitivity in dyslexia. Visual Neuroscience, 12, 153163.CrossRefGoogle ScholarPubMed
Grote-Garcia, S., & Ortlieb, E. (2023). What’s hot in literacy 2023: The ban on books and diversity measures. Literacy Research and Instruction, 116.CrossRefGoogle Scholar
Grünling, C., Ligges, M., Huonker, R., et al. (2004). Dyslexia: The possible benefit of multimodal integration of fMRI- and EEG-data. Journal of Neural Transmission, 111, 951969.CrossRefGoogle ScholarPubMed
Gu, C., & Bi, H. Y. (2020). Auditory processing deficit in individuals with dyslexia: A meta-analysis of mismatch negativity. Neuroscience & Biobehavioral Reviews, 116, 396405.CrossRefGoogle ScholarPubMed
Guidi, L. G., Mattley, J., Martinez-Garay, I., et al. (2017). Knockout mice for dyslexia susceptibility gene homologs KIAA0319 and KIAA0319L have unaffected neuronal migration but display abnormal auditory processing. Cerebral Cortex, 27, 58315845.CrossRefGoogle ScholarPubMed
Guidi, L. G., Velayos-Baeza, A., Martinez-Garay, I., et al. (2018). The neuronal migration hypothesis of dyslexia: A critical evaluation 30 years on. European Journal of Neuroscience, 48, 32123233.CrossRefGoogle Scholar
Guimarães, M. R., Vilhena, D. D. A., Loew, S. J., & Guimarães, R. Q. (2020). Spectral overlays for reading difficulties: Oculomotor function and reading efficiency among children and adolescents with visual stress. Perceptual and Motor Skills, 127(2), 490509.CrossRefGoogle ScholarPubMed
Gutiérrez, N., Rigobon, V. M., Marencin, N. C., et al. (2022). Early prediction of reading risk in fourth grade: A combined latent class analysis and classification tree approach. Scientific Studies of Reading, 118.Google Scholar
Gwernan-Jones, R., & Burden, R. L. (2010). Are they just lazy? Student teachers’ attitudes about dyslexia. Dyslexia, 16, 6686.CrossRefGoogle ScholarPubMed
Habib, M. (2000). The neurological basis of developmental dyslexia: An overview and working hypothesis. Brain, 123(12), 23732399.CrossRefGoogle ScholarPubMed
Habib, M. (2021). The neurological basis of developmental dyslexia and related disorders: A reappraisal of the temporal hypothesis, twenty years on. Brain Sciences, 11(6), 708.CrossRefGoogle Scholar
Habib, M., Lardy, C., Desiles, T., et al. (2016). Music and dyslexia: A new musical training method to improve reading and related disorders. Frontiers in Psychology, 7, 26.CrossRefGoogle ScholarPubMed
Habib, M., Robichon, F., Levrier, O., Khalil, R., & Salamon, G. (1995). Diverging asymmetries of temporo-parietal cortical areas: A reappraisal of Geschwind/Galaburda theory. Brain and Language, 48, 238258.CrossRefGoogle Scholar
Hadzibeganovic, T., van den Noort, M., Bosch, P., et al. (2011). Cross-linguistic neuroimaging and dyslexia: A critical view. Cortex, 46, 13121316.CrossRefGoogle Scholar
Haegens, S., & Golumbic, E. Z. (2018). Rhythmic facilitation of sensory processing: A critical review. Neuroscience & Biobehavioral Reviews, 86, 150165.CrossRefGoogle ScholarPubMed
Haft, S., Greiner de Magalhães, C., & Hoeft, F. (2023). A systematic review of the consequences of stigma and stereotype threat for individuals with specific learning disabilities. Journal of Learning Disabilities, 56(3), 193209.CrossRefGoogle ScholarPubMed
Hagan-Burke, S., Coyne, M. D., Kwok, O. M., et al. (2013). The effects and interactions of student, teacher, and setting variables on reading outcomes for kindergarteners receiving supplemental reading intervention. Journal of Learning Disabilities, 46(3), 260277.CrossRefGoogle ScholarPubMed
Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37, 347362.CrossRefGoogle ScholarPubMed
Hale, J. B., Alfonso, V., Berninger, V., et al. (2010). Critical issues in response to intervention, comprehensive evaluation, and specific learning disabilities evaluation and intervention: An expert white paper consensus. Learning Disability Quarterly, 33, 223236.CrossRefGoogle Scholar
Hale, J. B., & Fiorello, C. A. (2004). School Neuropsychology: A Practitioner’s Handbook. New York: Guilford Press.Google Scholar
Hale, J. B., Fiorello, C. A., Miller, J. A., et al. (2008). WISC-IV assessment and intervention strategies for children with specific learning difficulties. In Prifitera, A., Saklofske, D. H., & Weiss, L. G. (eds.), WISC-IV Clinical Assessment and Intervention (pp. 109171). New York: Elsevier.Google Scholar
Hall, C., Dahl-Leonard, K., Cho, E., et al. (2022). Forty years of reading intervention research for elementary students with or at risk for dyslexia: A systematic review and meta-analysis. Reading Research Quarterly, 58(2), 285312.CrossRefGoogle Scholar
Hallahan, D. P., & Mercer, C. D. (2001). Learning Disabilities: Historical Perspectives. Washington, DC: Department of Education, Office of Special Education Programs.CrossRefGoogle Scholar
Hallahan, D. P., & Mock, D. R. (2003). A brief history of the field of learning disabilities. In Swanson, H. L., Harris, K. R., & Graham, S. (eds.), Handbook of Learning Disabilities (pp. 1629). New York: Guilford Press.Google Scholar
Halliday, L. F., & Bishop, D. V. M. (2006). Is poor frequency modulation detection linked to literacy problems? A comparison of specific reading disability and mild to moderate sensorineural hearing loss. Brain and Language, 97, 200213.CrossRefGoogle ScholarPubMed
Halverson, K. K., Derrick, J. L., Medina, L. D., & Cirino, P. T. (2021). Executive functioning with the NIH EXAMINER and inference making in struggling readers. Developmental Neuropsychology, 46(3), 213231.CrossRefGoogle ScholarPubMed
Hämäläinen, J. A., Salminen, H. K., & Leppänen, P. H. T. (2013). Basic auditory processing deficits in dyslexia: Review of the behavioral, event-related potential/field evidence. Journal of Learning Disabilities, 46(5), 413427.CrossRefGoogle ScholarPubMed
Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography: Theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65, 413497.CrossRefGoogle Scholar
Hammill, D. D., & Allen, E. A. (2020). A revised discrepancy method for identifying dyslexia. Journal of Pediatric Neuropsychology, 6(1), 2743.CrossRefGoogle Scholar
Hancock, R., Gabrieli, J. D., & Hoeft, F. (2016). Shared temporoparietal dysfunction in dyslexia and typical readers with discrepantly high IQ. Trends in Neuroscience and Education, 5(4), 173177.CrossRefGoogle ScholarPubMed
Hancock, R., Pugh, K. R., & Hoeft, F. (2017). Neural noise hypothesis of developmental dyslexia. Trends in Cognitive Sciences, 21, 434448.CrossRefGoogle ScholarPubMed
Hancock, R., Richlan, F., & Hoeft, F. (2017). Possible roles for fronto-striatal circuits in reading disorder. Neuroscience & Biobehavioral Reviews, 72, 243260.CrossRefGoogle ScholarPubMed
Handler, S. M., Fierson, W. M., the Section of Opthalmology and Council on Children with Disabilities, American Academy of Opthamology, American Association for Pediatric Opthalmology and Strabismus, and American Association of Certified Orthoptists. (2011). Joint technical report – Learning disabilities, dyslexia, and vision. Pediatrics, 127, e818–e856.CrossRefGoogle Scholar
Hanebutt, R., & Mueller, C. (2021). Disability Studies, crip theory, and education. In Oxford Research Encyclopedia of Education. https://bit.ly/3Gsyo1mCrossRefGoogle Scholar
Hanford, E. (2018). Why are we still teaching reading the wrong way? New York Times. October 26. https://nyti.ms/3T4aFvTGoogle Scholar
Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M., et al. (2005). The axon guidance receptor gene ROBO1 is a candidate dene for developmental dyslexia. PLoS, 1, e50.Google Scholar
Hari, R., & Renvall, H. (2001). Impaired processing of rapid stimulus sequences in dyslexia. Trends in Cognitive Sciences, 5, 525532.CrossRefGoogle ScholarPubMed
Harlaar, N., Dale, P. S., & Plomin, R. (2007). From learning to read to reading to learn: Substantial and stable genetic influence. Child Development, 78, 116131.CrossRefGoogle ScholarPubMed
Harn, B., Parisi, D., & Stoolmiller, M. (2013). Balancing fidelity with flexibility and fit: What do we really know about fidelity of implementation in schools? Exceptional Children, 79(2), 181193.CrossRefGoogle Scholar
Harrison, A. G., & Edwards, M. J. (2010). Symptom exaggeration in post-secondary students: Preliminary base rates in a Canadian sample. Applied Neuropsychology, 17(2), 135143.CrossRefGoogle Scholar
Harrison, A. G., & Sparks, R. (2022). Disability diagnoses: Seven sins of clinicians. Psychological Injury and Law, 15(3), 268286.CrossRefGoogle Scholar
Hart, B., & Risley, T. (2003). The early catastrophe. American Educator, 27, 69.Google Scholar
Hart, S. A., Petrill, S. A., DeThorne, L. S., et al. (2009). Environmental influences on the longitudinal covariance of expressive vocabulary: Measuring the home literacy environment in a genetically sensitive design. Journal of Child Psychology and Psychiatry, 50, 911919.CrossRefGoogle Scholar
Hartas, D. (2011). Families’ social backgrounds matter: Socioeconomic factors, home learning and young children’s language, literacy and social outcomes. British Educational Research Journal, 37, 893914.CrossRefGoogle Scholar
Hartwigsen, G. (2018). Flexible redistribution in cognitive networks. Trends in Cognitive Sciences, 22, 687698.CrossRefGoogle ScholarPubMed
Hasan, K. M., Molfese, D. L., Walimuni, I. S., et al. (2012). Diffusion tensor quantification and cognitive correlates of the macrostructure and microstructure of the corpus callosum in typically developing and dyslexic children. NMR in Biomedicine, 25(11), 12631270.CrossRefGoogle ScholarPubMed
Hatcher, P. J., Hulme, C., Miles, J. N., et al. (2006). Efficacy of small group reading intervention for beginning readers with reading delay: A randomised controlled trial. Journal of Child Psychology & Psychiatry, 47, 820827.CrossRefGoogle Scholar
Hayiou-Thomas, M. E., Carroll, J. M., Leavett, R., Hulme, C., & Snowling, M. J. (2017). When does speech sound disorder matter for literacy? The role of disordered speech errors, co-occurring language impairment and family risk of dyslexia. Journal of Child Psychology and Psychiatry, 58, 197205.CrossRefGoogle ScholarPubMed
Hebbecker, K., Förster, N., & Souvignier, E. (2019). Reciprocal effects between reading achievement and intrinsic and extrinsic reading motivation. Scientific Studies of Reading, 23(5), 419436.CrossRefGoogle Scholar
Hebert, M., Bohaty, J. J., Nelson, J. R., & Brown, J. (2016). The effects of text structure instruction on expository reading comprehension: A meta-analysis. Journal of Educational Psychology, 108(5), 609.CrossRefGoogle Scholar
Heiervang, E., Hugdahl, K., Steinmetz, H., et al. (2000). Planum temporale, planum parietale and dichotic listening in dyslexia. Neuropsychologia, 38, 17041713.CrossRefGoogle ScholarPubMed
Heim, S., Pape-Neumann, J., van Ermingen-Marbach, M., Brinkhaus, M., & Grande, M. (2015). Shared vs. specific brain activation changes in dyslexia after training of phonology, attention, or reading. Brain Structure and Function, 220(4), 21912207.CrossRefGoogle ScholarPubMed
Helenius, P., Tarkiainen, A., Cornelissen, P., Hansen, P., & Salmelin, R. (1999). Dissociation of normal feature analysis and deficient processing of letter-strings in dyslexic adults. Cerebral Cortex, 9, 476483.CrossRefGoogle ScholarPubMed
Helland, T. (2022). Trends in dyslexia research during the period 1950 to 2020—Theories, definitions, and publications. Brain Sciences, 12(10), 1323.CrossRefGoogle ScholarPubMed
Henderson, L. M., Tsogka, N., & Snowling, M. J. (2013). Questioning the benefits that coloured overlays can have for reading in students with and without dyslexia. Journal of Research in Special Educational Needs, 13(1), 5765.CrossRefGoogle Scholar
Henderson, S. E., Sugden, D. A., & Barnett, A. L. (2007). The Movement Assessment Battery for Children. Examiner’s manual; 2nd edition. London: Pearson Education.Google Scholar
Hendren, R. L., Haft, S. L., Black, J. M., White, N. C., & Hoeft, F. (2018). Recognizing psychiatric comorbidity with reading disorders. Frontiers in Psychiatry, 101.CrossRefGoogle ScholarPubMed
Hendricks, E. L., & Fuchs, D. (2020). Are individual differences in response to intervention influenced by the methods and measures used to define response? Implications for identifying children with learning disabilities. Journal of Learning Disabilities, 53, 428443.CrossRefGoogle ScholarPubMed
Herbers, J. E. Cutuli, J. J., Supkoff, L. M., et al. (2012). Early reading skills and academic achievement trajectories of students facing poverty, homelessness, and high residential mobility. Educational Researcher, 41(9), 366374.CrossRefGoogle Scholar
Hervais-Adelman, A., Kumar, U., Mishra, R. K., et al. (2022). How does literacy affect speech processing? Not by enhancing cortical responses to speech, but by promoting connectivity of acoustic-phonetic and graphomotor cortices. The Journal of Neuroscience, 42, 8826.CrossRefGoogle ScholarPubMed
Hinshelwood, J. (1895). Word-blindness and visual memory. Lancet, 146, 15641570.CrossRefGoogle Scholar
Hinshelwood, J. (1902). Congenital word-blindness, with reports of two cases. Ophthalmology Review, 21, 9199.Google Scholar
Hinshelwood, J. (1907). Four cases of congenital word-blindness occuring in the same family. British Medical Journal, 1, 608609.CrossRefGoogle Scholar
Hinshelwood, J. (1917). Congenital Word Blindness. London: H. K. Lewis & Co.CrossRefGoogle Scholar
Hitchens, P. (2014). Dyslexia is NOT a disease. It is an excuse for bad teachers. Mail Online. March 2. https://bit.ly/3uHX2Z8Google Scholar
Hoeft, F., & Bouhali, F. (2022). Pre-and postnatal environmental effects on learning to read and mathematical learning. In Skeide, M. A. (ed.), The Cambridge Handbook of Dyslexia and Dyscalculia (pp. 115250). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hoeft, F., Hernandez, A., McMillon, G., et al. (2006). Neural basis of dyslexia: A comparison between dyslexic and nondyslexic children equated for reading ability. Journal of Neuroscience, 26, 10700–10708.CrossRefGoogle ScholarPubMed
Hoeft, F., McCandliss, B. D., Black, J. M., et al. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 108, 361366.CrossRefGoogle ScholarPubMed
Hoeft, F., Meyler, A., Hernandez, A., et al. (2007). Functional and morphometric brain dissociation between dyslexia and reading ability. Proceedings of the National Academy of Sciences of the United States of America, 104, 42344239.CrossRefGoogle ScholarPubMed
Hoeft, F., Ueno, T., Reiss, A. L., et al. (2007). Prediction of children’s reading skills using behavioral, functional, and structural neuroimaging measures. Behavioral Neuroscience, 121, 602613.CrossRefGoogle ScholarPubMed
Hofstetter, S., Friedmann, N., & Assaf, Y. (2017). Rapid language-related plasticity: Microstructural changes in the cortex after a short session of new word learning. Brain Structure and Function, 222(3), 12311241.CrossRefGoogle Scholar
Holliman, A. J., Wood, C., & Sheehy, K. (2010). Does speech rhythm sensitivity predict children’s reading ability one year later? Journal of Educational Psychology, 102, 356366.CrossRefGoogle Scholar
Holloway, I. D., van Atteveldt, N., Blomert, L., & Ansari, D. (2015). Orthographic dependency in the neural correlates of reading: Evidence from audiovisual integration in English readers. Cerebral Cortex, 25, 15441553.CrossRefGoogle ScholarPubMed
Holm, V. A. (1983). A western version of the Doman-Delacato treatment of patterning for developmental disabilities. The Western Journal of Medicine, 139, 553556.Google ScholarPubMed
Holmqvist, M. (2020). Medical diagnosis of dyslexia in a Swedish elite school: A case of “consecrating medicalization.” British Journal of Sociology, 71(2), 366381.CrossRefGoogle Scholar
Hoover, W. A., & Gough, P. B. (1990). The simple view of reading. Reading and Writing, 2, 127160.CrossRefGoogle Scholar
Horbach, J., Mayer, A., Scharke, W., Heim, S., & Günther, T. (2020). Development of behavior problems in children with and without specific learning disorders in reading and spelling from kindergarten to fifth grade. Scientific Studies of Reading, 24(1), 5771.CrossRefGoogle Scholar
Hornickel, J., & Kraus, N. (2013). Unstable representation of sound: A biological marker of dyslexia. The Journal of Neuroscience, 33(8), 35003504.CrossRefGoogle ScholarPubMed
Horowitz-Kraus, T., DiFrancesco, M., Kay, B., Wang, Y., & Holland, S. K. (2015). Increased resting-state functional connectivity of visual- and cognitive-control brain networks after training in children with reading difficulties. NeuroImage: Clinical, 8, 619630.CrossRefGoogle ScholarPubMed
Horowitz-Kraus, T., Vannest, J. J., Kadis, D., et al. (2014). Reading acceleration training changes brain circuitry in children with reading difficulties. Brain and behavior, 4, 886902.CrossRefGoogle ScholarPubMed
Horwitz, B., Rumsey, J. M., & Donohue, B. C. (1998). Functional connectivity of the angular gyrus in normal reading and dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 95, 89398944.CrossRefGoogle ScholarPubMed
Hoskyn, M., & Swanson, H. L. (2000). Cognitive processing of low achievers and children with reading disabilities: A selective meta-analytic review of the published literature. School Psychology Review 29, 102119.CrossRefGoogle Scholar
House of Commons Science and Technology Committee. (2009). Evidence Check 1: Early Literacy Interventions. London: The Stationery Office. https://bit.ly/4a4YrJyGoogle Scholar
Howard-Gosse, A., Bergey, B. W., & Deacon, S. H. (2023). The reading challenges, strategies, and habits of university students with a history of reading difficulties and their relations to academic achievement. Journal of Learning Disabilities. https://doi.org/10.1177/00222194231190678Google ScholarPubMed
Howard-Jones, P. A. (2014). Neuroscience and education: Myths and messages. Nature Reviews Neuroscience, 15(12), 817824.CrossRefGoogle ScholarPubMed
Hu, W., Lee, H. L., Zhang, Q., et al. (2010). Developmental dyslexia in Chinese and English populations: Dissociating the effect of dyslexia from language differences. Brain, 133, 1694–1706.CrossRefGoogle ScholarPubMed
Huber, E., Donnelly, P. M., Rokem, A., & Yeatman, J. D. (2018). Rapid and widespread white matter plasticity during an intensive reading intervention. Nature Communications, 9, 2260.CrossRefGoogle ScholarPubMed
Huettig, F., & Ferreira, F. (2022). The myth of normal reading. Perspectives on Psychological Science, 18(4), 863870.Google ScholarPubMed
Huettig, F., Lachmann, T., Reis, A., & Petersson, K. M. (2018). Distinguishing cause from effect–many deficits associated with developmental dyslexia may be a consequence of reduced and suboptimal reading experience. Language, Cognition and Neuroscience, 33(3), 333350.CrossRefGoogle Scholar
Hugdahl, K., Heiervang, E., Ersland, L., et al. (2003). Significant relation between MR measures of planum temporale area and dichotic processing of syllables in dyslexic children. Neuropsychologia, 41, 666675.CrossRefGoogle ScholarPubMed
Hughes, B., & Paterson, K. (1997). The social model of disability and the disappearing body: Towards a sociology of impairment. Disability & Society, 12(3), 325340.CrossRefGoogle Scholar
Hughes, B., Sullivan, K. A., & Gilmore, L. (2020). Why do teachers believe educational neuromyths? Trends in Neuroscience and Education, 21, 100145.CrossRefGoogle ScholarPubMed
Hulme, C., & Snowling, M. J. (1992). Deficits in output phonology: An explanation of reading failure? Cognitive Neuropsychology, 9, 4772.CrossRefGoogle Scholar
Hulme, C., & Snowling, M. J. (2009). Developmental Disorders of Language Learning and Cognition. Oxford: Wiley-Blackwell.Google Scholar
Humphreys, P., Kaufmann, W. E., & Galaburda, A. M. (1990). Developmental dyslexia in women: Neuropathological findings in three patients. Annals of Neurology, 28, 727738.CrossRefGoogle ScholarPubMed
Hurford, D. P., Hurford, J. D., Head, K. L., et al. (2016). The dyslexia dilemma: A history of ignorance, complacency, and resistance in colleges of education. Journal of Childhood & Developmental Disorders, 2(3), 116.CrossRefGoogle Scholar
Hurtubise, J. L., Scavone, A., Sagar, S., & Erdodi, L. A. (2017). Psychometric markers of genuine and feigned neurodevelopmental disorders in the context of applying for academic accommodations. Psychological Injury and Law, 10(2), 121137.CrossRefGoogle Scholar
Hutton, J. S., Dudley, J., Horowitz-Kraus, T., DeWitt, T., & Holland, S. K. (2020). Associations between home literacy environment, brain white matter integrity and cognitive abilities in preschool-age children. Acta Paediatrica, 109, 13761386.CrossRefGoogle ScholarPubMed
Hyatt, K. J., Stephenson, J., & Carter, M. (2009). A review of three controversial educational practices: Perceptual motor programs, sensory integration, and tinted lenses. Education and Treatment of Children, 32, 313342.CrossRefGoogle Scholar
Hynd, G. W., Hall, J., Novey, E. S., et al. (1995). Dyslexia and corpus callosum morphology. Archives of Neurology, 52, 3238.CrossRefGoogle ScholarPubMed
Hynd, G. W., Semrud-Clikeman, M., Lorys, A. R., Novey, E. S., & Eliopulos, D. (1990). Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity. Archives of Neurology, 47, 919926.CrossRefGoogle ScholarPubMed
Ihnot, C., Mastoff, J., Gavin, J., & Hendrickson, L. (2001). Read Naturally. Curriculum program. St Paul, MN: Read Naturally.Google Scholar
Igo, R. P. J., Chapman, N. H., Berninger, V. W., et al. (2006). Genomewide scan for real-word reading subphenotypes of dyslexia: Novel chromosome 13 locus and genetic complexity. American Journal of Medical Genetics (Neuropsychiatric Genetics), 141, 1527.CrossRefGoogle Scholar
Im, K., Raschle, N. M., Smith, S. A., Ellen Grant, P., & Gaab, N. (2016). Atypical sulcal pattern in children with developmental dyslexia and at-risk kindergarteners. Cerebral Cortex, 26(3), 11381148.CrossRefGoogle ScholarPubMed
Ingesson, S. G. (2007). Growing up with dyslexia: Interviews with teenagers and young adults. School Psychology International, 28(5), 574591.CrossRefGoogle Scholar
Inoue, T., Georgiou, G. K., & Parrila, R. (2023). The growth trajectories of morphological awareness and its predictors. Applied Psycholinguistics, 44, 699–721.CrossRefGoogle Scholar
Ip, K. I., Marks, R. A., Hsu, L. S.-J., et al. (2019). Morphological processing in Chinese engages left temporal regions. Brain and Language, 199, 104696.CrossRefGoogle ScholarPubMed
Irlen, H. (1991). Reading by the Colors: Overcoming Dyslexia and Other Reading Disabilities through the Irlen Method. New York: Avery.Google Scholar
Jacob, R., & Parkinson, J. (2015). The potential for school-based interventions that target executive function to improve academic achievement: A review. Review of Educational Research, 85(4), 512552.CrossRefGoogle Scholar
Jacobson, J. W., Foxx, R. M., & Mulick, J. A. (2005). Controversial Therapies for Developmental Disabilities: Fad, Fashion and Science in Professional Practice. Mahwah, NJ: Lawrence Erlbaum.CrossRefGoogle Scholar
Jaffe-Dax, S., Kimel, E., & Ahissar, M. (2018). Shorter cortical adaptation in dyslexia is broadly distributed in the superior temporal lobe and includes the primary auditory cortex. eLife, 7, e30018.CrossRefGoogle ScholarPubMed
Jakoby, H., Raviv, O., Jaffe-Dax, S., Lieder, I., & Ahissar, M. (2019). Auditory frequency discrimination is correlated with linguistic skills, but its training does not improve them or other pitch discrimination tasks. Journal of Experimental Psychology: General, 148(11), 1953.CrossRefGoogle ScholarPubMed
Jalal, S. M., Harwood, A. R., Sekhon, G. S., et al. (2003). Utility of subtelomeric fluorescent DNA probes for detection of chromosome anomalies in 425 patients. Genetics in Medicine, 5, 2834.CrossRefGoogle ScholarPubMed
James, K. H. (2017). The importance of handwriting experience on the development of the literate brain. Current Directions in Psychological Science, 26(6), 502508.CrossRefGoogle Scholar
January, S. A. A., & Klingbeil, D. A. (2020). Universal screening in grades K-2: A systematic review and meta-analysis of early reading curriculum-based measures. Journal of School Psychology, 82, 103122.CrossRefGoogle ScholarPubMed
Jeanes, R., Busby, A., Martin, J., Lewis, E., Stevenson, N., Pointon, D., & Wilkins, A. (1997). Prolonged use of coloured overlays for classroom reading. British Journal of Psychology, 88(4), 541548.CrossRefGoogle ScholarPubMed
Jednoróg, K., Marchewka, A., Altarelli, I., et al. (2015). How reliable are gray matter disruptions in specific reading disability across multiple countries and languages? Insights from a large-scale voxel-based morphometry study. Human Brain Mapping, 36, 17411754.CrossRefGoogle ScholarPubMed
Jenkins, J. R., Hudson, R. F., & Johnson, E. S. (2007). Screening for at-risk readers in a response-to-intervention (RTI) framework. School Psychology Review, 36, 582600.CrossRefGoogle Scholar
Jenner, A. R., Rosen, G. D., & Galaburda, A. M. (1999). Neuronal asymmetries in primary visual cortex of dyslexic and nondyslexic brains. Annals of Neurology, 46, 189196.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Jimerson, S. R., Burns, M. K., & VanDerHeyden, A. M. (eds.). (2016). Handbook of Response to Intervention: The Science and Practice of Multi-tiered Systems of Support. 2nd edition. New York: Springer ScienceCrossRefGoogle Scholar
Jobard, G., Crivello, F., & Tzourio-Mazoyer, N. (2003). Evaluation of the dual route theory of reading: A metanalysis of 35 neuroimaging studies. Neuroimage, 20, 693712.CrossRefGoogle Scholar
Johannes, S., Kussmaul, C. L., Munte, T. F., & Mangun, G. R. (1996). Developmental dyslexia: Passive visual stimulation provides no evidence for a magnocellular processing deficit. Neuropsychologia, 34, 11231127.CrossRefGoogle Scholar
Johnson, E. E., & Suhr, J. (2021). Self-reported functional impairment in college students: Relationship to noncredible reporting, ADHD, psychological disorders, and other psychological factors. Journal of Clinical and Experimental Neuropsychology, 43(4), 399411.CrossRefGoogle ScholarPubMed
Johnson, E. P., Pennington, B. F., Lowenstein, J. H., & Nittrouer, S. (2011). Sensitivity to structure in the speech signal by children with speech sound disorder and reading disability. Journal of Communication Disorders, 44, 294314.CrossRefGoogle ScholarPubMed
Johnson, E. S., Humphrey, M., Mellard, D. F., Woods, K., & Swanson, H. L. (2010). Cognitive processing deficits and students with specific learning disabilities: A selective meta-analysis of the literature. Learning Disability Quarterly, 33, 318.CrossRefGoogle Scholar
Johnson, E. S., Jenkins, J. R., Petscher, Y., & Catts, H. W. (2009). How can we improve the accuracy of screening instruments? Learning Disabilities Research & Practice, 24, 174185.CrossRefGoogle Scholar
Johnston, P., & Scanlon, D. (2021). An examination of dyslexia research and instruction with policy implications. Literacy Research: Theory, Method, and Practice, 70(1), 107128.Google Scholar
Jolles, D. D., Mennigen, E., Gupta, M. W., et al. (2020). Relationships between intrinsic functional connectivity, cognitive control, and reading achievement across development. Neuroimage, 221, 117202.CrossRefGoogle ScholarPubMed
Jones, B. T., Erchul, W. P., & Geraghty, C. A. (2021). Supplemental reading interventions implemented by paraprofessionals: A meta-analysis. Psychology in the Schools, 58(4), 723741.CrossRefGoogle Scholar
Jones, M. W., Snowling, M. J., & Moll, K. (2016). What automaticity deficit? Activation of lexical information by readers with dyslexia in a rapid automatized naming Stroop-switch task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(3), 465.Google Scholar
Joo, S. J., Donnelly, P., & Yeatman, J. (2017). Learning to read does not affect motion processing in dyslexia. Journal of Vision, 17(10), 642642.CrossRefGoogle Scholar
Joo, S. J., Tavabi, K., Caffarra, S., & Yeatman, J. D. (2021). Automaticity in the reading circuitry. Brain and Language, 214, 104906.CrossRefGoogle ScholarPubMed
Joo, S. J., White, A. L., Strodtman, D. J., & Yeatman, J. D. (2018). Optimizing text for an individual’s visual system: The contribution of visual crowding to reading difficulties. Cortex, 103, 291301.CrossRefGoogle ScholarPubMed
JothiPrabha, A., Bhargavi, R., & Rani, B. D. (2023). Prediction of dyslexia severity levels from fixation and saccadic eye movement using machine learning. Biomedical Signal Processing and Control, 79, 104094.CrossRefGoogle Scholar
Joyce, A., & Breadmore, H. L. (2022). Sleep-disordered breathing and daytime sleepiness predict children’s reading ability. British Journal of Educational Psychology, 92(2), 576593.CrossRefGoogle ScholarPubMed
Joyner, R. E., & Wagner, R. K. (2020). Co-occurrence of reading disabilities and math disabilities: A meta-analysis. Scientific Studies of Reading, 24(1), 1422.CrossRefGoogle ScholarPubMed
Juel, C., & Minden-Cupp, C. (2000). Learning to read words: Linguistic units and instructional strategies. Reading Research Quarterly, 35, 458492.CrossRefGoogle Scholar
Jung, P. G., McMaster, K. L., Kunkel, A. K., Shin, J., & Stecker, P. M. (2018). Effects of data-based individualization for students with intensive learning needs: A meta-analysis. Learning Disabilities Research & Practice, 33(3), 144155.CrossRefGoogle Scholar
Kail, R., & Hall, L. K. (1994). Processing speed, naming speed, and reading. Developmental Psychology, 30, 949954.CrossRefGoogle Scholar
Kairaluoma, L., Närhi, V., Ahonen, T., Westerholm, J., & Aro, M. (2008). Do fatty acids help in overcoming reading difficulties? A double-blind, placebo-controlled study of the effects of eicosapentaenoic acid and carnosine supplementation on children with dyslexia. Child: Care, Health and Development, 35, 112119.CrossRefGoogle ScholarPubMed
Kalashnikova, M., Goswami, U., & Burnham, D. (2018). Mothers speak differently to infants at-risk for dyslexia. Developmental Science, 21(1) 115.CrossRefGoogle ScholarPubMed
Kamhi, A. G. (2004). A meme’s eye view of speech-language pathology. Language, Speech, and Hearing Services in Schools, 35, 105111.CrossRefGoogle ScholarPubMed
Kamps, D., Abbott, M., Greenwood, C., et al. (2008). Effects of small group reading instruction and curriculum differences for students most at risk in kindergarten: Two-year results for secondary- and tertiary-level interventions. Journal of Learning Disabilities, 41, 101114.CrossRefGoogle ScholarPubMed
Kandel, S., Lassus-Sangosse, D., Grosjacques, G., & Perret, C. (2017). The impact of developmental dyslexia and dysgraphia on movement production during word writing. Cognitive Neuropsychology, 34(3–4), 219251.CrossRefGoogle ScholarPubMed
Kaplan, B. J., Wilson, N. B., Dewey, D., & Crawford, S. G. (1998). DCD may not be a discrete disorder. Human Movement Science, 17, 471490.CrossRefGoogle Scholar
Karipidis, I. I., Pleisch, G., Di Pietro, S. V., Fraga-González, G., & Brem, S. (2021). Developmental trajectories of letter and speech sound integration during reading acquisition. Frontiers in Psychology, 12.CrossRefGoogle ScholarPubMed
Karr, J. E., Kibby, M. Y., Jagger-Rickels, A. C., & Garcia-Barrera, M. A. (2021). Sensitivity and specificity of an executive function screener at identifying children with ADHD and reading disability. Journal of Attention Disorders, 25(1), 134140.CrossRefGoogle ScholarPubMed
Kast, M., Bezzola, L., Jäncke, L., & Meyer, M. (2011). Multi- and unisensory decoding of words and nonwords result in differential brain responses in dyslexic and nondyslexic adults. Brain and Language, 119, 136148.CrossRefGoogle ScholarPubMed
Katzir, T., Misra, M., & Poldrack, R. A. (2005). Imaging phonology without print: Assessing the neural correlates of phonemic awareness using fMRI. Neuroimage, 27, 106115.CrossRefGoogle ScholarPubMed
Kaufman, A. S. (1994). Intelligent Testing with the WISC-III. New York: Wiley.Google Scholar
Kavale, K. A., & Mattson, P. D. (1983). “One jumped off the balance beam”: Meta-analysis of perceptual-motor training. Journal of Learning Disabilities, 16, 165173.CrossRefGoogle ScholarPubMed
Kearns, D. M., Hancock, R., Hoeft, F., Pugh, K. R., & Frost, S. J. (2019). The neurobiology of dyslexia. Teaching Exceptional Children, 51(3), 175188.CrossRefGoogle Scholar
Kearns, D. M., & Fuchs, D. (2013). Does cognitively focused instruction improve the academic performance of low-achieving students? Exceptional Children, 79(3), 263290.CrossRefGoogle Scholar
Keenan, J. M., Betjemann, R., Wadsworth, S., DeFries, J., & Olson, R. (2006). Genetic and environmental influences on reading and listening comprehension. Journal of Research in Reading, 29, 7591.CrossRefGoogle Scholar
Keller, T. A., & Just, M. A. (2009). Altering cortical connectivity: Remediation-induced changes in the white matter of poor readers. Neuron, 64, 624631.CrossRefGoogle ScholarPubMed
Kelly, D. R., & Erwin, V. M. (2022). Specific learning difficulty tutors: Direct supports for navigating disabilities and the university environment. Disability & Society, 124.CrossRefGoogle Scholar
Kendell, R. E. (1975). The Role of Diagnosis in Psychiatry. Oxford: Blackwell.Google Scholar
Kere, J. (2014). The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype. Biochemical and Biophysical Research Communications, 452, 236243.CrossRefGoogle ScholarPubMed
Kermani, M., Verghese, A., & Vidyasagar, T. R. (2018). Attentional asymmetry between visual hemifields is related to habitual direction of reading and its implications for debate on cause and effects of dyslexia. Dyslexia, 24(1), 3343.CrossRefGoogle ScholarPubMed
Kershner, J. R. (2019). Neurobiological systems in dyslexia. Trends in Neuroscience and Education, 14, 1124.CrossRefGoogle ScholarPubMed
Kersting, K. (2004). Debating learning-disability identification. APA Monitor, October, 5455.Google Scholar
Kibby, M. Y., Fancher, J. B., Markanen, R., & Hynd, G. W. (2008). A quantitative magnetic resonance imaging analysis of the cerebellar deficit hypothesis of dyslexia. Journal of Child Neurology, 23, 368380.CrossRefGoogle ScholarPubMed
Kieffer, M. J. (2012). Before and after third grade: Longitudinal evidence for the shifting role of socioeconomic status in reading growth. Reading and Writing, 25(7), 17251746.CrossRefGoogle Scholar
Kievit, R. A. (2020). Sensitive periods in cognitive development: A mutualistic perspective. Current Opinion in Behavioral Sciences, 36, 144149.CrossRefGoogle Scholar
Kievit, R. A., Hofman, A. D., & Nation, K. (2019). Mutualistic coupling between vocabulary and reasoning in young children: A replication and extension of the study by Kievit et al. (2017). Psychological Science, 30(8), 12451252.CrossRefGoogle Scholar
Kilpatrick, D. A., & O’Brien, S. (2019). Effective prevention and intervention for word-level reading difficulties. In Kilpatrick, D. A., Malatesha Joshi, R., & Wagner, R. K. (eds.), Reading Development and Difficulties: Bridging the Gap between Research and Practice (pp. 179210). Cham, Switzerland: Springer.CrossRefGoogle Scholar
Kim, M. K., Bryant, D. P., Bryant, B. R., & Park, Y. (2017). A synthesis of interventions for improving oral reading fluency of elementary students with learning disabilities. Preventing School Failure: Alternative Education for Children and Youth, 61(2), 116125.CrossRefGoogle Scholar
Kim, Y. S. G., & Petscher, Y. (2023). Do spelling and vocabulary improve classification accuracy of children’s reading difficulties over and above word reading? Reading Research Quarterly, 58(2), 240253CrossRefGoogle Scholar
Kim, Y. S. G., Wolters, A., & Lee, J. (2023). Reading and writing relations are not uniform. They differ by the linguistic grain size, developmental phase, and measurement. Review of Educational Research. https://doi.org/10.3102/00346543231178830CrossRefGoogle Scholar
Kimel, E., & Ahissar, M. (2020). Benefits from morphological regularities in dyslexia are task dependent. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(1), 155.Google ScholarPubMed
King, S., Wang, L., Datchuk, S. M., & Rodgers, D. B. (2023). Meta-analyses of reading intervention studies including students with learning disabilities: A methodological review. Journal of Learning Disabilities, 56(3), 210224.CrossRefGoogle ScholarPubMed
Kirby, A., Woodward, A., Jackson, S., Wang, Y., & Crawford, M. A. (2010). A double-blind, placebo-controlled study investigating the effects of omega-3 supplementation in children aged 8–10 years from a mainstream school population. Research in Developmental Disabilities, 31, 718730.CrossRefGoogle ScholarPubMed
Kirby, J. R., Georgiou, G. K., Martinussen, R., Parrila, R., Bowers, P., & Landerl, K. (2010). Naming speed and reading: From prediction to instruction. Reading Research Quarterly, 45, 341362.CrossRefGoogle Scholar
Kirby, P. (2018). What’s in a name? The history of dyslexia. History Today, 64 (12), 2027.Google Scholar
Kirby, P. (2019). Gift from the gods? Dyslexia, popular culture and the ethics of representation. Disability & Society, 34(9–10), 15731594.CrossRefGoogle Scholar
Kirby, P. (2020a). Dyslexia debated, then and now: A historical perspective on the dyslexia debate. Oxford Review of Education, 46(4), 472486.CrossRefGoogle ScholarPubMed
Kirby, P. (2020b). Literacy, advocacy and agency: The campaign for political recognition of dyslexia in Britain (1962–1997). Social History of Medicine, 33(4), 13061326.CrossRefGoogle ScholarPubMed
Kirby, P., & Snowling, M. J. (2022). Dyslexia: A History. London: McGill-Queen’s University Press.Google ScholarPubMed
Kirk, J., & Reid, G. (2001). An examination of the relationship between dyslexia and offending in young people and the implications for the training system. Dyslexia, 7, 7784.CrossRefGoogle ScholarPubMed
Kirk, S. A. (1963). Behavioral diagnosis and remediation of learning disabilities. Conference on exploring problems of the perceptually-handicapped child, 1, 123.Google Scholar
Kirkpatrick, R. M., Legrand, L. S., Iacono, W. G., & McGue, M. (2011). A twin and adoption study of reading achievement: Testing for shared environmental and gene-environment interaction effects. Learning and Individual Differences, 21, 368375.CrossRefGoogle Scholar
Kjeldsen, A. C., Saarento-Zaprudin, S. K., & Niemi, P. O. (2019). Kindergarten training in phonological awareness: Fluency and comprehension gains are greatest for readers at risk in Grades 1 through 9. Journal of Learning Disabilities, 52(5), 366382.CrossRefGoogle ScholarPubMed
Klein, C. (1993) Diagnosing Dyslexia. London: Avanti.Google Scholar
Klein, R. M., & Farmer, M. E. (1995). Dyslexia and a temporal processing deficit: A reply to the commentaries. Psychonomic Bulletin & Review, 2, 515526.CrossRefGoogle Scholar
Klicpera, C., & Schabmann, A. (1993). Do German-speaking children have a chance to overcome reading and spelling difficulties? A longitudinal survey from the second until the eighth grade. European Journal of Psychology of Education, 8, 307323.CrossRefGoogle Scholar
Klingberg, T., Hedehus, M., Temple, E., et al. (2000). Microstructure of temporo-parietal white matter as a basis for reading ability: Evidence from diffusion tensor magnetic resonance imaging. Neuron, 25, 493500.CrossRefGoogle ScholarPubMed
Klingberg, T., Vaidya, C. J., Gabrieli, J. D., Moseley, M. E., & Hedehus, M. (1999). Myelination and organization of the frontal white matter in children: A diffusion tensor MRI study. Neuroreport, 10, 28172821.CrossRefGoogle ScholarPubMed
Knight, C. (2021). The impact of the dyslexia label on academic outlook and aspirations: An analysis using propensity score matching. British Journal of Educational Psychology, 91(4), 11101126.CrossRefGoogle ScholarPubMed
Knight, C., & Crick, T. (2021). The assignment and distribution of the dyslexia label: Using the UK Millennium Cohort Study to investigate the socio-demographic predictors of the dyslexia label in England and Wales. PloS one, 16(8), e0256114.CrossRefGoogle ScholarPubMed
Kochunov, P., Fox, P., Lancaster, J., et al. (2003). Localized morphological brain differences between English-speaking Caucasians and Chinese-speaking Asians: New evidence of anatomical plasticity. Neuroreport, 14, 961964.Google ScholarPubMed
Korinth, S. P., Gerstenberger, K., & Fiebach, C. J. (2020). Wider letter-spacing facilitates word processing but impairs reading rates of fast readers. Frontiers in Psychology, 444.CrossRefGoogle ScholarPubMed
Kovas, Y., Haworth, C. M., Dale, P. S., & Plomin, R. (2007). The genetic and environmental origins of learning abilities and disabilities in the early school years. Monographs of the Society for Research in Child Development, 72(3), 1144.Google ScholarPubMed
Kovas, Y., Haworth, C. M. A., Harlaar, N., Petrill, S. A., Dale, P. S., & Plomin, R. (2007). Overlap and specificity of genetic and environmental influences on mathematics and reading disability in 10‐year‐old twins. Journal of Child Psychology and Psychiatry, 48(9), 914922.CrossRefGoogle ScholarPubMed
Kovelman, I., Baker, S. A., & Petitto, L. A. (2008). Bilingual and monolingual brains compared: A functional magnetic resonance imaging investigation of syntactic processing and a possible “neural signature” of bilingualism. Journal of Cognitive Neuroscience, 20, 153169.CrossRefGoogle Scholar
Koyama, M. S., Di Martino, A., Kelly, C., et al. (2013). Cortical signatures of dyslexia and remediation: An intrinsic functional connectivity approach. PLoS ONE, 8, e55454.CrossRefGoogle ScholarPubMed
Koyama, M. S., Kelly, C., Shehzad, Z., et al. (2010). Reading networks at rest. Cerebral Cortex, 20, 25492559.CrossRefGoogle ScholarPubMed
Krafnick, A. J., Flowers, D. L., Luetje, M. M., Napoliello, E. M., & Eden, G. F. (2014). An investigation into the origin of anatomical differences in dyslexia. The Journal of Neuroscience, 34, 901908.CrossRefGoogle ScholarPubMed
Krafnick, A. J., Flowers, D. L., Napoliello, E. M., & Eden, G. F. (2011). Gray matter volume changes following reading intervention in dyslexic children. Neuroimage, 57, 733741.CrossRefGoogle ScholarPubMed
Kramer, J. H., Mungas, D., Possin, K. L., et al. (2014). NIH EXAMINER: Conceptualization and development of an executive function battery. Journal of the International Neuropsychological Society, 20(1), 1119.CrossRefGoogle ScholarPubMed
Kranzler, J. H., Floyd, R. G., Benson, N., Zaboski, B., & Thibodaux, L. (2016a). Classification agreement analysis of cross-battery assessment in the identification of specific learning disorders in children and youth. International Journal of School & Educational Psychology, 4(3), 124136.CrossRefGoogle Scholar
Kranzler, J. H., Floyd, R. G., Benson, N., Zaboski, B., & Thibodaux, L. (2016b). Cross-Battery Assessment pattern of strengths and weaknesses approach to the identification of specific learning disorders: Evidence-based practice or pseudoscience? International Journal of School & Educational Psychology, 4(3), 146157.CrossRefGoogle Scholar
Kranzler, J. H., Gilbert, K., Robert, C. R., Floyd, R. G., & Benson, N. F. (2019). Further examination of a critical assumption underlying the dual-discrepancy/consistency approach to specific learning disability identification. School Psychology Review, 48(3), 207221.CrossRefGoogle Scholar
Kranzler, J. H., Maki, K. E., Benson, N. F., et al. (2020). How do school psychologists interpret intelligence tests for the identification of specific learning disabilities? Contemporary School Psychology, 24, 445456.CrossRefGoogle Scholar
Krause, B., Márquez-Ruiz, J., & Cohen Kadosh, R. (2013). The effect of transcranial direct current stimulation: A role for cortical excitation/inhibition balance? Frontiers in Human Neuroscience, 7, 14.CrossRefGoogle ScholarPubMed
Kriss, I., & Evans, B. J. W. (2005). The relationship between dyslexia and Meares-Irlen syndrome. Journal of Research in Reading, 28, 350364.CrossRefGoogle Scholar
Kristjánsson, A., & Sigurðardóttir, H. M. (2023). The role of visual factors in dyslexia. Journal of Cognition, 6(1), 31.CrossRefGoogle Scholar
Kronbichler, M., Hutzler, F., & Wimmer, H. (2002). Dyslexia: Verbal impairments in the absence of magnocellular impairments. Cognitive Neuroscience And Neuropsychology, 13, 617620.Google ScholarPubMed
Kronbichler, M., Wimmer, H., Staffen, W., et al. (2008). Developmental dyslexia: Gray matter abnormalities in the occipitotemporal cortex. Human Brain Mapping, 29, 613625.CrossRefGoogle ScholarPubMed
Kudo, M. F., Lussier, C. M., & Swanson, H. L. (2015). Reading disabilities in children: A selective meta-analysis of the cognitive literature. Research in Developmental Disabilities, 40, 5162.CrossRefGoogle ScholarPubMed
Kuhl, U., Neef, N. E., Kraft, I., et al. (2020). The emergence of dyslexia in the developing brain. Neuroimage, 211.CrossRefGoogle ScholarPubMed
Kujala, J., Pammer, K., Cornelissen, P., et al. (2007). Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cerebral Cortex, 17, 14761485.CrossRefGoogle Scholar
Kujala, T., Sihvonen, A. J., Thiede, A., et al. (2021). Voxel and surface based whole brain analysis shows reading skill associated grey matter abnormalities in dyslexia. Scientific Reports, 11, 10862.CrossRefGoogle ScholarPubMed
Kulesz, P. A., Roberts, G. J., Francis, D. J., Cirino, P., Walczak, M., & Vaughn, S. (2023). Latent profiles as predictors of response to instruction for students with reading difficulties. Journal of Educational Psychology. https://dx.doi.org/10.1037/edu0000832CrossRefGoogle Scholar
Kushch, A., Gross-Glenn, K., Jallad, B., et al. (1993). Temporal lobe surface area measurements on MRI in normal and dyslexic readers. Neuropsychologia, 31, 811821.CrossRefGoogle ScholarPubMed
Kussmaul, L. A. (1877). Disturbances of speech. In von Ziemssen, H. (ed.), Cyclopedia of the Practice of Medicine, Vol. 14. New York: William Wood and Co.,Google Scholar
Kuster, S. M., van Weerdenburg, M., Gompel, M., & Bosman, A. M. (2018). Dyslexie font does not benefit reading in children with or without dyslexia. Annals of Dyslexia, 68(1), 2542.CrossRefGoogle ScholarPubMed
Laasonen, M., Service, E., & Virsu, V. (2001). Temporal order and processing acuity of visual, auditory, and tactile perception in developmentally dyslexic young adults. Cognitive, Affective, & Behavioral Neuroscience, 1, 394410.CrossRefGoogle ScholarPubMed
LaBerge, D., & Samuels, S. J. (1974). Toward a theory of automatic information process in reading. Cognitive Psychology, 6(2), 293323.CrossRefGoogle Scholar
Lachmann, T., & Bergström, K. (2023). The multiple-level framework of developmental dyslexia: The long trace from a neurodevelopmental deficit to an impaired cultural technique. Journal of Cultural Cognitive Science, 7, 71–93.CrossRefGoogle Scholar
Lachmann, T., Bergström, K., Huber, J., & Nuerk, H. C. (2022). Diagnosis of dyslexia and dyscalculia: Challenges and controversies. In Skeide, M. A. (ed.), Cambridge Handbook of Dyslexia and Dyscalculia (pp. 383409). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lack, D. (2010). Another joint statement regarding learning disabilities, dyslexia, and vision – A rebuttal. Optometry, 81, 533543.CrossRefGoogle Scholar
Lackaye, T. D., & Margalit, M. (2006). Comparisons of achievement, effort, and self-perceptions among students with learning disabilities and their peers from different achievement groups. Journal of Learning Disabilities, 39, 432446.CrossRefGoogle ScholarPubMed
Lallier, M., Donnadieu, S., Berger, C., & Valdois, S. (2010). A case study of developmental phonological dyslexia: Is the attentional deficit in the perception of rapid stimuli sequences amodal? Cortex, 46, 231241.CrossRefGoogle ScholarPubMed
Lallier, M., Tainturier, M., Dering, B., et al. (2010). Behavioral and ERP evidence for amodal sluggish attentional shifting in developmental dyslexia. Neuropsychologia, 48, 41254135.CrossRefGoogle ScholarPubMed
Lander, E. S. (2011). Initial impact of the sequencing of the human genome. Nature, 470, 187197.CrossRefGoogle ScholarPubMed
Landerl, K. (2019). Behavioral precursors of developmental dyslexia. In Verhoeven, L., Perfetti, C., & Pugh, K. (eds.), Developmental Dyslexia across Languages and Writing Systems (pp. 229252). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Landerl, K., & Moll, K. (2010). Comorbidity of learning disorders: Prevalence and familial transmission. Journal of Child Psychology and Psychiatry, 51, 287294.CrossRefGoogle ScholarPubMed
Landerl, K., & Willburger, E. (2010). Temporal processing, attention, and learning disorders. Learning and Individual Differences, 20, 393401.CrossRefGoogle Scholar
Landerl, K., & Wimmer, H. (2000). Deficits in phoneme segmentation are not the core problem in dyslexia: Evidence from German and English children. Applied Psycholinguistics, 21, 243262.CrossRefGoogle Scholar
Landerl, K., Castles, A., & Parrila, R. (2022). Cognitive precursors of reading: A cross-linguistic perspective. Scientific Studies of Reading, 26(2), 111124.CrossRefGoogle Scholar
Landerl, K., Freudenthaler, H. H., Heene, M., et al. (2019). Phonological awareness and rapid automatized naming as longitudinal predictors of reading in five alphabetic orthographies with varying degrees of consistency. Scientific Studies of Reading, 23(3), 220234.CrossRefGoogle Scholar
Landerl, K., Ramus, F., Moll, K., et al. (2013). Predictors of developmental dyslexia in European orthographies with varying complexity. Journal of Child Psychology and Psychiatry, 54(6), 686694.CrossRefGoogle ScholarPubMed
Lang, R. (2001). The Development and Critique of the Social Model of Disability. Norwich: Overseas Development Group, University of East Anglia.Google Scholar
Langer, N., Peysakhovich, B., Zuk, J., et al. (2017). White matter alterations in infants at risk for developmental dyslexia. Cerebral Cortex, 27, 10271036.Google ScholarPubMed
Laprevotte, J., Papaxanthis, C., Saltarelli, S., Quercia, P., & Gaveau, J. (2021). Movement detection thresholds reveal proprioceptive impairments in developmental dyslexia. Scientific Reports, 11(1), 17.CrossRefGoogle ScholarPubMed
Larsen, J. P., Hoien, T., Lundberg, I., & Odegaard, H. (1990). MRI evaluation of the size and symmetry of the planum temporale in adolescents with developmental dyslexia. Brain and Language, 39, 289301.CrossRefGoogle ScholarPubMed
Larsen, J. P., Hoien, T., & Odegaard, H. (1992). Magnetic resonance imaging of the corpus callosum in developmental dyslexia. Cognitive Neuropsychology, 9, 123134.CrossRefGoogle Scholar
Lavin Venegas, C., Nkangu, N., , M., Dufy, M., Fergusson, D., & Spilg, E. (2019). Interventions to improve resilience in physicians who have completed training: A systematic review. PLoS One, 14.CrossRefGoogle Scholar
Law, J. M., Wouters, J., & Ghesquière, P. (2017). The influences and outcomes of phonological awareness: A study of MA, PA and auditory processing in pre-readers with a family risk of dyslexia. Developmental Science, 20(5), e12453.CrossRefGoogle Scholar
Lawrence, J. F., Hagen, A. M., Hwang, J. K., Lin, G., and Lervåg, A. (2018). Academic vocabulary and reading comprehension: Exploring the relationships across measures of vocabulary knowledge. Reading and Writing, 32(2), 285306.CrossRefGoogle Scholar
Lawton, T. (2016). Improving dorsal stream function in dyslexics by training figure/ground motion discrimination improves attention, reading fluency, and working memory. Frontiers in Human Neuroscience, 10, 397.CrossRefGoogle ScholarPubMed
Laycock, R., Crewther, D. P., & Crewther, S. G. (2012). Abrupt and ramped flicker-defined form shows evidence for a large magnocellular impairment in dyslexia. Neuropsychologia, 50, 21072113.CrossRefGoogle ScholarPubMed
Laycock, S. K., Wilkinson, I. D., Wallis, L. I., et al. (2008). Cerebellar volume and cerebellar metabolic characteristics in adults with dyslexia. Annals of the New York Academy of Sciences, 1145, 222236.CrossRefGoogle ScholarPubMed
Lazzaro, G., Costanzo, F., Varuzza, C., et al. (2021a). Individual differences modulate the effects of tDCS on reading in children and adolescents with dyslexia. Scientific Studies of Reading, 25(6), 470485.CrossRefGoogle Scholar
Lazzaro, G., Costanzo, F., Varuzza, C., et al. (2021b). Effects of a short, intensive, multi-session tDCS treatment in developmental dyslexia: Preliminary results of a sham-controlled randomized clinical trial. Progress in Brain Research, 264, 191210.CrossRefGoogle Scholar
Lazzaro, G., Varuzza, C., Costanzo, F., et al. (2021c). Memory deficits in children with developmental dyslexia: A reading-level and chronological-age matched design. Brain Sciences, 11(1), 40.CrossRefGoogle ScholarPubMed
Leach, J. M., Scarborough, H. S., & Rescorla, L. (2003). Late-emerging reading disabilities. Journal of Educational Psychology, 95, 211224.CrossRefGoogle Scholar
Leavett, R., Nash, H. M., & Snowling, M. J. (2014). Am I dyslexic? Parental self-report of literacy difficulties. Dyslexia, 20(4), 297304.CrossRefGoogle Scholar
Lebel, C., Benischek, A., Geeraert, B., et al. (2019). Developmental trajectories of white matter structure in children with and without reading impairments. Developmental Cognitive Neuroscience, 36, 100633.CrossRefGoogle ScholarPubMed
Lee, J. J., Wedow, R., Okbay, A., et al. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50, 11121121.CrossRefGoogle ScholarPubMed
Lee, J., & Yoon, S. Y. (2017). The effects of repeated reading on reading fluency for students with reading disabilities: A meta-analysis. Journal of Learning Disabilities, 50(2), 213224.CrossRefGoogle Scholar
Lefèvre, E., Cavalli, E., Colé, P., Law, J. M., & Sprenger-Charolles, L. (2023). Tracking reading skills and reading-related skills in dyslexia before (age 5) and after (ages 10–17) diagnosis. Annals of Dyslexia, 128.Google ScholarPubMed
Leitão, S., Dzidic, P., Claessen, M., et al. (2017). Exploring the impact of living with dyslexia: The perspectives of children and their parents. International Journal of Speech-language Pathology, 19(3), 322334.CrossRefGoogle ScholarPubMed
Lemons, C. J., Fuchs, D., Gilbert, J. K., & Fuchs, L. S. (2014). Evidence-based practices in a changing world: Reconsidering the counterfactual in education research. Educational Researcher, 43(5), 242252.CrossRefGoogle Scholar
Leong, V., Kalashnikova, M., Burnham, D., & Goswami, U. (2017). The temporal modulation structure of infant-directed speech. Open Mind, 1(2), 7890.CrossRefGoogle Scholar
Leonard, C. M., Eckert, M. A., Lombardino, L. J., et al. (2001). Anatomical risk factors for phonological dyslexia. Cerebral Cortex, 11, 148157.CrossRefGoogle ScholarPubMed
Leppanen, P. H., & Lyytinen, H. (1997). Auditory event-related potentials in the study of developmental language-related disorders. Audiology & Neurotology 2, 308340.CrossRefGoogle Scholar
Leppänen, P. H. T., Hämäläinen, J. A., Salminen, H. K., et al. (2010). Newborn brain event-related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia. Cortex, 46, 13621376.CrossRefGoogle ScholarPubMed
Lervåg, A., & Aukrust, V. G. (2010). Vocabulary knowledge is a critical determinant of the difference in reading comprehension growth between first and second language learners. Journal of Child Psychology and Psychiatry, 51(5), 612620.CrossRefGoogle ScholarPubMed
Lervåg, A., Bråten, I., & Hulme, C. (2009). The cognitive and linguistic foundations of early reading development: A Norwegian latent variable longitudinal study. Developmental Psychology, 45(3), 764.CrossRefGoogle ScholarPubMed
Lervåg, A., Dolean, D., Tincas, I., & Melby-Lervåg, M. (2019). Socioeconomic background, nonverbal IQ and school absence affects the development of vocabulary and reading comprehension in children living in severe poverty. Developmental Science, 22(5), e12858.CrossRefGoogle ScholarPubMed
Levecque, C., Velayos-Baeza, A., Holloway, Z. G., & Monaco, A. P. (2009). The dyslexia-associated protein KIAA0319 interacts with adaptor protein 2 and follows the classical clathrin-mediated endocytosis pathway. American Journal of Physiology – Cell Physiology, 297, C160–C168.CrossRefGoogle ScholarPubMed
Li, C., Ding, K., Zhang, M., et al. (2020). Effect of picture-book reading with additive audio on bilingual preschoolers’ prefrontal activation: A naturalistic functional near-infrared spectroscopy study. Frontiers of Psychology, 11, 1939.CrossRefGoogle ScholarPubMed
Li, H., Booth, J. R., Feng, X., et al. (2020). Functional parcellation of the right cerebellar lobule VI in children with normal or impaired reading. Neuropsychologia, 148, 107630.CrossRefGoogle ScholarPubMed
Li, H., Kepinska, O., Caballero, J. N., et al. (2021). Decoding the role of the cerebellum in the early stages of reading acquisition. Cortex, 141, 262279.CrossRefGoogle ScholarPubMed
Li, H., Zhang, J., & Ding, G. (2021). Reading across writing systems: A meta-analysis of the neural correlates for first and second language reading. Bilingualism: Language and Cognition, 24, 537548.CrossRefGoogle Scholar
Li, Y., & Bates, T. C. (2019). You can’t change your basic ability, but you work at things, and that’s how we get hard things done: Testing the role of growth mindset on response to setbacks, educational attainment, and cognitive ability. Journal of Experimental Psychology: General, 148(9), 16401655.CrossRefGoogle ScholarPubMed
Li, Y., & Bi, H.-Y. (2022). Comparative research on neural dysfunction in children with dyslexia under different writing systems: A meta-analysis study. Neuroscience & Biobehavioral Reviews, 137, 104650.CrossRefGoogle ScholarPubMed
Liberman, A. M. (1999). The reading researcher and the reading teacher need the right theory of speech. Scientific Studies of Reading, 3, 95111.CrossRefGoogle Scholar
Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358.CrossRefGoogle ScholarPubMed
Liberman, I. Y., & Shankweiler, D. P. (1985). Phonology and the problems of learning to read and write. Remedial and Special Education, 6, 817CrossRefGoogle Scholar
Liddle, E., Jackson, G., & Jackson, S. (2005). An evaluation of a visual biofeedback intervention in dyslexic adults. Dyslexia, 11, 6177.CrossRefGoogle ScholarPubMed
Liddle, R. (2014). Children with a severe case of the excuses. The Spectator. March 15, 21.Google Scholar
Lidz, C. S., & Elliott, J. G. (eds.). (2000). Dynamic Assessment: Prevailing Models and Applications. London: Elsevier.Google Scholar
Ligges, C., & Blanz, B. (2007). Survey of fMRI results regarding a phonological deficit in children and adults with dyslexia: Fundamental deficit or indication of compensation?. Zeitschrift fur Kinder und Jugendpsychiatrie und Psychotherapie, 35, 107115.CrossRefGoogle ScholarPubMed
Ligges, C., Ungureanu, M., Ligges, M., Blanz, B., & Witte, H. (2010). Understanding the time variant connectivity of the language network in developmental dyslexia: New insights using Granger causality. Journal of Neural Transmission, 117, 529543.CrossRefGoogle ScholarPubMed
Liloia, D., Crocetta, A., Cauda, F., et al. (2022). Seeking overlapping neuroanatomical alterations between dyslexia and attention-deficit/hyperactivity disorder: A meta-analytic replication study. Brain Sciences, 12(10), 1367.CrossRefGoogle ScholarPubMed
Lim, K. O., & Helpern, J. A. (2002). Neuropsychiatric applications of DTI—a review. NMR in Biomedicine, 15, 587593.CrossRefGoogle Scholar
Lin, Y. C., Morgan, P. L., Hillemeier, M., et al. (2013). Reading, mathematics, and behavioral difficulties interrelate: Evidence from a cross-lagged panel design and population-based sample of US upper elementary students. Behavioral Disorders, 38(4), 212227.CrossRefGoogle Scholar
Lindgren, M., Jensen, J., Dalteg, A., et al. (2002). Dyslexia and AD/HD among Swedish prison inmates. Journal of Scandinavian Studies in Criminology and Crime Prevention, 3(1), 8495.CrossRefGoogle Scholar
Linkersdörfer, J., Lonnemann, J., Lindberg, S., Hasselhorn, M., & Fiebach, C. J. (2012). Grey matter alterations co-localize with functional abnormalities in developmental dyslexia: An ALE meta-analysis. PLoS ONE, 7(8), e43122.CrossRefGoogle ScholarPubMed
Lionel, A. C., Crosbie, J., Barbosa, N., et al. (2011). Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Science Translational Medicine, 3, 95ra75.CrossRefGoogle ScholarPubMed
Lipka, O., Lesaux, N. K., & Siegel, L. (2006). Retrospective analyses of the reading development of grade 4 students with reading disabilities: Risk status and profiles over 5 years. Journal of Learning Disabilities, 39, 364378.CrossRefGoogle ScholarPubMed
Literacy Task Force. (1997). The Implementation of the National Literacy Strategy. London: Labour Party.Google Scholar
Little, C. W., & Hart, S. A. (2022). Genetic and environmental influences on learning to read. In Snowling, M. J., Hulme, C., & Nation, K. (eds.), The Science of Reading: A Handbook. 2nd edition (pp. 515532). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Little, C. W., Haughbrook, R., & Hart, S. A. (2017). Cross-study differences in the etiology of reading comprehension: A meta-analytical review of twin studies. Behavior Genetics, 47(1), 5276.CrossRefGoogle ScholarPubMed
Liu, J., Peng, P., Zhao, B., & Luo, L. (2022). Socioeconomic status and academic achievement in primary and secondary education: A meta-analytic review. Educational Psychology Review, 34, 28672896CrossRefGoogle Scholar
Liu, L., Wang, W., You, W., et al. (2012). Similar alterations in brain function for phonological and semantic processing to visual characters in Chinese dyslexia. Neuropsychologia, 50, 22242232.CrossRefGoogle ScholarPubMed
Liu, T., Thiebaut de Schotten, M., Altarelli, I., Ramus, F., & Zhao, J. (2021). Maladaptive compensation of right fusiform gyrus in developmental dyslexia: A hub-based white matter network analysis. Cortex, 145, 5766.CrossRefGoogle ScholarPubMed
Livingston, E. M., Siegel, L. S., & Ribary, U. (2018). Developmental dyslexia: Emotional impact and consequences. Australian Journal of Learning Difficulties, 23(2), 107135.CrossRefGoogle Scholar
Livingstone, M. S., Rosen, G. D., Drislane, F. W., & Galaburda, A. M. (1991). Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 88, 79437947.CrossRefGoogle ScholarPubMed
Lizarazu, M., Lallier, M., Bourguignon, M., Carreiras, M., & Molinaro, N. (2021). Impaired neural response to speech edges in dyslexia. Cortex, 135, 207218.CrossRefGoogle ScholarPubMed
Lizarazu, M., Scotto di Covella, L., van Wassenhove, V., et al. (2021). Neural entrainment to speech and nonspeech in dyslexia: Conceptual replication and extension of previous investigations. Cortex, 137, 160178.CrossRefGoogle ScholarPubMed
Lobier, M., & Valdois, S. (2015). Visual attention deficits in developmental dyslexia cannot be ascribed solely to poor reading experience. Nature Reviews Neuroscience, 16(4), 225.CrossRefGoogle ScholarPubMed
Lobier, M., Zoubrinetzky, R., & Valdois, S. (2012). The visual attention span deficit in dyslexia is visual and not verbal. Cortex, 48(6), 768773.CrossRefGoogle Scholar
Locascio, G., Mahone, E. M., Eason, S. H., & Cutting, L. E. (2010). Executive dysfunction among children with reading comprehension deficits. Journal of Learning Disabilities, 43(5), 441454.CrossRefGoogle ScholarPubMed
Lochy, A., Van Reybroeck, M., & Rossion, B. (2016). Left cortical specialization for visual letter strings predicts rudimentary knowledge of letter–sound association in preschoolers. Proceedings of the National Academy of Sciences, 113, 85448549.CrossRefGoogle ScholarPubMed
Locke, R., Alexander, G., Mann, R., Kibble, S., & Scallan, S. (2017). Doctors with dyslexia: Strategies and support. The Clinical Teacher, 14(5), 355359.CrossRefGoogle ScholarPubMed
Łockiewicz, M., Bogdanowicz, K. M., & Bogdanowicz, M. (2014). Psychological resources of adults with developmental dyslexia. Journal of Learning Disabilities, 47(6), 543555.CrossRefGoogle ScholarPubMed
Lockwood, A. B., Benson, N., Farmer, R. L., & Klatka, K. (2022). Test use and assessment practices of school psychology training programs: Findings from a 2020 survey of US faculty. Psychology in the Schools, 59(4), 698725.CrossRefGoogle Scholar
Lockwood, A. B., & Farmer, R. L. (2020). The cognitive assessment course: Two decades later. Psychology in the Schools, 57(2), 265283.CrossRefGoogle Scholar
Logan, J. (2009). Dyslexic entrepreneurs: The incidence; their coping strategies and their business skills. Dyslexia, 15, 328346.CrossRefGoogle ScholarPubMed
Logan, J., & Martin, N. (2012). Unusual talent: A study of successful leadership and delegation in entrepreneurs who have dyslexia. Journal of Inclusive Practice in Further and Higher Education, 4(1), 5575.Google Scholar
Lohvansuu, K., Torppa, M., Ahonen, T., et al. (2021). Unveiling the mysteries of dyslexia – Lessons learned from the prospective Jyväskylä longitudinal study of dyslexia. Brain Sciences, 11(4), 427.CrossRefGoogle ScholarPubMed
Lopes, J. A., Gomes, C., Oliveira, C. R., & Elliott, J. G. (2020). Research studies on dyslexia: Participant inclusion and exclusion criteria. European Journal of Special Needs Education, 35(5), 587602.CrossRefGoogle Scholar
Loras, H., Sigmundsson, H., Stensdotter, A. K., & Talcott, J. B. (2014). Postural control is not systematically related to reading skills: Implications for the assessment of balance as a risk factor for developmental dyslexia. PloS one, 9(6), e98224.CrossRefGoogle Scholar
Lorusso, M. L., & Toraldo, A. (2023). Revisiting multifactor models of dyslexia: Do they fit empirical data and what are their implications for intervention? Brain Sciences, 13(2), 328.CrossRefGoogle ScholarPubMed
Louleli, N., Hämäläinen, J. A., Nieminen, L., Parviainen, T., & Leppänen, P. H. T. (2022). Neural correlates of morphological processing and its development from pre-school to the first grade in children with and without familial risk for dyslexia. Journal of Neurolinguistics, 61, 101037.CrossRefGoogle Scholar
Lovegrove, W. J., Bowling, A., Badcock, D., & Blackwood, M. (1980). Specific reading disability: Differences in contrast sensitivity as a function of spatial frequency. Science, 210, 439440.CrossRefGoogle ScholarPubMed
Lovett, M. W., Barron, R. W., & Frijters, J. C. (2013). Word identification difficulties in children and adolescents with reading disabilities. In Swanson, H. L., Harris, K. R., & Graham, S. (eds.), Handbook of Learning Disabilities (pp. 329360). New York: Guilford Press.Google Scholar
Lovett, M. W., Frijters, J. C., Steinbach, K. A., Sevcik, R. A., & Morris, R. D. (2021). Effective intervention for adolescents with reading disabilities: Combining reading and motivational remediation to improve outcomes. Journal of Educational Psychology, 113(4), 656689.CrossRefGoogle Scholar
Lovett, M. W., Frijters, J. C., Wolf, M., et al. (2017). Early intervention for children at risk for reading disabilities: The impact of grade at intervention and individual differences on intervention outcomes. Journal of Educational Psychology, 109(7), 889914.CrossRefGoogle ScholarPubMed
Lu, X., Shaw, C. A., Patel, A., et al. (2007). Clinical implementation of chromosomal microarray analysis: Summary of 2513 postnatal cases. PLoS ONE, 2(3), e327.CrossRefGoogle ScholarPubMed
Luciano, M., Evans, D. M., Hansell, N. K., et al. (2013). A genome-wide association study for reading and language abilities in two population cohorts. Genes, Brain and Behavior, 12, 645652.CrossRefGoogle ScholarPubMed
Lundberg, I., Larsman, P., & Strid, A. (2012). Development of phonological awareness during the preschool year: The influence of gender and socioeconomic status. Reading and Writing, 25, 305320.CrossRefGoogle Scholar
Łuniewska, M., Chyl, K., Debska, A., et al. (2019). Children with dyslexia and familial risk for dyslexia present atypical development of the neuronal phonological network. Frontiers in Neuroscience, 13, 1287.CrossRefGoogle ScholarPubMed
Łuniewska, M., Chyl, K., Debska, A., et al. (2018). Neither action nor phonological video games make dyslexic children read better. Scientific Reports, 8(1), 111.CrossRefGoogle ScholarPubMed
Lurie, L. A., Hagen, M. P., McLaughlin, K. A., et al. (2021). Mechanisms linking socioeconomic status and academic achievement in early childhood: Cognitive stimulation and language. Cognitive Development, 58, 101045.CrossRefGoogle ScholarPubMed
Luthar, S. S., Cicchetti, D., & Becker, B. (2000). The construct of resilience: A critical evaluation and guidelines for future work. Child Development, 71(3), 543562.CrossRefGoogle ScholarPubMed
Lyon, G. R., Shaywitz, S. E., & Shaywitz, B. A. (2003). A definition of dyslexia. Annals of Dyslexia, 53, 114.CrossRefGoogle Scholar
Lyster, S. A. H., Snowling, M. J., Hulme, C., & Lervåg, A. O. (2021). Preschool phonological, morphological and semantic skills explain it all: Following reading development through a 9-year period. Journal of Research in Reading, 44(1), 175188.CrossRefGoogle Scholar
Lyytinen, P., Eklund, K., & Lyytinen, H. (2005). Language development and literacy skills in late-talking toddlers with and without familial risk for dyslexia. Annals of Dyslexia, 55(2), 166192.CrossRefGoogle ScholarPubMed
Ma, Y., Koyama, M. S., Milham, M. P., et al. (2015). Cortical thickness abnormalities associated with dyslexia, independent of remediation status. NeuroImage: Clinical, 7, 177186.CrossRefGoogle ScholarPubMed
Macaruso, P., Locke, J., Smith, S. T., & Powers, S. (1995). Short-term memory and phonological coding in developmental dyslexia. Journal of Neurolinguistics, 9, 135146.CrossRefGoogle Scholar
Macdonald, K. T., Cirino, P. T., Miciak, J., & Grills, A. E. (2021). The role of reading anxiety among struggling readers in fourth and fifth grade. Reading & Writing Quarterly, 37(4), 382394.CrossRefGoogle ScholarPubMed
Macdonald, K., Germine, L., Anderson, A., Christodoulou, J., & McGrath, L. M. (2017). Dispelling the myth: Training in education or neuroscience decreases but does not eliminate beliefs in neuromyths. Frontiers in Psychology, 8, 1314.CrossRefGoogle Scholar
Macdonald, K., Milne, N., Orr, R., & Pope, R. (2018). Relationships between motor proficiency and academic performance in mathematics and reading in school-aged children and adolescents: A systematic review. International Journal of Environmental Research and Public Health, 15(8), 1603.CrossRefGoogle ScholarPubMed
Macdonald, S. J. (2019). From “disordered” to “diverse”: Defining six sociological frameworks employed in the study of dyslexia in the UK. Insights into Learning Disabilities, 16(1), 122.Google Scholar
Macdonald, S. J. (2010). Towards a social reality of dyslexia. British Journal of Learning Disabilities, 38(4), 271279.CrossRefGoogle Scholar
Macdonald, S. J., & Deacon, L. (2019). Twice upon a time: Examining the effect socioeconomic status has on the experience of dyslexia in the United Kingdom. Dyslexia, 25(1), 319.CrossRefGoogle ScholarPubMed
Madriaga, M., Hanson, K., Heaton, C., et al. (2010). Confronting similar challenges? Disabled and non-disabled students’ learning and assessment experiences. Studies in Higher Education, 35(6), 647658.CrossRefGoogle Scholar
Maehler, C., & Schuchardt, K. (2009). Working memory in children with learning disabilities: Does intelligence make a difference? Journal of Intellectual Disability Research, 53, 310CrossRefGoogle Scholar
Maehler, C., & Schuchardt, K. (2011). Working memory in children with learning disabilities: Rethinking the criterion of disability. International Journal of Disability, Development and Education, 58(1), 517.CrossRefGoogle Scholar
Maher, B. (2008). The case of the missing heritability. Nature, 456, 1821.CrossRefGoogle ScholarPubMed
Maisog, J. M., Einbinder, E. R., Flowers, D. L., Turkeltaub, P. E., & Eden, G. F. (2008). A meta-analysis of functional neuroimaging studies of dyslexia. In Eden, G. F., & Flowers, D. L. (eds.), Learning, Skill Acquisition, Reading, and Dyslexia (pp. 237259). Oxford: Wiley-Blackwell.Google Scholar
Majeed, N. M., Hartanto, A., & Tan, J. J. (2021). Developmental dyslexia and creativity: A meta-analysis. Dyslexia, 27(2), 187203.CrossRefGoogle ScholarPubMed
Maki, K. E., & Adams, S. R. (2019). A current landscape of specific learning disability identification: Training, practices, and implications. Psychology in the Schools, 56(1), 1831.CrossRefGoogle Scholar
Maki, K. E., Kranzler, J. H., & Moody, M. E. (2022). Dual discrepancy/consistency pattern of strengths and weaknesses method of specific learning disability identification: Classification accuracy when combining clinical judgment with assessment data. Journal of School Psychology, 92, 3348.CrossRefGoogle ScholarPubMed
Malchow, H. (2014). IDA responds to the “Dyslexia Debate.” https://dyslexiaida.org/dyslexia-debate/Google Scholar
Malone, S. A., Pritchard, V. E., & Hulme, C. (2022). Domain-specific skills, but not fine-motor or executive function, predict later arithmetic and reading in children. Learning and Individual Differences, 95, 102141.CrossRefGoogle Scholar
Mandke, K., Flanagan, S., Macfarlane, A., et al. (2022). Neural sampling of the speech signal at different timescales by children with dyslexia. NeuroImage, 253, 119077.CrossRefGoogle ScholarPubMed
Mann, L. (1979). On the Trail of Process. New York: Grune & Stratton.Google Scholar
Manning, C., Hassall, C. D., Hunt, L. T., et al. (2022). Visual motion and decision-making in dyslexia: Reduced accumulation of sensory evidence and related neural dynamics. Journal of Neuroscience, 42(1), 121134.CrossRefGoogle ScholarPubMed
Marazzi, C. (2011). Dyslexia and the economy. Angelaki: Journal of the Theoretical Humanities, 16(3), 1932.CrossRefGoogle Scholar
Marchand-Krynski, M. È., Bélanger, A. M., Morin-Moncet, O., Beauchamp, M. H., & Leonard, G. (2018). Cognitive predictors of sequential motor impairments in children with dyslexia and/or attention deficit/hyperactivity disorder. Developmental Neuropsychology, 43(5), 430453.CrossRefGoogle ScholarPubMed
Mareva, S., Akarca, D., CALM team, et al. (2023). Transdiagnostic profiles of behaviour and communication relate to academic and socioemotional functioning and neural white matter organisation. Journal of Child Psychology and Psychiatry, 64(2), 217233.CrossRefGoogle ScholarPubMed
Marino, C., Giorda, R., Luisa Lorusso, M., et al. (2005). A family-based association study does not support DYX1C1 on 15q21.3 as a candidate gene in developmental dyslexia. European Journal of Human Genetics, 13, 491499.CrossRefGoogle Scholar
Market Research Intellect. (2023). Global dyslexia treatment market size by product, by application, by geography, competitive landscape and forecast (Report ID: MRI – 256898). Dyslexia treatment market size, share, outlook, trend and forecast. www.marketresearchintellect.com. Accessed June 1, 2023.Google Scholar
Markov, I., Kharitonova, K., & Grigorenko, E. L. (2023). Language: Its origin and ongoing evolution. Journal of Intelligence, 11, 61.CrossRefGoogle ScholarPubMed
Marks, R. A., Eggleston, R. L., Sun, X., et al. (2022). The neurocognitive basis of morphological processing in typical and impaired readers. Annals of Dyslexia, 72, 361383.CrossRefGoogle ScholarPubMed
Martelli, M., Di Filippo, G., Spinelli, D., & Zoccolotti, P. (2009). Crowding, reading, and developmental dyslexia. Journal of Vision, 9, 118.CrossRefGoogle ScholarPubMed
Martin, A., Kronbichler, M., & Richlan, F. (2016). Dyslexic brain activation abnormalities in deep and shallow orthographies: A meta-analysis of 28 functional neuroimaging studies. Human Brian Mapping, 37, 26762699.CrossRefGoogle ScholarPubMed
Martin, A., Schurz, M., Kronbichler, M., & Richlan, F. (2015). Reading in the brain of children and adults: A meta-analysis of 40 functional magnetic resonance imaging studies. Human Brain Mapping, 36, 19631981.CrossRefGoogle ScholarPubMed
Martinelli, V., Camilleri, D., & Fenech, D. (2018). Common beliefs and research evidence about dyslexic students’ specific skills: Is it time to reassess some of the evidence? Interdisciplinary Education and Psychology, 2(2), 4.CrossRefGoogle Scholar
Martinez, D., Georgiou, G. K., Inoue, T., Falcón, A., & Parrila, R. (2021). How does rapid automatized naming influence orthographic knowledge? Journal of Experimental Child Psychology, 204, 105064.CrossRefGoogle ScholarPubMed
Martinez, K. M., Holden, L. R., Hart, S. A., & Taylor, J. (2022). Examining mindset and grit in concurrent and future reading comprehension: A twin study. Developmental Psychology, 58, 21712183.CrossRefGoogle ScholarPubMed
Martinez-Garay, I., Guidi, L. G., Holloway, Z. G., et al. (2017). Normal radial migration and lamination are maintained in dyslexia-susceptibility candidate gene homolog Kiaa0319 knockout mice. Brain Structure and Function, 222, 13671384.CrossRefGoogle ScholarPubMed
Martínez-García, C., Afonso, O., Cuetos, F., & Suárez-Coalla, P. (2021). Handwriting production in Spanish children with dyslexia: Spelling or motor difficulties? Reading and Writing, 34(3), 565593.CrossRefGoogle Scholar
Mascheretti, S., De Luca, A., Trezzi, V., et al. (2017). Neurogenetics of developmental dyslexia: From genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Translational Psychiatry, 7(1), e987–e987.CrossRefGoogle ScholarPubMed
Mascheretti, S., Gori, S., Trezzi, V., et al. (2018). Visual motion and rapid auditory processing are solid endophenotypes of developmental dyslexia. Genes, Brain and Behavior, 17(1), 7081.CrossRefGoogle ScholarPubMed
Mascheretti, S., Riva, V., Giorda, R., et al. (2014). KIAA0319 and ROBO1: Evidence on association with reading and pleiotropic effects on language and mathematics abilities in developmental dyslexia. Journal of Human Genetics, 59, 189197.CrossRefGoogle ScholarPubMed
Massinen, S., Hokkanen, M. E., Matsson, H., et al. (2011). Increased expression of the dyslexia candidate gene DCDC2 affects length and signaling of primary cilia in neurons. PLoS ONE, 6, e20580.CrossRefGoogle ScholarPubMed
Massinen, S., Wang, J., Laivuori, K., et al. (2016). Genomic sequencing of a dyslexia susceptibility haplotype encompassing ROBO1. Journal of Neurodevelopmental Disorders, 8, 4.CrossRefGoogle ScholarPubMed
Masten, A. S. (2001). Ordinary magic: Resilience processes in development. American Psychologist, 56(3), 227238.CrossRefGoogle ScholarPubMed
Masten, A. S., & Barnes, A. J. (2018). Resilience in children: Developmental perspectives. Children, 5(7), 98.CrossRefGoogle ScholarPubMed
Mather, N., & Schneider, D. (2023). The use of cognitive tests in the assessment of dyslexia. Journal of Intelligence, 11(5), 79.CrossRefGoogle ScholarPubMed
Mather, N., White, J., & Youman, M. (2020). Dyslexia around the world: A snapshot. Learning Disabilities, 25(1), 117.Google Scholar
Mathes, P. G., & Denton, C. A. (2002). The prevention and identification of reading disability. Seminars in Pediatric Neurology, 9, 185191.CrossRefGoogle ScholarPubMed
Mathes, P. G., Denton, C. A., Fletcher, J. M., et al. (2005). The effects of theoretically different instruction and student characteristics on the skills of struggling readers. Reading Research Quarterly, 40, 148182.CrossRefGoogle Scholar
Mathur, A., Schultz, D., & Wang, Y. (2020). Neural bases of phonological and semantic processing in early childhood. Brain Connectivity, 10, 212223.CrossRefGoogle ScholarPubMed
Mattson, M. P. (2002). Neurogenetics: White matter matters. Trends in Neurosciences, 25, 135136.CrossRefGoogle ScholarPubMed
Matuszkiewicz, M., & Gałkowski, T. (2021). Developmental language disorder and uninhibited primitive reflexes in young children. Journal of Speech, Language, and Hearing Research, 64(3), 935948.CrossRefGoogle ScholarPubMed
Maughan, B., Rutter, M., & Yule, W. (2020). The Isle of Wight studies: The scope and scale of reading difficulties. Oxford Review of Education, 46(4), 429438.CrossRefGoogle Scholar
Maurer, U., Brem, S., Bucher, K., et al. (2007). Impaired tuning of a fast occipito-temporal response for print in dyslexic children learning to read. Brain, 130(12), 32003210.CrossRefGoogle ScholarPubMed
Maurer, U., Bucher, K., Brem, S., et al. (2009). Neurophysiology in preschool improves behavioral prediction of reading ability throughout primary school. Biological Psychiatry, 66, 341348.CrossRefGoogle ScholarPubMed
May, H., Blakeney, A., Shrestha, P., Mazal, M., & Kennedy, N. (2023) Long-term impacts of Reading Recovery through 3rd and 4th grade: A regression discontinuity study, Journal of Research on Educational Effectiveness, 126.CrossRefGoogle Scholar
Mayes, S. D., & Calhoun, S. L. (2006). Frequency of reading, math, and writing disabilities in children with clinical disorders. Learning and Individual Differences, 16, 145157.CrossRefGoogle Scholar
McArthur, G. M. (2007). Test-retest effects in treatment studies of reading disability: The devil is in the detail. Dyslexia, 13, 240252.CrossRefGoogle ScholarPubMed
McArthur, G. M. (2009). Auditory processing disorders: Can they be treated? Current Opinion in Neurology, 22, 137143.CrossRefGoogle ScholarPubMed
McArthur, G. M., Badcock, N. A., Castles, A., & Robidoux, S. (2022). Tracking the relations between children’s reading and emotional health across time: Evidence from four large longitudinal studies. Reading Research Quarterly, 57(2), 555585.CrossRefGoogle Scholar
McArthur, G. M., Ellis, D., Atkinson, C. M., & Coltheart, M. (2008). Auditory processing deficits in children with reading and language impairments: Can they (and should they) be treated? Cognition, 107, 946977.CrossRefGoogle ScholarPubMed
McArthur, G. M., Filardi, N., Francis, D. A., Boyes, M. E., & Badcock, N. A. (2020). Self-concept in poor readers: A systematic review and meta-analysis. PeerJ, 8, e8772.CrossRefGoogle ScholarPubMed
McArthur, G. M., & Hogben, J. H. (2012). Poor auditory task scores in children with specific reading and language difficulties: Some poor scores are more equal than others. Scientific Studies of Reading, 16, 6389.CrossRefGoogle Scholar
McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7, 293299.CrossRefGoogle ScholarPubMed
McCardle, P., & Chhabra, V. (2004). The Voice of Evidence in Reading Research. Baltimore: Paul H. Brookes.Google Scholar
McCrory, E. J., Mechelli, A., Frith, U., & Price, C. J. (2005). More than words: A common neural basis for reading and naming deficits in developmental dyslexia? Brain, 128, 261267.CrossRefGoogle ScholarPubMed
McGee, R., Williams, S., Share, D. L., Anderson, J., & Silva, P. A. (1986). The relationship between specific reading retardation, general reading backwardness and behavioral problems in a large sample of Dunedin boys: A longitudinal study from five to eleven years. Journal of Child Psychology and Psychiatry, 27, 597610.CrossRefGoogle Scholar
McGill, R. J., & Busse, R. T. (2017). A rejoinder on the PSW model for SLD identification: Still concerned. Contemporary School Psychology, 21(1), 2327.CrossRefGoogle Scholar
McGill, R. J., Dombrowski, S. C., & Canivez, G. L. (2018). Cognitive profile analysis in school psychology: History, issues, and continued concerns. Journal of School Psychology, 71, 108121.CrossRefGoogle ScholarPubMed
McGrath, L. M., Pennington, B. F., Shanahan, M. A., et al. (2011). A multiple deficit model of reading disability and attention-deficit/hyperactivity disorder: Searching for shared cognitive deficits. Journal of Child Psychology and Psychiatry, 52(5), 547557.CrossRefGoogle ScholarPubMed
McGrath, L. M., Peterson, R. L., & Pennington, B. F. (2020). The multiple deficit model: Progress, problems, and prospects. Scientific Studies of Reading, 24(1), 713.CrossRefGoogle Scholar
McGrath, L. M., & Stoodley, C. J. (2019). Are there shared neural correlates between dyslexia and ADHD? A meta-analysis of voxel-based morphometry studies. Journal of Neurodevelopmental Disorders, 11, 31.CrossRefGoogle ScholarPubMed
McLaughlin, M. J., Speirs, K. E., & Shenassa, E. D. (2014). Reading disability and adult attained education and income: Evidence from a 30-year longitudinal study of a population-based sample. Journal of Learning Disabilities, 47(4), 374386.CrossRefGoogle ScholarPubMed
McLean, G. M. T., Castles, A., Coltheart, V., & Stuart, G. W. (2010). No evidence for a prolonged attentional blink in developmental dyslexia. Cortex, 46, 13171329.CrossRefGoogle ScholarPubMed
McLean, G. M. T., Stuart, G. W., Coltheart, V., & Castles, A. (2011). Visual temporal processing in dyslexia and the magnocellular deficit theory: The need for speed? Journal of Experimental Psychology: Human Perception and Performance, 37(6), 19571975Google Scholar
McLeskey, J., & Waldron, N. L. (2011). Educational programs for elementary students with learning disabilities: Can they be both effective and inclusive? Learning Disabilities Research & Practice, 26(1), 4857.CrossRefGoogle Scholar
McLoughlin, D., Fitzgibbon, G., & Young, V. (1994). Adult Dyslexia: Assessment, Counselling and Training. London: Whurr.Google Scholar
McNorgan, C., Randazzo-Wagner, M., & Booth, J. R. (2013). Cross-modal integration in the brain is related to phonological awareness only in typical readers, not in those with reading difficulty. Frontiers in Human Neuroscience, 7, 388.CrossRefGoogle Scholar
McNulty, M. A. (2003). Dyslexia and the life course. Journal of Learning Disabilities, 36(4), 363381.CrossRefGoogle ScholarPubMed
McPhillips, M., Hepper, P. G., & Mulhern, G. (2000). Effects of replicating primary-reflex movements on specific reading difficulties in children: A randomised, double-blind, controlled trial. The Lancet, 355, 537541.CrossRefGoogle ScholarPubMed
McPhillips, M., & Jordan-Black, J. A. (2007). Primary reflex persistence in children with reading difficulties (dyslexia): A cross-sectional study. Neuropsychologia, 45, 748754.CrossRefGoogle ScholarPubMed
McTigue, E. M., Solheim, O. J., Zimmer, W. K., & Uppstad, P. H. (2020). Critically reviewing GraphoGame across the world: Recommendations and cautions for research and implementation of computer-assisted instruction for word-reading acquisition. Reading Research Quarterly, 55(1), 4573.CrossRefGoogle Scholar
McWeeny, S., Choi, S., Choe, J., et al. (2022). Rapid automatized naming (RAN) as a kindergarten predictor of future reading in English: A systematic review and meta-analysis. Reading Research Quarterly, 57(4), 11871211.CrossRefGoogle Scholar
Meaburn, E., Harlaar, N., Craig, I., Schalkwyk, L., & Plomin, R. (2008). Quantitative trait locus association scan of early reading disability and ability using pooled DNA and 100K SNP microarrays in a sample of 5760 children. Molecular Psychiatry, 13, 729740.CrossRefGoogle Scholar
Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005). Voxel-based morphometry of the human brain: Methods and applications. Current Methods in Imaging, 1, 105113.CrossRefGoogle Scholar
Meilleur, A., Foster, N. E., Coll, S. M., Brambati, S. M., & Hyde, K. L. (2020). Unisensory and multisensory temporal processing in autism and dyslexia: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 116, 4463.CrossRefGoogle ScholarPubMed
Meisinger, E. B., Breazeale, A. M., & Davis, L. H. (2022). Word-and text-level reading difficulties in students with dyslexia. Learning Disability Quarterly, 45(4), 294305.CrossRefGoogle Scholar
Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270.CrossRefGoogle ScholarPubMed
Melby-Lervåg, M., Lyster, S., & Hulme, C. (2012). Phonological skills and their role in learning to read: A meta-analytic review. Psychological Bulletin, 138, 322352.CrossRefGoogle Scholar
Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer” evidence from a meta-analytic review. Perspectives on Psychological Science, 11(4), 512534.CrossRefGoogle ScholarPubMed
Meng, H., Smith, S. D., Hager, K., et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 17053–17058.Google ScholarPubMed
Menghini, D., Carlesimo, G. A., Marotta, L., Finzi, A., & Vicari, S. (2010). Developmental dyslexia and explicit long-term memory. Dyslexia, 16, 213225.CrossRefGoogle ScholarPubMed
Menghini, D., Finzi, A., Carlesimo, G. A., & Vicari, S. (2011). Working memory impairment in children with developmental dyslexia: Is it just a phonological deficit? Developmental Neuropsychology, 36, 199213.CrossRefGoogle Scholar
Menghini, D., Hagberg, G. E., Petrosini, L., et al. (2008). Structural correlates of implicit learning deficits in subjects with developmental dyslexia. Annals of the New York Academy of Sciences, 1145, 212221.CrossRefGoogle ScholarPubMed
Mengisidou, M., & Marshall, C. R. (2019). Deficient explicit access to phonological representations explains phonological fluency difficulties in Greek children with dyslexia and/or developmental language disorder. Frontiers in Psychology, 10, 638.CrossRefGoogle ScholarPubMed
Merz, E. C., Maskus, E. A., Melvin, S. A., He, X., & Noble, K. G. (2020). Socioeconomic disparities in language input are associated with children’s language-related brain structure and reading skills. Child Development, 91, 846860CrossRefGoogle ScholarPubMed
Merzenich, M. M., Jenkins, W. M., Johnston, P., et al. (1996). Temporal processing deficits of language-learning impaired children ameliorated by training. Science, 271, 7781.CrossRefGoogle ScholarPubMed
Metsala, J. L., & David, M. D. (2022). Improving English reading fluency and comprehension for children with reading fluency disabilities. Dyslexia, 28(1), 7996.CrossRefGoogle ScholarPubMed
Meyler, A., Keller, T. A., Cherkassky, V. L., et al. (2007). Brain activation during sentence comprehension among good and poor readers. Cerebral Cortex, 17, 27802787.CrossRefGoogle ScholarPubMed
Miciak, J., Cirino, P. T., Ahmed, Y., Reid, E., & Vaughn, S. (2019). Executive functions and response to intervention: Identification of students struggling with reading comprehension. Learning Disability Quarterly, 42(1), 1731.CrossRefGoogle ScholarPubMed
Miciak, J., & Fletcher, J. M. (2020). The critical role of instructional response for identifying dyslexia and other learning disabilities. Journal of Learning Disabilities, 53(5), 343353.CrossRefGoogle ScholarPubMed
Miciak, J., & Fletcher, J. M. (2023). Specific reading disabilities. In Brown, G. G., King, T. Z., Haaland, K. Y., & Crosson, B. (eds.), APA Handbook of Neuropsychology: Vol. 1: Neurobehavioral Disorders and Conditions: Accepted Science and Open Questions (pp. 5780). Washington, DC: American Psychological Association.Google Scholar
Miciak, J., Fletcher, J. M., Stuebing, K. K., Vaughn, S., & Tolar, T. D. (2014). Patterns of cognitive strengths and weaknesses: Identification rates, agreement, and validity for learning disabilities identification. School Psychology Quarterly 29, 2137.CrossRefGoogle ScholarPubMed
Miciak, J., Roberts, G., Taylor, W. P., et al. (2018). The effects of one versus two years of intensive reading intervention implemented with late elementary struggling readers. Learning Disabilities Research & Practice, 33(1), 2436.CrossRefGoogle ScholarPubMed
Miciak, J., Taylor, W. P., Stuebing, K. K., & Fletcher, J. M. (2018). Simulation of LD identification accuracy using a pattern of processing strengths and weaknesses method with multiple measures. Journal of Psychoeducational Assessment, 36(1), 2133.CrossRefGoogle ScholarPubMed
Miciak, J., Williams, J. L., Taylor, W. P., et al. (2016). Do processing patterns of strengths and weaknesses predict differential treatment response? Journal of Educational Psychology, 108(6), 8981011.CrossRefGoogle ScholarPubMed
Middleton, A. E., Farris, E. A., Ring, J. J., & Odegard, T. N. (2022). Predicting and evaluating treatment response: Evidence toward protracted response patterns for severely impacted students with dyslexia. Journal of Learning Disabilities, 55(4), 272291.CrossRefGoogle ScholarPubMed
Middleton, F. A., & Strick, P. L. (1997). Cerebellar output channels. International Review of Neurobiology, 41, 6182.CrossRefGoogle ScholarPubMed
Miller, D. T., Adam, M. P., Aradhya, S., et al. (2010). Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. American Journal of Human Genetics, 86, 749764.CrossRefGoogle ScholarPubMed
Miller-Cotto, D., & Byrnes, J. P. (2020). What’s the best way to characterize the relationship between working memory and achievement? An initial examination of competing theories. Journal of Educational Psychology, 112(5), 10741084.CrossRefGoogle Scholar
Mills, K. L., & Tamnes, C. K. (2014). Methods and considerations for longitudinal structural brain imaging analysis across development. Developmental Cognitive Neuroscience, 9, 172190.CrossRefGoogle ScholarPubMed
Mirahadi, S. S., Nitsche, M. A., Pahlavanzadeh, B., et al. (2023). Reading and phonological awareness improvement accomplished by transcranial direct current stimulation combined with phonological awareness training: A randomized controlled trial. Applied Neuropsychology: Child, 12, 137149.CrossRefGoogle ScholarPubMed
Mittag, M., Larson, E., Clarke, M., Taulu, S., & Kuhl, P. K. (2021). Auditory deficits in infants at risk for dyslexia during a linguistic sensitive period predict future language. Neuroimage Clinical, 30, 102578.CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N. P., Emerson, M. J., et al. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49100.CrossRefGoogle ScholarPubMed
Miyasaka, J. D. S., Vieira, R. V. G., Novalo-Goto, E. S., Montagna, E., & Wajnsztejn, R. (2019). Irlen syndrome: Systematic review and level of evidence analysis. Arquivos de neuro-psiquiatria, 77, 194207.CrossRefGoogle ScholarPubMed
Moats, L. C. (2017). Can prevailing approaches to reading instruction accomplish the goals of RTI. Perspectives on Language and Literacy, 43(3), 1522.Google Scholar
Moats, L. C., & Foorman, B. (1997). Introduction to special issue of SSR: Components of effective reading instruction. Scientific Studies of Reading, 1, 187189.CrossRefGoogle Scholar
Mody, M., Studdert-Kennedy, M., & Brady, S. (1997). Speech perception deficits in poor readers: Auditory processing or phonological coding? Journal of Experimental Child Psychology, 64, 199231.CrossRefGoogle ScholarPubMed
Mol, S. E., & Bus, A. G. (2011). To read or not to read: A meta-analysis of print exposure from infancy to early childhood. Psychological Bulletin, 137, 267296.CrossRefGoogle ScholarPubMed
Molfese, P. J., Fletcher, J. M., & Denton, C. A. (2013). Adequate versus inadequate response to reading intervention: An event-related potentials assessment. Developmental Neuropsychology, 38(8), 534549.CrossRefGoogle ScholarPubMed
Moll, K. (2022). Comorbidity of reading disorders. In Snowling, M. J., Hulme, C., & Nation, K. (eds.), The Science of Reading: A Handbook. 2nd edition (pp. 439459). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Moll, K., Fussenegger, B., Willburger, E., & Landerl, K. (2009). RAN is not a measure of orthographic processing. Evidence from the asymmetric German orthography. Scientific Studies of Reading, 13, 125.CrossRefGoogle Scholar
Moll, K., Georgii, B. J., Tunder, R., & Schulte-Körne, G. (2022). Economic evaluation of dyslexia intervention. Dyslexia, 29(1), 421.CrossRefGoogle ScholarPubMed
Moll, K., Landerl, K., Snowling, M. J., & Schulte-Körne, G. (2019). Understanding comorbidity of learning disorders: Task-dependent estimates of prevalence. Journal of Child Psychology and Psychiatry, 60(3), 286294.CrossRefGoogle ScholarPubMed
Moll, K., Loff, A., & Snowling, M. J. (2013). Cognitive endophenotypes of dyslexia. Scientific Studies of Reading, 17(6), 385397.CrossRefGoogle Scholar
Moll, K., Ramus, F., Bartling, J., et al. (2014). Cognitive mechanisms underlying reading and spelling development in five European orthographies. Learning and Instruction, 29, 6577.CrossRefGoogle Scholar
Moody, S., Vaughn, S., Hughes, M., & Fischer, M. (2000). Reading instruction in the resource room: Set up for failure. Exceptional Children, 53, 391316.Google Scholar
Moreau, D., Stonyer, J. E., McKay, N. S., & Waldie, K. E. (2018). No evidence for systematic white matter correlates of dyslexia: An activation likelihood estimation meta-analysis. Brain Research, 1683, 3647.CrossRefGoogle ScholarPubMed
Moores, E., Cassim, R., & Talcott, J. B. (2011). Adults with dyslexia exhibit large effects of crowding, increased dependence on cues, and detrimental effects of distractors in visual search tasks. Neuropsychologia, 49, 38813890.CrossRefGoogle ScholarPubMed
Morgan, E., & Klein, C. (2000). The Dyslexic Adult. London: Whurr.Google Scholar
Morgan, P. L., Farkas, G., Tufis, P. A., & Sperling, R. A. (2008). Are reading and behaviour problems risk factors for each other? Journal of Learning Disabilities, 41, 417436.CrossRefGoogle Scholar
Morgan, P. L., & Fuchs, D. (2007). Is there a bidirectional relationship between children’s reading skills and reading motivation? Exceptional Children, 73, 165183.CrossRefGoogle Scholar
Morgan, P. L., Fuchs, D., Compton, D. L., Cordray, D. S., & Fuchs, L. S. (2008). Does early reading failure decrease children’s reading motivation? Journal of Learning Disabilities, 41, 387404.CrossRefGoogle ScholarPubMed
Morgan, P. L., Sideridis, G., & Hua, Y. (2012). Initial and overtime effects of fluency interventions for students with or at risk for disabilities. The Journal of Special Education, 46, 94116.CrossRefGoogle Scholar
Morken, F., Jones, L. Ø., & Helland, W. A. (2021). Disorders of language and literacy in the prison population: A scoping review. Education Sciences, 11(2), 77.CrossRefGoogle Scholar
Morris, R. D., Lovett, M. W., Wolf, M., et al. (2012). Multiple-component remediation for developmental reading disabilities: IQ, socioeconomic status, and race as factors in remedial outcome. Journal of Learning Disabilities, 45(2), 99127.CrossRefGoogle Scholar
Morris, R. D., Steubing, K. K., Fletcher, J. M., et al. (1998). Subtypes of reading disability: Variability around a phonological core. Journal of Educational Psychology, 90, 347373.CrossRefGoogle Scholar
Morte-Soriano, M. R., Begeny, J. C., & Soriano-Ferrer, M. (2021). Parent and teacher ratings of behavioral executive functioning for students with dyslexia. Journal of Learning Disabilities, 54(5), 373387.CrossRefGoogle ScholarPubMed
Mortimore, T., & Crozier, W. R. (2006). Dyslexia and difficulties with study skills in higher education. Studies in Higher Education, 31(2), 235251.CrossRefGoogle Scholar
Mues, M., Zuk, J., Norton, E., et al. (2021). Clarifying the relationship between early speech-sound production abilities and subsequent reading outcomes. Mapp. Intimacies, 10.Google Scholar
Mugnaini, D., Lassi, S., La Malfa, G., & Albertini, G. (2009). Internalizing correlates of dyslexia. World Journal of Pediatrics, 5, 255264.CrossRefGoogle ScholarPubMed
Mundy, I. R., & Hannant, P. (2020). Exploring the phonological profiles of children with reading difficulties: A multiple case study. Dyslexia, 26(4), 411426.CrossRefGoogle ScholarPubMed
Mundy, I. R., & Carroll, J. M. (2012). Speech prosody and developmental dyslexia: Reduced phonological awareness in the context of intact phonological representations. Journal of Cognitive Psychology, 24, 560581.CrossRefGoogle Scholar
Näätänen, R. (2001). The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm). Psychophysiology, 38, 121.CrossRefGoogle ScholarPubMed
Nag, S. (2022). Dyslexia and the dyslexia-like picture: Supporting all children in primary school. In Skeide, M. A. (ed.), The Cambridge Handbook of Dyslexia and Dyscalculia (pp. 427443). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Naglieri, J. A. (2011). The discrepancy/consistency approach to SLD identification using the PASS theory. In Flanagan, D. P., & Alfonso, V. C. (eds.), Essentials of Specific Learning Disability Identification (pp. 145172). New York: John Wiley & Sons.Google Scholar
Naglieri, J. A., & Feifer, S. G. (2018). Pattern of strengths and weaknesses made easy: The discrepancy/consistency method. In Alfonso, V. C., & Flanagan, D. P. (eds.), Essentials of Specific Learning Disability Identification (pp. 431474). Hoboken, NJ: Wiley.Google Scholar
Naples, A. J., Chang, J. T., Katz, L., & Grigorenko, E. L. (2009). Same or different? Insights into the etiology of phonological awareness and rapid naming. Biological Psychology, 80, 226239.CrossRefGoogle ScholarPubMed
Nathaniel, U., Weiss, Y., Barouch, B., Katzir, T., & Bitan, T. (2022). Start shallow and grow deep: The development of a Hebrew reading brain. Neuropsychologia, 176, 108376.CrossRefGoogle ScholarPubMed
Nation, K., & Snowling, M. (1998). Individual differences in contextual facilitation: Evidence from dyslexia and poor reading comprehension. Child Development, 69(4), 9961011.CrossRefGoogle ScholarPubMed
National Center on Response to Intervention. (2010). Essential Components of RTI: A Closer Look at Response to Intervention. Washington, DC: US Department of Education, Office of Special Education Programs, National Center on Response to Intervention.Google Scholar
National Early Literacy Panel. (2008). Developing Early Literacy: Report of the National Early Literacy Panel. Washington, DC: National Institute for Literacy.Google Scholar
National Reading Panel. (2000). Teaching Children to Read An Evidence-Based Assessment of the Scientific Literature on Reading and Its Implications for Reading Instruction. Bethesda, MD: National Institute of Child Health and Human Development.Google Scholar
Natri, H. M., Abubakare, O., Asasumasu, K., et al. (2023). Anti-ableist language is fully compatible with high-quality autism research: Response to Singer et al. (2023). Autism Research, 16(4), 673676.CrossRefGoogle Scholar
Naumova, O., Lee, M., Koposov, R., et al. (2012). Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Development and Psychopathology, 24, 143155.CrossRefGoogle ScholarPubMed
Naveenkumar, N., Georgiou, G. K., Vieira, A. P. A., Romero, S., & Parrila, R. (2022). A systematic review on quality indicators of randomized control trial reading fluency intervention studies. Reading & Writing Quarterly, 38(4), 359378.CrossRefGoogle Scholar
Ne’eman, A., & Pellicano, E. (2022). Neurodiversity as politics. Human Development, 66(2), 149157.CrossRefGoogle ScholarPubMed
Neitzel, A. J., Lake, C., Pellegrini, M., & Slavin, R. E. (2022). A synthesis of quantitative research on programs for struggling readers in elementary schools. Reading Research Quarterly, 57(1), 149179.CrossRefGoogle Scholar
Neuman, S. B., Kaefer, T., & Pinkham, A. M. (2018). A double dose of disadvantage: Language experiences for low-income children in home and school. Journal of Educational Psychology, 110(1), 102118.CrossRefGoogle Scholar
Nevill, T., Savage, G. C., & Forsey, M. (2023). It’s a diagnosis for the rich: Disability, advocacy and the micro-practices of social reproduction. British Journal of Sociology of Education, 44(2), 239258.CrossRefGoogle Scholar
Nevo, E., & Breznitz, Z. (2011). Assessment of working memory components at 6 years of age as predictors of reading achievements a year later. Journal of Experimental Child Psychology, 109, 7390.CrossRefGoogle Scholar
New Zealand Ministry of Education. (2021). Three steps in screening for dyslexia. https://bit.ly/47Dord3. Accessed December 3, 2023.Google Scholar
Newbury, D. F., Paracchini, S., Scerri, T. S., et al. (2011). Investigation of dyslexia and SLI risk-variants in reading- and language-impaired subjects. Behavior Genetics, 41, 90104.CrossRefGoogle ScholarPubMed
Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2(2), 175220.CrossRefGoogle Scholar
Nicolson, R. I. (2005). Dyslexia: Beyond the myth. The Psychologist, 18, 658659.Google Scholar
Nicolson, R. I., & Fawcett, A. J. (1990). Automaticity: A new framework for dyslexia research? Cognition, 35, 159182.CrossRefGoogle ScholarPubMed
Nicolson, R. I., & Fawcett, A. J. (2004). Dyslexia Early Screening Test (DEST). London: Pearson Education.Google Scholar
Nicolson, R. I., & Fawcett, A. J. (2006). Do cerebellar deficits underlie phonological problems in dyslexia? Developmental Science, 9, 259262; discussion 265–269.CrossRefGoogle ScholarPubMed
Nicolson, R. I., & Fawcett, A. J. (2007). Procedural learning difficulties: Reuniting the developmental disorders? Trends in Neurosciences, 30, 135141.CrossRefGoogle ScholarPubMed
Nicolson, R. I., & Fawcett, A. J. (2008). Dyslexia, Learning, and the Brain. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Nicolson, R. I., & Fawcett, A. J. (2019). Development of dyslexia: The delayed neural commitment framework. Frontiers in Behavioral Neuroscience, 13, 112.CrossRefGoogle ScholarPubMed
Nicolson, R. I., & Reynolds, D. (2007). Sound design and balanced analyses: Response to Rack and colleagues. Dyslexia, 13, 105109.CrossRefGoogle Scholar
Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001a). Developmental dyslexia: The cerebellar deficit hypothesis. Trends in Neurosciences, 24, 508511.CrossRefGoogle ScholarPubMed
Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001b). Dyslexia, development and the cerebellum. Trends in Neurosciences, 24, 515516.CrossRefGoogle ScholarPubMed
Niogi, S. N., & McCandliss, B. D. (2006). Left lateralized white matter microstructure accounts for individual differences in reading ability and disability. Neuropsychologia, 44, 21782188.CrossRefGoogle ScholarPubMed
Nitsche, M. A., & Paulus, W. (2011). Transcranial direct current stimulation –update 2011. Restorative Neurology and Neuroscience, 29, 463492.CrossRefGoogle Scholar
Nittrouer, S. (1999). Do temporal processing deficits cause phonological processing problems? Journal of Speech, Language, and Hearing Research, 42, 925942.CrossRefGoogle ScholarPubMed
Noordenbos, M. W., & Serniclaes, W. (2015). The categorical perception deficit in dyslexia: A meta-analysis. Scientific Studies of Reading, 19(5), 340359.CrossRefGoogle Scholar
Nopola-Hemmi, J., Myllyluoma, B., Haltia, T., et al. (2001). A dominant gene for developmental dyslexia on chromosome 3. Journal of Medical Genetics, 38, 658664.CrossRefGoogle ScholarPubMed
Nora, A., Renvall, H., Ronimus, M., et al. (2021). Children at risk for dyslexia show deficient left-hemispheric memory representations for new spoken word forms. Neuroimage, 229, 117739.CrossRefGoogle ScholarPubMed
Norton, E. S., Beach, S. D., Eddy, M. D., et al. (2021). ERP Mismatch negativity amplitude and asymmetry reflect phonological and rapid automatized naming skills in English-speaking kindergartners. Frontiers of Human Neuroscience, 15, 624617.CrossRefGoogle ScholarPubMed
Norton, E. S., Beach, S. D., & Gabrieli, J. D. E. (2015). Neurobiology of dyslexia. Current Opinion in Neurobiology, 30, 7378.CrossRefGoogle ScholarPubMed
Norton, E. S., & Wolf, M. (2012). Rapid automatized naming (RAN) and reading fluency: Implications for understanding and treatment of reading disabilities. Annual Review of Psychology, 63, 427452.CrossRefGoogle ScholarPubMed
Norwich, B. (2010). Book review of “Developmental disorders of language, learning and cognition” by C. Hulme and M. J. Snowling. Journal of Research in Special Educational Needs, 10, 133135.CrossRefGoogle Scholar
Nöthen, M. M., Schulte-Korne, G., Grimm, T., et al. (1999). Genetic linkage analysis with dyslexia: Evidence for linkage of spelling disability to chromosome 15. European Child & Adolescent Psychiatry, 8, 5659.CrossRefGoogle ScholarPubMed
Nugiel, T., Roe, M. A., Taylor, W. P., et al. (2019). Brain activity in struggling readers before intervention relates to future reading gains. Cortex, 111, 286302.CrossRefGoogle ScholarPubMed
O’Brien, G. E., McCloy, D. R., Kubota, E. C., & Yeatman, J. D. (2018). Reading ability and phoneme categorization. Scientific Reports, 8(1), 117.CrossRefGoogle ScholarPubMed
O’Brien, G. E., & Yeatman, J. D. (2021). Bridging sensory and language theories of dyslexia: Toward a multifactorial model. Developmental Science, 24(3), e13039.CrossRefGoogle Scholar
O’Connor, R. E. (2018). Reading fluency and students with reading disabilities: How fast is fast enough to promote reading comprehension? Journal of Learning Disabilities, 51(2), 124136.CrossRefGoogle ScholarPubMed
O’Connor, R. E., Fulmer, D., Harty, K. R., & Bell, K. M. (2005). Layers of reading intervention in kindergarten through third grade: Changes in teaching and student outcomes. Journal of Learning Disabilities, 38, 440455.CrossRefGoogle ScholarPubMed
Obeid, R., Messina, C. M., Zapparrata, N., Gravelle, C. D., & Brooks, P. J. (2022). Dyslexia and motor skills: A meta-analysis. In Proceedings of the Annual Meeting of the Cognitive Science Society. Vol. 44. https://escholarship.org/uc/item/1bj7t64mGoogle Scholar
Ober, T. M., Brooks, P. J., Homer, B. D., & Rindskopf, D. (2020). Executive functions and decoding in children and adolescents: A meta-analytic investigation. Educational Psychology Review, 32(3), 735763.CrossRefGoogle Scholar
Odegard, T. N., Farris, E. A., Middleton, A. E., Oslund, E., & Rimrodt-Frierson, S. (2020). Characteristics of students identified with dyslexia within the context of state legislation. Journal of Learning Disabilities, 53(5), 366379.CrossRefGoogle ScholarPubMed
Odegard, T. N., Farris, E. A., Middleton, A. E., Rimrodt-Frierson, S., & Washington, J. A. (2024). Trends in dyslexia legislation. In Okolo, C., Patton Terry, N., & Cutting, L. (eds.), Handbook of Learning Disabilities. 3rd edition. New York: GuilfordGoogle Scholar
Odegard, T. N., Farris, E. A., & Washington, J. A. (2022). Exploring boundary conditions of the listening comprehension-reading comprehension discrepancy index. Annals of Dyslexia, 72, 301323.CrossRefGoogle ScholarPubMed
Odegard, T. N., Hutchings, T., Farris, E. A., & Oslund, E. L. (2021). External evaluations for dyslexia: Do the data support parent concerns?. Annals of Dyslexia, 71(1), 5059.CrossRefGoogle ScholarPubMed
Odegard, T. N., Ring, J., Smith, S., Biggan, J., & Black, J. (2008). Differentiating the neural response to intervention in children with developmental dyslexia. Annals of Dyslexia, 58, 114.CrossRefGoogle ScholarPubMed
Okumura, Y., Kita, Y., & Inagaki, M. (2017). Pure and short-term phonics-training improves reading and print-specific ERP in English: A case study of a Japanese middle school girl. Developmental Neuropsychology, 42(4), 265275.CrossRefGoogle ScholarPubMed
Olson, R. K. (1985). Disabled reading processes and cognitive profiles. In Gray, D. B., & Kavanagh, J. F. (eds.), Biobehavioral Measures of Dyslexia (pp. 215244). Parkton, MD: York Press.Google Scholar
Olson, R. K. (2011). Evaluation of Fast ForWord Language© effects on language and reading. Perspectives on Language and Literacy, 37(1), 1115.Google Scholar
Olson, R. K. (2006). Genes, environment, and dyslexia. The 2005 Nonnan Geschwind Memorial Lecture. Annals of Dyslexia, 56, 205238.CrossRefGoogle Scholar
Olson, R. K. (2011). Genetic and environmental influences on phonological abilities and reading achievement. In Brady, S. A., Braze, D., & Fowler, C. A. (eds.), Explaining Individual Differences in Reading: Theory and Evidence (pp. 197216). New York: Psychology Press.Google Scholar
Olson, R. K., Keenan, J. M., Byrne, B., & Samuelsson, S. (2014). Why do children differ in their reading and related skills? Scientific Studies of Reading, 18, 3854.CrossRefGoogle ScholarPubMed
Olson, R. K., Keenan, J. M., Byrne, B., & Samuelsson, S. (2019). Etiology of developmental dyslexia. In Verhoeven, L., Perfetti, C., & Pugh, K. (eds.), Developmental Dyslexia across Languages and Writing Systems (pp. 391412). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Olulade, O. A., Napoliello, E. M., & Eden, G. F. (2013). Abnormal visual motion processing is not a cause of dyslexia. Neuron, 79(1), 180190.CrossRefGoogle Scholar
Ordonez Magro, L., Majerus, S., Attout, L., Poncelet, M., Smalle, E. H., & Szmalec, A. (2020). The contribution of serial order short-term memory and long-term learning to reading acquisition: A longitudinal study. Developmental Psychology, 56(9), 1671.CrossRefGoogle ScholarPubMed
Organisation for Economic Co-Operation and Development (OECD). (2015). The ABC of Gender Equality in Education: Aptitude, Behaviour, Confidence. Paris: OECD Publishing.Google Scholar
O’Roak, B. J., Deriziotis, P., Lee, C., et al. (2011). Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 43, 585589.CrossRefGoogle ScholarPubMed
Orton, S. T. (1937). Reading, Writing, and Speech Problems in Children. New York: W. W. Norton & Company.Google Scholar
Orton, S. T. (1939). A neurological explanation of the reading disability. Education Record, 12, 5868.Google Scholar
Ottosen, H. F., Bønnerup, K. H., Weed, E., & Parrila, R. (2022). Identifying dyslexia at the university: Assessing phonological coding is not enough. Annals of Dyslexia, 72(1), 147170.CrossRefGoogle ScholarPubMed
Ozernov-Palchik, O., & Gaab, N. (2016), Tackling the “dyslexia paradox”: Reading brain and behavior for early markers of developmental dyslexia. WIREs Cognitive Science, 7, 156176.CrossRefGoogle ScholarPubMed
Ozernov-Palchik, O., Beach, S. D., Brown, M., et al. (2022). Speech-specific perceptual adaptation deficits in children and adults with dyslexia. Journal of Experimental Psychology: General, 151(7), 1556.CrossRefGoogle ScholarPubMed
Ozernov-Palchik, O., Norton, E. S., Wang, Y., et al. (2019). The relationship between socioeconomic status and white matter microstructure in pre-reading children: A longitudinal investigation. Human Brain Mapping, 40, 741754.CrossRefGoogle ScholarPubMed
Ozernov-Palchik, O., Sideridis, G. D., Norton, E. S., et al. (2022). On the cusp of predictability: Disruption in the typical association between letter and word identification at critical thresholds of RAN and phonological skills. Learning and Individual Differences, 97, 102166.CrossRefGoogle Scholar
Ozernov-Palchik, O., Yul, X., Wang, Y., & Gaab, N. (2016). Lessons to be learned: How a comprehensive neurobiological framework of atypical reading development can inform educational practice. Current Opinion in Behavioral Sciences, 10, 4558.CrossRefGoogle ScholarPubMed
Pace, A., Luo, R., Hirsh-Pasek, K., & Golinkoff, R. M. (2017). Identifying pathways between socioeconomic status and language development. Annual Review of Linguistics, 3, 285308.CrossRefGoogle Scholar
Pagliarini, E., Guasti, M. T., Toneatto, C., et al. (2015). Dyslexic children fail to comply with the rhythmic constraints of handwriting. Human Movement Science, 42, 161182.CrossRefGoogle ScholarPubMed
Paige, D. D., Young, C., Rasinski, T. V., et al. (2021). Teaching reading is more than a science: It’s also an art. Reading Research Quarterly, 56, S339–S350.CrossRefGoogle Scholar
Papadopoulos, T. C., Spanoudis, G. C., & Georgiou, G. K. (2016). How is RAN related to reading fluency? A comprehensive examination of the prominent theoretical accounts. Frontiers in Psychology, 7, 1217.CrossRefGoogle Scholar
Paracchini, S. (2022). The genetics of dyslexia: Learning from the past to shape the future. In Snowling, M. J., Hulme, C., & Nation, K. (eds.), The Science of Reading: A Handbook. 2nd edition (pp. 491514). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
Paracchini, S., Thomas, A., Castro, S., et al. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 15, 16591666.CrossRefGoogle ScholarPubMed
Park, R. L. (2003). The seven warning signs of bogus science. Chronicle of Higher Education, 49, 2021.Google Scholar
Parrila, R., Dudley, D., Song, S., & Georgiou, G. K. (2020). A meta-analysis of reading-level match dyslexia studies in consistent alphabetic orthographies. Annals of Dyslexia, 70(1), 126.CrossRefGoogle ScholarPubMed
Parrila, R., Inoue, T., Dunn, K., Savage, R., & Georgiou, G. (2023). Connecting teachers’ language knowledge, perceived ability and instructional practices to Grade 1 students’ literacy outcomes. Reading and Writing: An Interdisciplinary Journal, 129.Google Scholar
Partanen, M., Siegel, L. S., & Giaschi, D. E. (2019). Effect of reading intervention and task difficulty on orthographic and phonological reading systems in the brain. Neuropsychologia, 130, 1325.CrossRefGoogle ScholarPubMed
Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles: Concepts and evidence. Psychological Science in the Public Interest, 9, 106119.CrossRefGoogle ScholarPubMed
Pasqualotto, A., Altarelli, I., De Angeli, A., et al. (2022). Enhancing reading skills through a video game mixing action mechanics and cognitive training. Nature Human Behaviour, 6(4), 545554.CrossRefGoogle ScholarPubMed
Patael, S. Z., Farris, E. A., Black, J. M., et al. (2018). Brain basis of cognitive resilience: Prefrontal cortex predicts better reading comprehension in relation to decoding. PLoS ONE, 13, e0198791.CrossRefGoogle ScholarPubMed
Paul, I., Bott, C., Heim, S., Eulitz, C., & Elbert, T. (2006). Reduced hemispheric asymmetry of the auditory N260m in dyslexia. Neuropsychologia, 44, 785794.CrossRefGoogle ScholarPubMed
Paulesu, E., Danelli, L., & Berlingeri, M. (2014). Reading the dyslexic brain: Multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Frontiers in Human Neuroscience, 8.CrossRefGoogle Scholar
Paulesu, E., Démonet, J.-F., Fazio, F., et al. (2001). Dyslexia: Cultural diversity and biological unity. Science, 291, 21652167.CrossRefGoogle ScholarPubMed
Paulesu, E., Frith, U., Snowling, M., et al. (1996). Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain, 119, 143157.CrossRefGoogle ScholarPubMed
Pearson, P. D. (2004). The reading wars. Education Policy, 18, 216252.CrossRefGoogle Scholar
Pegado, F., Comerlato, E., Ventura, F. J., et al. (2014). Timing the impact of literacy on visual processing. Proceedings of the National Academy of Sciences, 111, E5233–E5242.CrossRefGoogle ScholarPubMed
Pellicano, E., & Gibson, L. Y. (2008). Investigating the functional integrity of the dorsal visual pathway in autism and dyslexia. Neuropsychologia, 46(10), 25932596.CrossRefGoogle ScholarPubMed
Peng, P., Barnes, M., Wang, C., et al. (2018). A meta-analysis on the relation between reading and working memory. Psychological Bulletin, 144(1), 4876.CrossRefGoogle ScholarPubMed
Peng, P., & Fuchs, D. (2016). A meta-analysis of working memory deficits in children with learning difficulties: Is there a difference between verbal domain and numerical domain? Journal of Learning Disabilities, 49(1), 320.CrossRefGoogle Scholar
Peng, P., Fuchs, D., Fuchs, L. S., et al. (2020). Is “response/no response” too simple a notion for RTI frameworks? Exploring multiple response types with latent profile analysis. Journal of Learning Disabilities, 53(6), 454468.CrossRefGoogle Scholar
Peng, P., Fuchs, D., Fuchs, L. S., et al. (2019). A longitudinal analysis of the trajectories and predictors of word reading and reading comprehension development among at-risk readers. Journal of Learning Disabilities, 52(3), 195208.CrossRefGoogle ScholarPubMed
Peng, P., & Goodrich, J. M. (2020). The cognitive element model of reading instruction. Reading Research Quarterly, 55, S77–S88.CrossRefGoogle Scholar
Peng, P., & Kievit, R. A. (2020). The development of academic achievement and cognitive abilities: A bidirectional perspective. Child Development Perspectives, 14(1), 1520.CrossRefGoogle ScholarPubMed
Peng, P., & Swanson, H. L. (2022). The domain-specific approach of working memory training. Developmental Review, 65, 101035.CrossRefGoogle Scholar
Peng, P., Zhang, Z., Wang, W., et al. (2022). A meta-analytic review of cognition and reading difficulties: Individual differences, moderation, and language mediation mechanisms. Psychological Bulletin, 148(3–4), 227.CrossRefGoogle Scholar
Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101, 385413.CrossRefGoogle ScholarPubMed
Pennington, B. F. (2009). Diagnosing Learning Disorders: A Neuropsychological Framework. 2nd edition. New York: Guilford Press.Google Scholar
Pennington, B. F., & Bishop, D. V. M. (2009). Relations among speech, language, and reading disorders. Annual Review of Psychology, 60, 283306.CrossRefGoogle ScholarPubMed
Pennington, B. F., Cardoso-Martins, C., Green, P. A., & Lefly, D. L. (2001). Comparing the phonological and double deficit hypotheses for developmental dyslexia. Reading and Writing, 14, 707755.CrossRefGoogle Scholar
Pennington, B. F., McGrath, L. M., & Peterson, R. L. (2019). Diagnosing Learning Disorders: From Science to Practice. New York: Guilford Publications.Google Scholar
Pennington, B. F., & Olson, R. K. (2005). Genetics of dyslexia. In Snowling, M., & Hulme, C. (eds.), The Science of Reading: A Handbook (pp. 453472). Oxford: Blackwell.CrossRefGoogle Scholar
Pennington, B. F., Santerre-Lemmon, L., Rosenberg, J., et al. (2012). Individual prediction of dyslexia by single versus multiple deficit models. Journal of Abnormal Psychology, 121(1), 212224.CrossRefGoogle ScholarPubMed
Penolazzi, B., Spironelli, C., & Angrilli, A. (2008). Delta EEG activity as a marker of dysfunctional linguistic processing in developmental dyslexia. Psychophysiology, 45, 10251033.CrossRefGoogle ScholarPubMed
Penolazzi, B., Spironelli, C., Vio, C., & Angrilli, A. (2006). Altered hemispheric asymmetry during word processing in dyslexic children: An event-related potential study. Neuroreport, 17, 429433.CrossRefGoogle ScholarPubMed
Penolazzi, B., Spironelli, C., Vio, C., & Angrilli, A. (2010). Brain plasticity in developmental dyslexia after phonological treatment: A beta EEG band study. Behavioural Brain Research, 209, 179182.CrossRefGoogle ScholarPubMed
Perceptual Development Corporation. (1998). Irlen Institute website: Who we help. https://irlen.com/index.php?s=who. Accessed May 14, 2023.Google Scholar
Perea, M., Panadero, V., Moret-Tatay, C., & Gómez, P. (2012). The effects of inter-letter spacing in visual-word recognition: Evidence with young normal readers and developmental dyslexics. Learning and Instruction, 22, 420430.CrossRefGoogle Scholar
Perdue, M. V., Mahaffy, K., Vlahcevic, K., et al. (2022). Reading intervention and neuroplasticity: A systematic review and meta-analysis of brain changes associated with reading intervention. Neuroscience & Biobehavioral Reviews, 132, 465494.CrossRefGoogle ScholarPubMed
Perfetti, C. A., & Harris, L. (2019). Developmental dyslexia in English. In Verhoeven, L., Perfetti, C., & Pugh, K. (eds.), Developmental Dyslexia across Languages and Writing Systems (pp. 2549). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Perfetti, C. A. (1991). The psychology, pedagogy and politics of reading. Psychological Science, 2, 7076.CrossRefGoogle Scholar
Perfetti, C. A., Liu, Y., & Tan, L. H. (2005). The lexical constituency model: Some implications of research on Chinese for general theories of reading. Psychological Review, 112, 4359.CrossRefGoogle ScholarPubMed
Perfetti, C. A., Pugh, K., & Verhoeven, L. (2019). Developmental dyslexia across languages and writing systems: The big picture. In Verhoeven, L., Perfetti, C. A., & Pugh, K. (eds.), Developmental Dyslexia across Languages and Writing Systems (pp. 441461). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Pernet, C., Andersson, J., Paulesu, E., & Demonet, J. F. (2009). When all hypotheses are right: A multifocal account of dyslexia. Human Brain Mapping, 30, 22782292.CrossRefGoogle ScholarPubMed
Perrachione, T. K., Del Tufo, S. N., Winter, R., et al. (2016). Dysfunction of rapid neural adaptation in dyslexia. Neuron, 92(6), 13831397.CrossRefGoogle ScholarPubMed
Perry, C., & Long, H. (2022). What is going on with visual attention in reading and dyslexia? A critical review of recent studies. Brain Sciences, 12(1), 87.CrossRefGoogle ScholarPubMed
Peters, L., & Ansari, D. (2019). Are specific learning disorders truly specific, and are they disorders? Trends in Neuroscience and Education, 17, 100115.CrossRefGoogle ScholarPubMed
Peters, J. L., Crewther, S. G., Murphy, M. J., & Bavin, E. L. (2021). Action video game training improves text reading accuracy, rate and comprehension in children with dyslexia: A randomized controlled trial. Scientific Reports, 11(1), 111.CrossRefGoogle ScholarPubMed
Peters, J. L., De Losa, L., Bavin, E. L., & Crewther, S. G. (2019). Efficacy of dynamic visuo-attentional interventions for reading in dyslexic and neurotypical children: A systematic review. Neuroscience & Biobehavioral Reviews, 100, 5876.CrossRefGoogle ScholarPubMed
Peterson, R. L., & Pennington, B. F. (2012). Developmental dyslexia. The Lancet, 379, 19972007.CrossRefGoogle ScholarPubMed
Peterson, R. L., Arnett, A. B., Pennington, B. F., et al. (2018). Literacy acquisition influences children’s rapid automatized naming. Developmental Science, 21(3), e12589.CrossRefGoogle ScholarPubMed
Peterson, R. L., Boada, R., McGrath, L. M., et al. (2017). Cognitive prediction of reading, math, and attention: Shared and unique influences. Journal of Learning Disabilities, 50(4), 408421.CrossRefGoogle ScholarPubMed
Peterson, R. L., McGrath, L. M., Willcutt, E. G., et al. (2021). How specific are learning disabilities? Journal of Learning Disabilities, 54(6), 466483.CrossRefGoogle ScholarPubMed
Peterson, R. L., & Pennington, B. F. (2012). Developmental dyslexia. The Lancet, 379, 19972007.CrossRefGoogle ScholarPubMed
Peterson, R. L., & Pennington, B. F. (2015). Developmental dyslexia. Annual Review of Clinical Psychology, 11, 283307.CrossRefGoogle ScholarPubMed
Peterson, R. L., Pennington, B. F., Olson, R. K., & Wadsworth, S. J. (2014). Longitudinal stability of phonological and surface subtypes of developmental dyslexia. Scientific Studies of Reading, 18(5), 347362.CrossRefGoogle ScholarPubMed
Peterson, R. L., Pennington, B. F., Shriberg, L. D., & Boada, R. (2009). What influences literacy outcome in children with speech sound disorder? Journal of Speech, Language, and Hearing Research, 52, 11751188.CrossRefGoogle ScholarPubMed
Petrill, S. A., Deater-Deckard, K., Thompson, L. A., Dethorne, L. S., & Schatschneider, C. (2006). Reading skills in early readers: Genetic and shared environmental influences. Journal of Learning Disabilities, 39, 4855.CrossRefGoogle ScholarPubMed
Petrill, S. A., Deater-Deckard, K., Thompson, L. A., et al. (2007). Longitudinal genetic analysis of early reading: The Western Reserve reading project. Reading and Writing, 20, 127146.CrossRefGoogle ScholarPubMed
Petrill, S. A., Hart, S. A., Harlaar, N., Logan, J., et al. (2010). Genetic and environmental influences on the growth of early reading skills. Journal of Child Psychology & Psychiatry & Allied Disciplines, 51(6), 660667.CrossRefGoogle ScholarPubMed
Petryshen, T. L., Kaplan, B. J., Liu, M. F., & Field, L. L. (2000). Absence of significant linkage between phonological coding dyslexia and chromosome 6p23–21.3, as determined by use of quantitative-trait methods: Confirmation of qualitative analyses. American Journal of Human Genetics, 66, 708714.CrossRefGoogle ScholarPubMed
Petscher, Y., & Koon, S. (2020). Moving the needle on evaluating multivariate screening accuracy. Assessment for Effective Intervention, 45(2), 8394.CrossRefGoogle Scholar
Petscher, Y., Cabell, S. Q., Catts, H. W., et al. (2020). How the science of reading informs 21st-century education. Reading Research Quarterly, 55, S267–S282.CrossRefGoogle ScholarPubMed
Petscher, Y., Fien, H., Stanley, C., Gearin, B., Gaab, N., Fletcher, J. M., & Johnson, E. (2019). Screening for dyslexia. Office of Special Education Programs, National Center on Improving Literacy. https://improvingliteracy.org. Accessed December 3, 2023.Google Scholar
Peyrin, C., Démonet, J. F., N’guyen-Morel, M. A., Le Bas, J. F., & Valdois, S. (2011). Superior parietal lobe dysfunction in a homogeneous group of dyslexic children with a visual attention span disorder. Brain & Language, 118, 128138.CrossRefGoogle Scholar
Peyrin, C., Lallier, M., Démonet, J. F., et al. (2012). Neural dissociation of phonological and visual attention span disorders in developmental dyslexia: FMRI evidence from two case reports. Brain & Language, 120, 381394.CrossRefGoogle ScholarPubMed
Pfost, M., Blatter, K., Artelt, C., Stanat, P., & Schneider, W. (2019). Effects of training phonological awareness on children’s reading skills. Journal of Applied Developmental Psychology, 65, 101067.CrossRefGoogle Scholar
Pfost, M., Dörfler, T., & Artelt, C. (2012). Reading competence development of poor readers in a German elementary school sample: An empirical examination of the Matthew effect model. Journal of Research in Reading, 35(4), 411426.CrossRefGoogle Scholar
Pham, A. V. (2016). Differentiating behavioral ratings of inattention, impulsivity, and hyperactivity in children: Effects on reading achievement. Journal of Attention Disorders, 20(8), 674683.CrossRefGoogle ScholarPubMed
Pham, A. V., & Hasson, R. M. (2014). Verbal and visuospatial working memory as predictors of children’s reading ability. Archives of Clinical Neuropsychology, 29(5), 467477.CrossRefGoogle ScholarPubMed
Phan, T. V., Sima, D., Smeets, D., et al. (2021). Structural brain dynamics across reading development: A longitudinal MRI study from kindergarten to grade 5. Human Brain Mapping, 42, 44974509.CrossRefGoogle ScholarPubMed
Piasta, S. B., & Wagner, R. K. (2010). Learning letter names and sounds: Effects of instruction, letter type, and phonological processing skill. Journal of Experimental Child Psychology, 105, 324344.CrossRefGoogle ScholarPubMed
Piazza, E. A., Cohen, A., Trach, J., & Lew-Williams, C. (2021). Neural synchrony predicts children’s learning of novel words. Cognition, 214, 104752.CrossRefGoogle ScholarPubMed
Pierrehumbert, J. (2003). Phonetic diversity, statistical learning and acquisition of phonology. Language & Speech, 46, 115154.CrossRefGoogle ScholarPubMed
Pinker, S. (1998). Foreword. In McGuinness, D. (ed.), Why Children Can’t Read: And what we can do about it. London: Penguin.Google Scholar
Piotrowska, B., & Willis, A. (2019). Beyond the global motion deficit hypothesis of developmental dyslexia: A cross-sectional study of visual, cognitive, and socioeconomic factors influencing reading ability in children. Vision Research, 159, 4860.CrossRefGoogle ScholarPubMed
Plakas, A., van Zuijen, T., van Leeuwen, T., Thomson, J. M., & van der Leij, A. (2013). Impaired non-speech auditory processing at a pre-reading age is a risk-factor for dyslexia but not a predictor: An ERP study. Cortex, 49(4), 10341045.CrossRefGoogle Scholar
Plante, E. (2012). Windows into receptive processing. In Benasich, A. A., & Fitch, R. H. (eds.), Developmental Dyslexia: Early Precursors, Neurobehavioral Markers, and Biological Substrates (pp. 257274). Baltimore: Paul H. Brookes Publishing.Google Scholar
Platt, M. P., Adler, W. T., Mehlhorn, A. J., et al. (2013). Embryonic disruption of the candidate dyslexia susceptibility gene homolog Kiaa0319-like results in neuronal migration disorders. Neuroscience, 248, 585593.CrossRefGoogle ScholarPubMed
Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review, 103, 56115.CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2013). Behavioral Genetics. 6th edition. New York: Worth Publishers.Google Scholar
Plomin, R., & Kovas, Y. (2005). Generalist genes and learning disabilities. Psychological Bulletin, 131, 592617.CrossRefGoogle ScholarPubMed
Pollack, C., Luk, G., & Christodoulou, J. A. (2015). A meta-analysis of functional reading systems in typically developing and struggling readers across different alphabetic languages. Frontiers in Psychology, 6.CrossRefGoogle ScholarPubMed
Porter, S. B., Odegard, T. N., Farris, E. A., & Oslund, E. L. (2023). Effects of teacher knowledge of early reading on students’ gains in reading foundational skills and comprehension. Reading and Writing, 1–17.CrossRefGoogle Scholar
Poulsen, M., Juul, H., & Elbro, C. (2015). Multiple mediation analysis of the relationship between rapid naming and reading. Journal of Research in Reading, 38(2), 124140.CrossRefGoogle Scholar
Poulsen, M., Protopapas, A., & Juul, H. (2023). How RAN stimulus type and repetition affect RAN’s relation with decoding efficiency and reading comprehension. Reading and Writing, 114.Google Scholar
Powell, D., & Atkinson, L. (2021). Unravelling the links between rapid automatized naming (RAN), phonological awareness, and reading. Journal of Educational Psychology, 113(4), 706718.CrossRefGoogle Scholar
Powell, D., Stuart, M., Garwood, H., Quinlan, P., & Stainthorp, R. (2007). An experimental comparison between rival theories of rapid automatised naming (RAN) performance and its relationship to reading. Journal of Experimental Child Psychology, 98, 4668.CrossRefGoogle Scholar
Power, J. D., & Petersen, S. E. (2013). Control-related systems in the human brain. Current Opinion in Neurobiology, 23, 223228.CrossRefGoogle ScholarPubMed
Pressley, M. (2006). Reading Instruction that Works: The Case for Balanced Teaching. New York: The Guilford Press.Google Scholar
Preston, J. L., Frost, S. J., Mencl, W. E., et al. (2010). Early and late talkers: School-age language, literacy and neurolinguistic differences. Brain, 133(Pt 8), 21852195.CrossRefGoogle ScholarPubMed
Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 62, 816847.CrossRefGoogle ScholarPubMed
Price, C. J., & Mechelli, A. (2005). Reading and reading disturbance. Current Opinion in Neurobiology, 15, 231238.CrossRefGoogle ScholarPubMed
Price, K. M., Wigg, K. G., Eising, E., et al. (2022). Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities. Translational Psychiatry, 12(1), 495.CrossRefGoogle ScholarPubMed
Price, K. M., Wigg, K. G., Feng, Y., et al. (2020). Genome-wide association study of word reading: Overlap with risk genes for neurodevelopmental disorders. Genes, Brain and Behavior, 19(6), e12648.CrossRefGoogle ScholarPubMed
Price, K. M., Wigg, K. G., Misener, V. L., et al. (2022). Language difficulties in school-age children with developmental dyslexia. Journal of Learning Disabilities, 55(3), 200212.CrossRefGoogle ScholarPubMed
Prifitera, A., & Dersch, J. (1993). Base rates of WISC-III diagnostic subtest patterns among normal, learning disabled and ADHD samples. Journal of Psychoeducational Assessment, WISC-III Monograph, 4355.Google Scholar
Pringle Morgan, W. (1896). A case of congenital word blindness. British Medical Journal, 2, 1378.CrossRefGoogle Scholar
Protopapa, C., & Smith-Spark, J. H. (2022). Self-reported symptoms of developmental dyslexia predict impairments in everyday cognition in adults. Research in Developmental Disabilities, 128, 104288.CrossRefGoogle ScholarPubMed
Protopapas, A. (2014). From temporal processing to developmental language disorders: Mind the gap. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1634), 20130090.CrossRefGoogle ScholarPubMed
Protopapas, A. (2019). Evolving concepts of dyslexia and their implications for research and remediation. Frontiers in Psychology, 10, 2873.CrossRefGoogle ScholarPubMed
Protopapas, A., Altani, A., & Georgiou, G. K. (2013). Development of serial processing in reading and rapid naming. Journal of Experimental Child Psychology, 116(4), 914929.CrossRefGoogle ScholarPubMed
Protopapas, A., & Parrila, R. (2018). Is dyslexia a brain disorder? Brain Sciences, 8(4), 61.CrossRefGoogle ScholarPubMed
Protopapas, A., & Parrila, R. (2019). Dyslexia: Still not a neurodevelopmental disorder. Brain Sciences, 9, 9.CrossRefGoogle Scholar
Provazza, S., Adams, A. M., Giofrè, D., & Roberts, D. J. (2019). Double trouble: Visual and phonological impairments in English dyslexic readers. Frontiers in Psychology, 2725.CrossRefGoogle ScholarPubMed
Pugh, K. R., Frost, S. J., Rothman, D. L., et al. (2014). Glutamate and choline levels predict individual differences in reading ability in emergent readers. The Journal of Neuroscience, 34(11), 4082.CrossRefGoogle ScholarPubMed
Pugh, K. R., & McCardle, P. (eds.). (2009). How Children Learn to Read: Current Issues and New Directions in the Integration of Cognition, Neurobiology and Genetics of Reading and Dyslexia Research and Practice. New York: Psychology Press.Google Scholar
Pugh, K. R., Mencl, W. E., Jenner, A. R., et al. (2000). Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Mental Retardation & Developmental Disabilities Research Reviews, 6, 207213.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Pugh, K. R., Mencl, W. E., Jenner, A. R., et al. (2001). Neurobiological studies of reading and reading disability. Journal of Communication Disorders, 34, 479492.CrossRefGoogle ScholarPubMed
Puglisi, M. L., Hulme, C., Hamilton, L. G., & Snowling, M. J. (2017). The home literacy environment is a correlate, but perhaps not a cause, of variations in children’s language and literacy development. Scientific Studies of Reading, 21(6), 498514.CrossRefGoogle Scholar
Quercia, P., Demougeot, L., Dos Santos, M. Bonnetblanc, F. (2011). Integration of proprioceptive signals and attentional capacity during postural control are impaired but subject to improvement in dyslexic children. Experimental Brain Research, 209(4), 599608.CrossRefGoogle ScholarPubMed
Quinn, J. M. (2018). Differential identification of females and males with reading difficulties: A meta-analysis. Reading and Writing, 31(5), 10391061.CrossRefGoogle ScholarPubMed
Quinn, J. M., & Wagner, R. K. (2015). Gender differences in reading impairment and in the identification of impaired readers: Results from a large-scale study of at-risk readers. Journal of Learning Disabilities, 48(4), 433445.CrossRefGoogle ScholarPubMed
Quintana-Murci, L., & Fellous, M. (2001). The human Y chromosome: The biological role of a “functional wasteland.” Journal of Biomedicine and Biotechnology, 1, 1824.CrossRefGoogle ScholarPubMed
Rack, J. P. (2003). The who, what, why and how of intervention programmes: Comments on the DDAT evaluation. Dyslexia, 9, 137139.CrossRefGoogle ScholarPubMed
Rack, J. P., Snowling, M. J., & Olson, R. K. (1992). The nonword reading deficit in developmental dyslexia – A review. Reading Research Quarterly, 27, 2853.CrossRefGoogle Scholar
Rack, J. P., Snowling, M. J., Hulme, C., & Gibbs, S. (2007). No evidence that an exercise-based treatment programme (DDAT) has specific benefits for children with reading difficulties. Dyslexia, 13, 97104.CrossRefGoogle ScholarPubMed
Raddatz, J., Kuhn, J. T., Holling, H., Moll, K., & Dobel, C. (2017). Comorbidity of arithmetic and reading disorder: Basic number processing and calculation in children with learning impairments. Journal of Learning Disabilities, 50(3), 298308.CrossRefGoogle Scholar
Rae, C., Lee, M. A., Dixon, R. M., et al. (1998). Metabolic abnormalities in developmental dyslexia detected by 1H magnetic resonance spectroscopy. The Lancet, 351, 18491852.CrossRefGoogle ScholarPubMed
Raffington, L., Tanksley, P. T., Sabhlok, A., et al. (2023). Socially stratified epigenetic profiles are associated with cognitive functioning in children and adolescents. Psychological Science, 34, 170185.CrossRefGoogle ScholarPubMed
Raij, T., Uutela, K., & Hari, R. (2000). Audiovisual integration of letters in the human brain. Neuron, 28, 617625.CrossRefGoogle ScholarPubMed
Rakhlin, N., Mourgues, C., Logvinenko, T., Kornev, A. N., & Grigorenko, E. L. (2022). What reading-level match design reveals about specific reading disability in a transparent orthography and how much we can trust it. Scientific Studies of Reading, 118.Google Scholar
Ramirez, G., Fries, L., Gunderson, E., et al. (2019). Reading anxiety: An early affective impediment to children’s success in reading. Journal of Cognition and Development, 20(1), 1534.CrossRefGoogle Scholar
Ramus, F. (2003). Developmental dyslexia: Specific phonological deficits or general sensorimotor dysfunction? Current Opinion in Neurology, 13, 212218.CrossRefGoogle ScholarPubMed
Ramus, F. (2004). Neurobiology of dyslexia: A reinterpretation of the data. Trends in Neurosciences, 27, 720726.CrossRefGoogle ScholarPubMed
Ramus, F. (2014). Should there really be a “Dyslexia debate”? Brain, 137(12), 33713374.CrossRefGoogle Scholar
Ramus, F., & Ahissar, M. (2012). Developmental dyslexia: The difficulties of interpreting poor performance, and the importance of normal performance. Cognitive Neuropsychology, 29(1–2), 104122CrossRefGoogle ScholarPubMed
Ramus, F., Altarelli, I., Jednorog, K., Zhao, J., & di Covella, L. S. (2018). Neuroanatomy of developmental dyslexia: Pitfalls and promise. Neuroscience & Biobehavioral Reviews, 84, 434452.CrossRefGoogle ScholarPubMed
Ramus, F., Pidgeon, E., & Frith, U. (2003). The relationship between motor control and phonology in dyslexic children. Journal of Child Psychology and Psychiatry and Allied Disciplines, 44, 712722.CrossRefGoogle ScholarPubMed
Ramus, F., Rosen, S., Dakin, S. C., et al. (2003). Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults. Brain, 126, 841865.CrossRefGoogle ScholarPubMed
Ramus, F., & Szenkovits, G. (2008). What phonological deficit? The Quarterly Journal of Experimental Psychology, 61, 129141.CrossRefGoogle ScholarPubMed
Randall, L., & Tyldesley, K. (2016). Evaluating the impact of working memory training programmes on children – A systematic review. Educational and Child Psychology, 33(1), 3450.CrossRefGoogle Scholar
Rashotte, C. A., MacPhee, K., & Torgesen, J. K. (2001). The effectiveness of a group reading instruction program with poor readers in multiple grades. Learning Disability Quarterly, 24, 119134.CrossRefGoogle Scholar
Raskind, W. H., Hsu, L., Berninger, V. W., Thomson, J. B., & Wijsman, E. M. (2000). Familial aggregation of dyslexia phenotypes. Behavior Genetics, 30, 385396.CrossRefGoogle ScholarPubMed
Razuk, M., Perrin-Fievez, F., Gerard, C. L., et al. (2018). Effect of colored filters on reading capabilities in dyslexic children. Research in Developmental Disabilities, 83, 17.CrossRefGoogle ScholarPubMed
Reason, R., & Stothard, J. (2013). Is there a place for dyslexia in educational psychology practice? Debate, 146, 813.Google Scholar
Redick, T. S., Shipstead, Z., Wiemers, E. A., Melby-Lervåg, M., & Hulme, C. (2015). What’s working in working memory training? An educational perspective. Educational Psychology Review, 27(4), 617633.CrossRefGoogle ScholarPubMed
Regan, T., & Woods, K. (2000). Teachers’ understandings of dyslexia: Implications for educational psychology practice. Educational Psychology in Practice, 16, 333347.CrossRefGoogle Scholar
Regier, D. A., Narrow, W. E., Clarke, D. E., et al. (2013). DSM-5 field trials in the United States and Canada, Part II: Test-retest reliability of selected categorical diagnoses. American Journal of Psychiatry, 170, 5970CrossRefGoogle ScholarPubMed
Rehfeld, D. M., Kirkpatrick, M., O’Guinn, N., & Renbarger, R. (2022). A meta-analysis of phonemic awareness instruction provided to children suspected of having a reading disability. Language, Speech, and Hearing Services in Schools, 53(4), 11771201.CrossRefGoogle ScholarPubMed
Reis, A., Araújo, S., Morais, I. S., & Faísca, L. (2020). Reading and reading-related skills in adults with dyslexia from different orthographic systems: A review and meta-analysis. Annals of Dyslexia, 70(3), 339368.CrossRefGoogle ScholarPubMed
Rendall, A. R., Tarkar, A., Contreras-Mora, H. M., LoTurco, J. J., & Fitch, R. H. (2017). Deficits in learning and memory in mice with a mutation of the candidate dyslexia susceptibility gene Dyx1c1. Brain and Language, 172, 3038.CrossRefGoogle ScholarPubMed
Reschly, D. (2005). Learning disabilities identification: Primary intervention, secondary intervention, and then what? Journal of Learning Disabilities, 38, 510515.CrossRefGoogle Scholar
Reschly, D. J., & Tilley, W. D. (1999). Reform trends and system design alternatives. In Reschly, D. J., Tilley, W. D., & Grimes, J. P. (eds.), Special Education in Transition: Functional Assessment and Noncategorical Programming (pp. 1948). Longmont, CO: Sopris West.Google Scholar
Rescorla, L. (2009). Age 17 language and reading outcomes in late-talking toddlers: Support for a dimensional perspective on language delay. Journal of Speech, Language, and Hearing Research, 52(1), 1630.CrossRefGoogle ScholarPubMed
Reynolds, C. R., & Shaywitz, S. E. (2009a). Response to intervention: Prevention and remediation, perhaps. Diagnosis, no. Child Development Perspectives, 3, 4447.CrossRefGoogle ScholarPubMed
Reynolds, C. R., & Shaywitz, S. E. (2009b). Response to intervention: Ready or not? Or, from wait-to-fail to watch-them-fail. School Psychology Quarterly, 24, 130145.CrossRefGoogle ScholarPubMed
Reynolds, D., & Nicolson, R. I. (2007). Follow-up of an exercise-based treatment for children with reading difficulties. Dyslexia, 13, 7896.CrossRefGoogle ScholarPubMed
Reynolds, D., Nicolson, R. I., & Hambly, H. (2003). Evaluation of an exercise-based treatment for children with reading difficulties. Dyslexia, 9, 4871.CrossRefGoogle ScholarPubMed
Riccio, C. A., Sullivan, J. R., & Cohen, M. J. (2010). Neuropsychological Assessment and Intervention for Childhood and Adolescent Disorders. Trenton, NJ: John Wiley and Sons.CrossRefGoogle Scholar
Rice, M., & Brooks, G. (2004). Developmental Dyslexia in Adults: A Research Review. London: NRDC.Google Scholar
Rice, M., Erbeli, F., Thompson, C. G., Sallese, M. R., & Fogarty, M. (2022). Phonemic awareness: A meta-analysis for planning effective instruction. Reading Research Quarterly, 57(4), 12591289.CrossRefGoogle Scholar
Rice, M., Erbeli, F., & Wijekumar, K. (2023). Phonemic awareness: Evidence-based instruction for students in need of intervention. Intervention in School and Clinic, 15.Google Scholar
Richards, T. L., Aylward, E. H., Berninger, V. W., et al. (2006). Individual fMRI activation in orthographic mapping and morpheme mapping after orthographic or morphological spelling treatment in child dyslexics. Journal of Neurolinguistics, 19, 5686.CrossRefGoogle Scholar
Richards, T. L., Aylward, E. H., Field, K. M., et al. (2006). Converging evidence for triple word form theory in children with dyslexia. Developmental Neuropsychology, 30(1), 547589.CrossRefGoogle ScholarPubMed
Richards, T. L., & Berninger, V. W. (2008). Abnormal fMRI connectivity in children with dyslexia during a phoneme task: Before but not after treatment. Journal of Neurolinguistics, 21, 294304.CrossRefGoogle Scholar
Richards, T. L., Berninger, V., Winn, W., et al. (2007). Functional MRI activation in children with and without dyslexia during pseudoword aural repeat and visual decode: Before and after treatment. Neuropsychology, 21, 732741.CrossRefGoogle ScholarPubMed
Richards, T. L., Berninger, V. W., Yagle, K. J., Abbott, R. D., & Peterson, D. J. (2017). Changes in DTI diffusivity and fMRI connectivity cluster coefficients for students with and without specific learning disabilities in written language: Brain’s response to writing instruction. Journal of Natural Sciences, 3.Google ScholarPubMed
Richards, T. L., Berninger, V. W., Yagle, K. J., Abbott, R. D., & Peterson, D. (2018). Brain’s functional network clustering coefficient changes in response to instruction (RTI) in students with and without reading disabilities: Multi-leveled reading brain’s RTI. Cogent Psychology, 5, 1424680.CrossRefGoogle ScholarPubMed
Richards, T. L., Corina, D. P., Serafini, S., et al. (2000). Effects of a phonologically driven treatment for dyslexia on lactate levels measured by proton MR spectroscopic imaging. American Journal of Neuroradiology, 21, 916922.Google ScholarPubMed
Richards, T. L., Dager, S. R., Corina, D., et al. (1999). Dyslexic children have abnormal brain lactate response to reading-related language tasks. American Journal of Neuroradiology, 20, 13931398.Google ScholarPubMed
Richards, T. L., Nagy, W., Abbott, R., & Berninger, V. (2016). Brain connectivity associated with cascading levels of language. Journal of Systems and Integrative Neuroscience, 2(3).CrossRefGoogle ScholarPubMed
Richardson, A. J. (2006). Omega-3 fatty acids in ADHD and related neurodevelopmental disorders. International Review of Psychiatry, 18, 155172.CrossRefGoogle ScholarPubMed
Richardson, A. J., Calvin, C. M., Clisby, C., et al. (2000). Fatty acid deficiency signs predict the severity of reading and related difficulties in dyslexic children. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 63(1–2), 6974.CrossRefGoogle ScholarPubMed
Richardson, A. J., Burton, J. R., Sewell, R. P., Spreckelsen, T. F., & Montgomery, P. (2012). Docosahexaenoic acid for reading, cognition and behavior in children aged 7–9 Years: A randomized, controlled trial (The DOLAB Study). PLoS ONE 7(9), e43909.CrossRefGoogle Scholar
Richardson, A. J., Cox, I. J., Sargentoni, J., & Puri, B. K. (1997). Abnormal cerebral phospholipid metabolism in dyslexia indicated by phosphorus-31 magnetic resonance spectroscopy. NMR in Biomedicine, 10, 309314.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Richardson, A. J., & Montgomery, P. (2005). The Oxford-Durham study: A randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics, 115, 13601366.CrossRefGoogle ScholarPubMed
Richardson, J. (2016). The top 5 things parents should know about the READ Act. International Dyslexia Association. https://dyslexiaida.org/the-top-5-things-parents-should-know-about-the-read-act/. Accessed November 13, 2023.Google Scholar
Richlan, F. (2014). Functional neuroanatomy of developmental dyslexia: The role of orthographic depth. Frontiers in Human Neuroscience, 8.CrossRefGoogle ScholarPubMed
Richlan, F. (2020). The functional neuroanatomy of developmental dyslexia across languages and writing systems. Frontiers in Psychology, 11, 155.CrossRefGoogle ScholarPubMed
Richlan, F., Kronbichler, M., & Wimmer, H. (2009). Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies. Human Brain Mapping, 30, 32993308.CrossRefGoogle Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2011). Meta-analyzing brain dysfunctions in dyslexic children and adults. Neuroimage, 56, 17351742.CrossRefGoogle ScholarPubMed
Richlan, F., Kronbichler, M., & Wimmer, H. (2013). Structural abnormalities in the dyslexic brain: A meta-analysis of voxel-based morphometry studies. Human Brain Mapping, 34, 30553065.CrossRefGoogle Scholar
Riddell, S., & Weedon, E. (2006). What counts as a reasonable adjustment? Dyslexic students and the concept of fair assessment. International Studies in Sociology of Education, 16(1), 5773.CrossRefGoogle Scholar
Riddick, B. (2000). An examination of the relationship between labeling and stigmatization with special reference to dyslexia. Disability and Society, 15, 653657.CrossRefGoogle Scholar
Riddick, B. (2001). Dyslexia and inclusion: Time for a social model of disability? International Studies in Sociology of Education, 11, 223236.CrossRefGoogle Scholar
Riddick, B. (2010). Living with Dyslexia: The Social and Emotional Consequences of Specific Learning Difficulties/Disabilities. London: Routledge.Google Scholar
Riddick, B., Farmer, M., & Sterling, C. (1997) Students and Dyslexia: Growing Up with a Specific Learning Difficulty. London: Whurr.Google Scholar
Ring, J., & Black, J. L. (2018). The multiple deficit model of dyslexia: What does it mean for identification and intervention? Annals of Dyslexia, 68(2), 104125.CrossRefGoogle ScholarPubMed
Rios, D. M., Correia Rios, M., Bandeira, I. D., et al. (2018). Impact of transcranial direct current stimulation on reading skills of children and adolescents with dyslexia. Child Neurology Open, 5, 2329048X18798255.CrossRefGoogle ScholarPubMed
Ritchey, K. D., & Goeke, J. L. (2006). Orton-Gillingham and Orton-Gillingham-based reading instruction: A review of the literature. The Journal of Special Education, 40(3), 171183.CrossRefGoogle Scholar
Riva, V., Marino, C., Giorda, R., Molteni, M., & Nobile, M. (2015). The role of DCDC2 genetic variants and low socioeconomic status in vulnerability to attention problems. European Child & Adolescent Psychiatry, 24, 309318.CrossRefGoogle ScholarPubMed
Roberts, A. E., Cox, G. F., Kimonis, V., Lamb, A., & Irons, M. (2004). Clinical presentation of 13 patients with subtelomeric rearrangements and a review of the literature. American Journal of Medical Genetics, 128A, 352363.CrossRefGoogle Scholar
Roberts, G. J., Cho, E., Garwood, J. D., et al. (2020). Reading interventions for students with reading and behavioral difficulties: A meta-analysis and evaluation of co-occurring difficulties. Educational Psychology Review, 32(1), 1747.CrossRefGoogle Scholar
Roberts, G., Torgesen, J. K., Boardman, A., & Scammacca, N. (2008). Evidence-based strategies for reading instruction of older students with learning disabilities. Learning Disabilities Research and Practice, 23, 6369.CrossRefGoogle Scholar
Robertson, C., & Salter, W. (1997). The Phonological Awareness Test. East Moline, IL: LinguiSystems.Google Scholar
Robichon, F., & Habib, M. (1998). Abnormal callosal morphology in male adult dyslexics: Relationships to handedness and phonological abilities. Brain and Language, 62, 127146.CrossRefGoogle ScholarPubMed
Rochelle, K. S., & Talcott, J. B. (2006). Impaired balance in developmental dyslexia? A meta-analysis of the contending evidence. Journal of Child Psychology and Psychiatry, 47, 11591166.CrossRefGoogle ScholarPubMed
Rodgers, B. (1983). The identification and prevalence of specific reading retardation. British Journal of Educational Psychology, 53(3), 369373.CrossRefGoogle ScholarPubMed
Roe, M. A., Martinez, J. E., Mumford, J. A., et al. (2018). Control engagement during sentence and inhibition fMRI tasks in children with reading difficulties. Cerebral Cortex, 28, 36973710.CrossRefGoogle ScholarPubMed
Roeske, D., Ludwig, K. U., Neuhoff, N., et al. (2011). First genome-wide association scan on neurophysiological endophenotypes points to trans-regulation effects on SLC2A3 in dyslexic children. Molecular Psychiatry, 16, 97107.CrossRefGoogle ScholarPubMed
Romani, C., Tsouknida, E., di Betta, A. M., & Olson, A. (2011). Reduced attentional capacity, but normal processing speed and shifting of attention in developmental dyslexia: Evidence from a serial task. Cortex, 47, 715733.CrossRefGoogle ScholarPubMed
Romeo, R. R., Christodoulou, J. A., Halverson, K. K., et al. (2018). Socioeconomic status and reading disability: Neuroanatomy and plasticity in response to intervention. Cerebral Cortex, 28(7), 22972312.CrossRefGoogle ScholarPubMed
Ronconi, L., Melcher, D., & Franchin, L. (2020). Investigating the role of temporal processing in developmental dyslexia: Evidence for a specific deficit in rapid visual segmentation. Psychonomic Bulletin & Review, 27(4), 724734.CrossRefGoogle ScholarPubMed
Rose, J. (2009). Identifying and Teaching Children and Young People with Dyslexia and Literacy Difficulties. The Rose Report. Nottingham: DCSF Publications.Google Scholar
Rose, L. T., & Rouhani, P. (2012). Influence of verbal working memory depends on vocabulary: Oral reading fluency in adolescents with dyslexia. Mind, Brain, and Education, 6, 19.CrossRefGoogle Scholar
Rosen, V., & Engle, R. W. (1997). Forward and backward serial recall. Intelligence, 25, 3747.CrossRefGoogle Scholar
Rosenberg, J., Pennington, B. F., Willcutt, E. G., & Olson, R. K. (2012). Gene by environment interactions influencing reading disability and the inattentive symptom dimension of attention deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry, 53(3), 243251.CrossRefGoogle ScholarPubMed
Rosheim, K. M., & Tamte, K. G. (2022). Impact of policy on literacy specialists’ work. Reading Psychology, 43(8), 576597.CrossRefGoogle Scholar
Rowe, A., Titterington, J., Holmes, J., Henry, L., & Taggart, L. (2019). Interventions targeting working memory in 4–11 year olds within their everyday contexts: A systematic review. Developmental Review, 52, 123.CrossRefGoogle ScholarPubMed
Rubenstein, K., Matsushita, M., Berninger, V. W., Raskind, W. H., & Wijsman, E. M. (2011). Genome scan for spelling deficits: Effects of verbal IQ on models of transmission and trait gene localization. Behavior Genetics, 41, 3142.CrossRefGoogle ScholarPubMed
Rubie-Davies, C. M., Blatchford, P., Webster, R., Koutsoubou, M., & Bassett, P. (2010). Enhancing learning? A comparison of teacher and teaching assistant interactions with pupils. School Effectiveness and School Improvement, 21, 429449.CrossRefGoogle Scholar
Rueckl, J. G., Paz-Alonso, P. M., Molfese, P. J., et al. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings of the National Academy of Sciences, 112, 15510–15515.CrossRefGoogle ScholarPubMed
Rufener, K. S., Krauel, K., Meyer, M., Heinze, H. J., & Zaehle, T. (2019). Transcranial electrical stimulation improves phoneme processing in developmental dyslexia. Brain Stimulation, 12, 930937.CrossRefGoogle ScholarPubMed
Ruiz-Martin, H., Portero-Tresserra, M., Martínez-Molina, A., & Ferrero, M. (2022). Tenacious educational neuromyths: Prevalence among teachers and an intervention. Trends in Neuroscience and Education, 100192.CrossRefGoogle ScholarPubMed
Rumsey, J. M., Andreason, P., Zametkin, A. J., et al. (1992). Failure to activate the left temporoparietal cortex in dyslexia. An oxygen 15 positron emission tomographic study. Archives of Neurology, 49, 527534.CrossRefGoogle ScholarPubMed
Rumsey, J. M., Casanova, M., Mannheim, G. B., et al. (1996). Corpus callosum morphology, as measured with MRI, in dyslexic men. Biological Psychiatry, 39, 769775.CrossRefGoogle ScholarPubMed
Rumsey, J. M., Donohue, B. C., Brady, D. R., et al. (1997). A magnetic resonance imaging study of planum temporale asymmetry in men with developmental dyslexia. Archives of Neurology, 54, 14811489.CrossRefGoogle ScholarPubMed
Russell-Freudenthal, D., Zaru, M. W., & Al Otaiba, S. (2023). Early literacy and multi-tiered systems of supports. In Cabell, S., Newman, S., & Patton Terry, N. (eds.), Handbook on the Science of Early Literacy (pp. 4359). New York: Guilford Press.Google Scholar
Rutter, M. (1978). Prevalence and types of dyslexia. In Benton, A. L., & Pearl, D. (eds.), Dyslexia: An Appraisal of Current Knowledge (pp. 528). New York: Oxford University Press.Google Scholar
Rutter, M., & Pickles, A. (2016). Annual Research Review: Threats to the validity of child psychiatry and psychology. Journal of Child Psychology and Psychiatry, 75(3), 398416.CrossRefGoogle Scholar
Ryder, D., & Norwich, B. (2018). What’s in a name? Perspectives of dyslexia assessors working with students in the UK higher education sector. Dyslexia, 24(2), 109127.CrossRefGoogle Scholar
Ryder, D., & Norwich, B. (2019). UK higher education lecturers’ perspectives of dyslexia, dyslexic students and related disability provision. Journal of Research in Special Educational Needs, 19(3), 161172.CrossRefGoogle Scholar
Saatcioglu, A., & Skrtic, T. M. (2019). Categorization by organizations: Manipulation of disability categories in a racially desegregated school district. American Journal of Sociology, 125(1), 184260.CrossRefGoogle Scholar
Sadusky, A., Berger, E. P., Reupert, A. E., & Freeman, N. C. (2022). Methods used by psychologists for identifying dyslexia: A systematic review. Dyslexia, 28(2), 132148.CrossRefGoogle ScholarPubMed
Saksida, A., Iannuzzi, S., Bogliotti, C., et al. (2016). Phonological skills, visual attention span, and visual stress in developmental dyslexia. Developmental Psychology, 52(10), 1503.CrossRefGoogle ScholarPubMed
Sala, G., & Gobet, F. (2020a). Working memory training in typically developing children: A multilevel meta-analysis. Psychonomic Bulletin & Review, 27(3), 423434.CrossRefGoogle ScholarPubMed
Sala, G., & Gobet, F. (2020b). Cognitive and academic benefits of music training with children: A multilevel meta-analysis. Memory & Cognition, 48(8), 14291441.CrossRefGoogle ScholarPubMed
Salehinejad, M. A., Ghanavati, E., Glinski, B., Hallajian, A. H., & Azarkolah, A. (2022). A systematic review of randomized controlled trials on efficacy and safety of transcranial direct current stimulation in major neurodevelopmental disorders: ADHD, autism, and dyslexia. Brain and Behavior, 12, e2724.CrossRefGoogle ScholarPubMed
Salmelin, R., Service, E., Kiesilä, P., Uutela, K., & Salonen, O. (1996). Impaired visual word processing in dyslexia revealed with magnetoencephalography. Annals of Neurology, 40, 157162.CrossRefGoogle ScholarPubMed
Samuelsson, S., Byrne, B., Olson, R. K., et al. (2008). Response to early literacy instruction in the United States, Australia, and Scandinavia: A behavioral-genetic analysis. Learning and Individual Differences, 18, 289295.CrossRefGoogle ScholarPubMed
Sanchez, V. M., & O’Connor, R. E. (2015). Building tier 3 intervention for long-term slow growers in grades 3–4: A pilot study. Learning Disabilities Research & Practice, 30(4), 171181.CrossRefGoogle Scholar
Sand, L. A., & Bolger, D. J. (2019). The neurobiological strands of developmental dyslexia: What we know and what we don’t know. In Kilpatrick, D. A., Joshi, R. M., & Wagner, R. K. (eds.), Reading Development and Difficulties (pp. 233270). Cham, Switzerland: Springer.CrossRefGoogle Scholar
Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., et al. (2011). Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams Syndrome region, are strongly associated with autism. Neuron, 70, 863885.CrossRefGoogle ScholarPubMed
Sanders, S. J., Murtha, M. T., Gupta, A. R., et al. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485, 237241.CrossRefGoogle ScholarPubMed
Sanetti, L. M. H., & Luh, H. J. (2019). Fidelity of implementation in the field of learning disabilities. Learning Disability Quarterly, 0731948719851514.Google Scholar
Sanfilippo, J., Ness, M., Petscher, Y., et al. (2020). Reintroducing dyslexia: Early identification and implications for pediatric practice. Pediatrics, 146(1), e20193046CrossRefGoogle ScholarPubMed
Satel, S., & Lilienfeld, S. O. (2013). Brainwashed: The Seductive Appeal of Mindless Neuroscience. New York: Basic Books.Google Scholar
Savage, R. S. (2004). Motor skills, automaticity and developmental dyslexia: A review of the research literature. Reading and Writing, 17, 301324.CrossRefGoogle Scholar
Savage, R. S., Frederickson, N., Goodwin, R., et al. (2005). Relationships among rapid digit naming, phonological processing, motor automaticity, and speech perception in poor, average, and good readers and spellers. Journal of Learning Disabilities, 38, 1228.CrossRefGoogle ScholarPubMed
Savage, R. S., Lavers, N., & Pillay, V. (2007). Working memory and reading difficulties: What we know and what we don’t know about the relationship. Educational Psychology Review, 19, 185221.CrossRefGoogle Scholar
Savitz, R. S., Allen, A. A., & Brown, C. (2021). Variations in RTI literacy implementation in Grades 6–12: A national study. Literacy Research and Instruction, 124.Google Scholar
Sayeski, K. L., & Hurford, D. P. (2022). A framework for examining reading-related education research and the curious case of Orton-Gillingham. Learning Disabilities: A Multidisciplinary Journal, 27(2).Google Scholar
Sayeski, K. L., Reno, E. A., & Thoele, J. M. (2022). Specially designed instruction: Operationalizing the delivery of special education services. Exceptionality, 31(3), 198210.Google Scholar
Sayeski, K. L., & Zirkel, P. A. (2021). Orton-Gillingham and the IDEA: Analysis of the frequency and outcomes of case law. Annals of Dyslexia, 71(3), 483500.CrossRefGoogle ScholarPubMed
Saygin, Z. M., Osher, D. E., Norton, E. S., et al. (2016). Connectivity precedes function in the development of the visual word form area. Nature Neuroscience, 19, 12501255.CrossRefGoogle ScholarPubMed
Scammacca, N. K., Roberts, G. J., Cho, E., et al. (2016). A century of progress: Reading interventions for students in grades 4–12, 1914–2014. Review of Educational Research, 86(3), 756800.CrossRefGoogle ScholarPubMed
Scammacca, N. K., Roberts, G., Vaughn, S., & Stuebing, K. K. (2015). A meta-analysis of interventions for struggling readers in grades 4–12: 1980–2011. Journal of Learning Disabilities, 48(4), 369390.CrossRefGoogle ScholarPubMed
Scammacca, N., Roberts, G., Vaughn, S., et al. (2007). Reading Interventions for Adolescent Struggling Readers: A Meta-Analysis with Implications for Practice. Portsmouth, NH: RMC Research Corporation Center on Instruction.Google Scholar
Scanlon, D. M. (2011). Response to intervention as an assessment approach. In McGill-Franzen, A., & Allington, R. L. (eds.), Handbook of Reading Disability Research (pp. 139148). New York: Routledge.Google Scholar
Scanlon, D. M., & Anderson, K. L. (2020). Using context as an assist in word solving: The contributions of 25 years of research on the interactive strategies approach. Reading Research Quarterly, 55, S19–S34.CrossRefGoogle ScholarPubMed
Scanlon, D. M., Gelzheiser, L. M., Vellutino, F. R., Schatschneider, C., & Sweeney, J. M. (2008). Reducing the incidence of early reading difficulties: Professional development for classroom teachers versus direct interventions for children. Learning and Individual Differences, 18, 346359.CrossRefGoogle Scholar
Scanlon, D. M., Vellutino, F. R., Small, S. G., Fanuele, D., & Sweeney, J. M. (2005). Severe reading difficulties: Can they be prevented? A comparison of prevention and intervention approaches. Exceptionality, 13, 209227.CrossRefGoogle Scholar
Scarborough, H. S., & Brady, S. A. (2002). Toward a common terminology for talking about speech and reading: A glossary of the “phon” words and some related terms. Journal of Literacy Research, 34, 299336.CrossRefGoogle Scholar
Scerri, T. S., Fisher, S. E., Francks, C., et al. (2004). Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK. Journal of Medical Genetics, 41, 853857.CrossRefGoogle ScholarPubMed
Scerri, T. S., Macpherson, E., Martinelli, A., et al. (2017). The DCDC2 deletion is not a risk factor for dyslexia. Translational Psychiatry, 7, e1182.CrossRefGoogle Scholar
Scerri, T. S., Paracchini, S., Morris, A., et al. (2010). Identification of candidate genes for dyslexia susceptibility on chromosome 18. PLoS ONE, 5(10).CrossRefGoogle ScholarPubMed
Schelbe, L., Pryce, J., Petscher, Y., et al. (2021). Dyslexia in the context of social work: Screening and early intervention. Families in Society, 103(3), 269280.CrossRefGoogle Scholar
Schlaggar, B. L., & McCandliss, B. D. (2007). Development of neural systems for reading. Annual Review of Neuroscience, 30, 475503.CrossRefGoogle ScholarPubMed
Schlesinger, N. W., & Gray, S. (2017). The impact of multisensory instruction on learning letter names and sounds, word reading, and spelling. Annals of Dyslexia, 67(3), 219258.CrossRefGoogle ScholarPubMed
Schmahmann, J. D., & Pandya, D. N. (1997). The cerebrocerebellar system. International Review of Neurobiology, 41, 3160.CrossRefGoogle ScholarPubMed
Schmidt, W. H., Burroughs, N. A., Zoido, P., & Houang, R. T. (2015). The role of schooling in perpetuating educational inequality: An international perspective. Educational Researcher, 44(7), 371386.CrossRefGoogle Scholar
Schneider, W. J., & Kaufman, A. (2017). Let’s not do away with comprehensive cognitive assessments just yet. Archives of Clinical Neuropsychology, 32, 820.Google Scholar
Schneps, M. H., Thomson, J. M., Chen, C., Sonnert, G., & Pomplun, M. (2013). E-readers are more effective than paper for some with dyslexia. PloS one, 8(9), e75634.CrossRefGoogle ScholarPubMed
Schön, D., & Tillmann, B. (2015). Short-and long-term rhythmic interventions: Perspectives for language rehabilitation. Annals of the New York Academy of Sciences, 1337(1), 3239.CrossRefGoogle ScholarPubMed
Schueler, M., Braun, D. A., Chandrasekar, G., et al. (2015). DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting Wnt signaling. American Journal of Human Genetics, 96, 8192.CrossRefGoogle Scholar
Schulte-Körne, G., & Bruder, J. (2010). Clinical neurophysiology of visual and auditory processing in dyslexia: A review. Clinical Neurophysiology, 121, 17941809.CrossRefGoogle ScholarPubMed
Schulte-Körne, G., Deimel, W., Bartling, J., & Remschmidt, H. (1998). Auditory processing and dyslexia: Evidence for a specific speech processing deficit. Neuroreport, 9, 337340.CrossRefGoogle ScholarPubMed
Schulz, R., Gerloff, C., & Hummel, F. C. (2013). Non-invasive brain stimulation in neurological diseases. Neuropharmacology, 64, 579587.CrossRefGoogle ScholarPubMed
Schumacher, J., Hoffmann, P., Schmal, C., Schulte-Korne, G., & Nothen, M. M. (2007). Genetics of dyslexia: The evolving landscape. Journal of Medical Genetics, 44, 289297.CrossRefGoogle ScholarPubMed
Schurz, M., Wimmer, H., Richlan, F., Ludersdorfer, P., Klackl, J., & Kronbichler, M. (2015). Resting-state and task-based functional brain connectivity in developmental dyslexia. Cerebral Cortex, 25(10), 35023514.CrossRefGoogle ScholarPubMed
Schwaighofer, M., Fischer, F., & Bühner, M. (2015) Does working memory training transfer? A meta-analysis including training conditions as moderators. Educational Psychologist, 50(2), 138166.CrossRefGoogle Scholar
Schwartz, A. E., Hopkins, B. G., & Stiefel, L. (2021). The effects of special education on the academic performance of students with learning disabilities. Journal of Policy Analysis and Management, 40(2), 480520.CrossRefGoogle Scholar
Schwartz, S. (2019). Prominent literacy expert denies dyslexia exists; says to “shoot” whoever wrote law on it. Education Week. December 11. https://bit.ly/3T9HzLE. Accessed December 3, 2023.Google Scholar
Schwartz, S. J., Lilienfeld, S. O., Meca, A., & Sauvigné, K. C. (2016). The role of neuroscience within psychology: A call for inclusiveness over exclusiveness. American Psychologist, 71(1), 5270.CrossRefGoogle Scholar
Scientific Learning Corporation. (1999). National Field Trial Results: Results of Fast ForWord Training for Children with Language and Reading Problems. Berkeley, CA: Scientific Learning Corporation.Google Scholar
Scientific Learning Corporation. (2003). Scientifically based reading research and the Fast ForWord Products: Research implication for effective language and reading intervention. MAPS for Learning: Research Report, 7, 17.Google Scholar
Seibt, O., Brunoni, A. R., Huang, Y., & Bikson, M. (2015). The pursuit of DLPFC: Non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS). Brain Stimulation, 8, 590602.CrossRefGoogle ScholarPubMed
Seidenberg, M. S. (2005). Connectionist models of word reading. Current Directions in Psychological Science, 14, 238242.CrossRefGoogle Scholar
Seidenberg, M. S. (2017). Language at the Speed of Sight: How We Read, Why So Many Cannot, and What Can Be Done about It. New York: Basic Books.Google Scholar
Seidenberg, M. S., Cooper Borkenhagen, M., & Kearns, D. M. (2020). Lost in translation? Challenges in connecting reading science and educational practice. Reading Research Quarterly, 55, S119–S130.CrossRefGoogle Scholar
Seidenberg, M. S., Farry-Thorn, M., & Zevin, J. D. (2022). Models of word reading. In Snowling, M. J., Hulme, C., & Nation, K. (eds.), The Science of Reading: A Handbook. 2nd edition (pp. 3659). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Sela, I. (2012). The relationships between motor learning, the visual system and dyslexia. reading, writing, mathematics and the developing brain. Reading, Writing, Mathematics and the Developing Brain: Listening to Many Voices, 6, 177118.Google Scholar
Selemon, L. D., & Goldman-Rakic, P. S. (1999). The reduced neuropil hypothesis: A circuit based model of schizophrenia. Biological Psychiatry, 45, 1725.CrossRefGoogle ScholarPubMed
Selzam, S., Dale, P. S., Wagner, R. K., et al. (2017). Genome-wide polygenic scores predict reading performance throughout the school years. Scientific Studies of Reading, 21, 334349.CrossRefGoogle ScholarPubMed
SENCo Forum. (2005). Points of view from the SENCo Forum: Is it dyslexia? British Journal of Special Education, 32, 165.CrossRefGoogle Scholar
Serry, T. A., & Hammond, L. (2015). What’s in a word? Australian experts’ knowledge, views and experiences using the term dyslexia. Australian Journal of Learning Difficulties, 20(2), 143161.CrossRefGoogle Scholar
Seymour, P. H. K., Aro, M., & Erskine, J. M. (2003). Foundation literacy acquisition in European orthographies. British Journal of Psychology, 94, 143174.CrossRefGoogle ScholarPubMed
Shafik, N. (2017). Point of view: In experts we trust? – As access to information burgeons, experts are more crucial than ever. Finance & Development, 54(3). https://bit.ly/47XrVae. Accessed December 3, 2023.Google Scholar
Shakespeare, T. (2013). Disability Rights and Wrongs. 2nd edition. London: RoutledgeCrossRefGoogle Scholar
Shanahan, T. (2020). What constitutes a science of reading instruction? Reading Research Quarterly, 55(S1), S235–S247.CrossRefGoogle Scholar
Shanahan, T. (2021). A review of the evidence on Tier 1 instruction for readers with dyslexia. Reading Research Quarterly, 58(2), 268284.CrossRefGoogle Scholar
Shankweiler, D., & Crain, S. (1986). Language mechanisms and reading disorders: A modular approach. Cognition, 24, 139168.CrossRefGoogle ScholarPubMed
Shao, S., Niu, Y., Zhang, X., et al. (2016). Opposite associations between individual KIAA0319 polymorphisms and developmental dyslexia risk across populations: A stratified meta-analysis by the study population. Scientific Reports, 6, 30454.CrossRefGoogle ScholarPubMed
Shapleske, J., Rossell, S. L., & Woodruff, P. W. (1999). The planum temporale: A systematic, quantitative review of its structural, functional and clinical significance. Brain Research Review, 29, 2649.CrossRefGoogle ScholarPubMed
Share, D. L. (1995). Phonological recoding and self-teaching: Sine qua non of reading acquisition. Cognition, 55, 151218.CrossRefGoogle ScholarPubMed
Share, D. L. (1999). Phonological recoding and orthographic learning: A direct test of the self-teaching hypothesis. Journal of Experimental Child Psychology, 72, 95129.CrossRefGoogle ScholarPubMed
Share, D. L. (2004). Orthographic learning at a glance: On the time course and developmental onset of self-teaching. Journal of Experimental Child Psychology, 87, 267298.CrossRefGoogle Scholar
Share, D. L. (2008). On the anglocentricities of current reading research and practice: The perils of overreliance on an “outlier” orthography. Psychological Bulletin, 134, 584615.CrossRefGoogle Scholar
Share, D. L. (2021a). Common misconceptions about the phonological deficit theory of dyslexia. Brain Sciences, 11(11), 1510.CrossRefGoogle ScholarPubMed
Share, D. L. (2021b). Is the science of reading just the science of reading English? Reading Research Quarterly, 56, S391–S402.CrossRefGoogle Scholar
Share, D. L., & Stanovich, K. E. (1995). Cognitive processes in early reading development: Accommodating individual differences into a model of acquisition. Issues in Education, 1, 157.Google Scholar
Sharma, P., Sagar, R., Deep, R., Mehta, M., & Subbiah, V. (2020). Assessment for familial pattern and association of polymorphisms in KIAA0319 gene with specific reading disorder in children from North India visiting a tertiary care centre: A case-control study. Dyslexia, 26, 104114.CrossRefGoogle ScholarPubMed
Sharpe, D., & Poets, S. (2020). Meta-analysis as a response to the replication crisis. Canadian Psychology, 61(4), 377387.CrossRefGoogle Scholar
Shaywitz, B. A., & Shaywitz, S. E. (2020). The American experience: Towards a 21st century definition of dyslexia. Oxford Review of Education, 46(4), 454471.CrossRefGoogle Scholar
Shaywitz, B. A., Shaywitz, S. E., Blachman, B. A., et al. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biological Psychiatry, 55, 926933.CrossRefGoogle ScholarPubMed
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., et al. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52, 101110.CrossRefGoogle ScholarPubMed
Shaywitz, B. A., Skudlarski, P., Holahan, J. M., et al. (2007). Age-related changes in reading systems of dyslexic children. Annals of Neurology, 61, 363370.CrossRefGoogle ScholarPubMed
Shaywitz, S. E. (1996). Dyslexia. Scientific American, 275(5), 98104.CrossRefGoogle ScholarPubMed
Shaywitz, S. E. (2005). Overcoming Dyslexia. New York: Alfred Knopf.Google Scholar
Shaywitz, S. E., Escobar, M. D., Shaywitz, B. A., Fletcher, J. M., & Makuch, R. (1992). Evidence that dyslexia may represent the lower tail of a normal distribution of reading ability. New England Journal of Medicine, 326(3), 145150.CrossRefGoogle ScholarPubMed
Shaywitz, S. E., Morris, R., & Shaywitz, B. A. (2008). The education of dyslexic children from childhood to young adulthood. Annual Review of Psychology, 59, 451475CrossRefGoogle ScholarPubMed
Shaywitz, S. E., & Shaywitz, B. A. (2005). Dyslexia (specific reading disability). Biological Psychiatry, 57, 13011309.CrossRefGoogle ScholarPubMed
Shaywitz, S. E., & Shaywitz, B. A. (2008). Paying attention to reading: The neurobiology of reading and dyslexia. Development and Psychopathology, 20, 13291349.CrossRefGoogle ScholarPubMed
Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., et al. (1998). Functional disruption in the organization of the brain for reading in dyslexia. Proceedings of the National Academy of Sciences, 95, 26362641.CrossRefGoogle ScholarPubMed
Shaywitz, S. E., & Shaywitz, J. (2020). Overcoming Dyslexia. 2nd edition. London: Sheldon Press.Google Scholar
Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138(4), 628654.CrossRefGoogle ScholarPubMed
Shovman, M. M., & Ahissar, M. (2006). Isolating the impact of visual perception on dyslexics’ reading ability. Vision Research, 46, 35143525.CrossRefGoogle ScholarPubMed
Shulver, K. D., & Badcock, N. A. (2021). Chasing the anchor: A systematic review and meta-analysis of perceptual anchoring deficits in developmental dyslexia. Journal of Speech, Language, and Hearing Research, 64(8), 32893302.CrossRefGoogle ScholarPubMed
Sideridis, G. D., Simos, P., Mouzaki, A., Stamovlasis, D., & Georgiou, G. K. (2019). Can the relationship between rapid automatized naming and word reading be explained by a catastrophe? Empirical evidence from students with and without reading difficulties. Journal of Learning Disabilities, 52(1), 5970.CrossRefGoogle Scholar
Siegel, L. S., & Ryan, E. B. (1989). The development of working memory in normally achieving and subtypes of learning disabled children. Child Development, 60, 973980.CrossRefGoogle ScholarPubMed
Siegel, L. S., Hurford, D. P., Metsala, J., & Odegard, T. N. (2022). The demise of the discrepancy definition of dyslexia: Commentary on Snowling, Hulme, and Nation. International Journal for Research in Learning Disabilities, 5(2), 4954.Google Scholar
Siegel, L., & Hurford, D. (2019). The case against discrepancy models in the evaluation of dyslexia. Perspectives of Language and Literacy, 45(1), 2328.Google Scholar
Siegelman, N., Rueckl, J. G., van den Bunt, M., et al. (2022). How you read affects what you gain: Individual differences in the functional organization of the reading system predict intervention gains in children with reading disabilities. Journal of Educational Psychology, 114(4), 855869.CrossRefGoogle Scholar
Siegelman, N., van den Bunt, M. R., Ming Lo, J. C., Rueckl, J. G., & Pugh, K. (2021). Theory-driven classification of reading difficulties from fMRI data using Bayesian latent-mixture models. Neuroimage, 242, 118476.CrossRefGoogle ScholarPubMed
Sihvonen, A. J., Virtala, P., Thiede, A., Laasonen, M., & Kujala, T. (2021). Structural white matter connectometry of reading and dyslexia. Neuroimage, 241, 118411.CrossRefGoogle ScholarPubMed
Silani, G., Frith, U., Demonet, J. F., et al. (2005). Brain abnormalities underlying altered activation in dyslexia: A voxel based morphometry study. Brain, 128, 24532461.CrossRefGoogle ScholarPubMed
Silva, S., Faísca, L., Araújo, S., et al. (2016). Too little or too much? Parafoveal preview benefits and parafoveal load costs in dyslexic adults. Annals of Dyslexia, 66(2), 187201.CrossRefGoogle ScholarPubMed
Silver, L. B. (1987). A review of the current controversial approaches for treating learning disabilities. Journal of Learning Disabilities, 20, 498504.CrossRefGoogle ScholarPubMed
Simons, D. J., Boot, W. R., Charness, N., et al. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103186.CrossRefGoogle Scholar
Simos, P. G., Breier, J. I., Fletcher, J. M., et al. (2000). Brain activation profiles in dyslexic children during non-word reading: A magnetic source imaging study. Neuroscience Letters, 290, 6165.CrossRefGoogle Scholar
Simos, P. G., Breier, J. I., Wheless, J. W., Maggio, W. W., Fletcher, J. M., Castillo, E. M., & Papanicolaou, A. C. (2000). Brain mechanisms for reading: The role of the superior temporal gyrus in word and pseudoword naming. Neuroreport, 11, 24432447.CrossRefGoogle ScholarPubMed
Simos, P. G., Fletcher, J. M., Bergman, E., et al. (2002). Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology, 58, 12031213.CrossRefGoogle ScholarPubMed
Simos, P. G., Fletcher, J. M., Sarkari, S., et al. (2007). Altering the brain circuits for reading through intervention: A magnetic source imaging study. Neuropsychology, 21, 485496.CrossRefGoogle ScholarPubMed
Simos, P. G., Rezaie, R., Fletcher, J. M., et al. (2011). Functional disruption of the brain mechanism for reading: Effects of comorbidity and task difficulty among children with developmental learning problems. Neuropsychology, 25, 520534.CrossRefGoogle ScholarPubMed
Simos, P. G., Rezaie, R., Papanicolaou, A. C., & Fletcher, J. M. (2014). Does IQ affect the functional brain network involved in pseudoword reading in students with reading disability? A magnetoencephalography study. Frontiers in Human Neuroscience, 7, 932.CrossRefGoogle ScholarPubMed
Simpson, J., & Everatt, J. (2005). Reception class predictors of literacy skills. British Journal of Educational Psychology, 75, 171188.CrossRefGoogle ScholarPubMed
Singer, A., Lutz, A., Escher, J., & Halladay, A. (2023). A full semantic toolbox is essential for autism research and practice to thrive. Autism Research, 16(3), 497501.CrossRefGoogle ScholarPubMed
Singer, J. (1999). “Why can’t you be normal for once in your life?” From a “problem with no name” to the emergence of a new category of difference. In Corker, M., & French, S. (eds.), Disability Discourse (pp. 5970). Buckingham: Open University Press.Google Scholar
Singleton, C. H. (2009a). Visual stress and dyslexia. In Reid, G. (ed.), The Routledge Companion to Dyslexia (pp. 4357). New York: Routledge.Google Scholar
Singleton, C. H. (2009b). Intervention for Dyslexia: A Review of Published Evidence on the Impact of Specialist Dyslexia Teaching. Hull: University of Hull.Google Scholar
Singleton, C. H. (2012). Visual stress and its relationship to dyslexia. In Stein, J., & Kapoula, Z. (eds.), Visual Aspects of Dyslexia (pp. 91110). Oxford: Oxford University Press.CrossRefGoogle Scholar
Siok, W. T., Perfetti, C. A., Jin, Z., & Tan, L. H. (2004). Biological abnormality of impaired reading is constrained by culture. Nature, 431, 7176.CrossRefGoogle ScholarPubMed
Siok, W. T., Spinks, J. A., Jin, Z., & Tan, L. H. (2009). Developmental dyslexia is characterized by the co-existence of visuospatial and phonological disorders in Chinese children. Current Biology, 19, R890–R892.CrossRefGoogle ScholarPubMed
Sisk, V. F., Burgoyne, A. P., Sun, J., Butler, J. L., & Macnamara, B. N. (2018). To what extent and under which circumstances are growth mind-sets important to academic achievement? Two meta-analyses. Psychological Science, 29(4), 549571.CrossRefGoogle ScholarPubMed
Skeide, M. A., & Friederici, A. D. (2016). The ontogeny of the cortical language network. Nature Reviews Neuroscience, 17, 323332.CrossRefGoogle ScholarPubMed
Skiba, T., Landi, N., Wagner, R., & Grigorenko, E. L. (2011). In search of the perfect phenotype: An analysis of linkage and association studies of reading and reading-related processes. Behavior Genetics, 41, 630.CrossRefGoogle ScholarPubMed
Skottun, B. C. (2000). The magnocellular deficit theory of dyslexia: The evidence from contrast sensitivity. Vision Research, 40, 111127.CrossRefGoogle ScholarPubMed
Skottun, B. C. (2011). On the use of visual motion perception to assess magnocellular integrity. Journal of Integrative Neuroscience, 10(1), 1532.CrossRefGoogle ScholarPubMed
Skottun, B. C. (2015). The need to differentiate the magnocellular system from the dorsal stream in connection with dyslexia. Brain and Cognition, 95, 6266.CrossRefGoogle ScholarPubMed
Skottun, B. C. (2016). A few remarks on the utility of visual motion perception to assess the integrity of the magnocellular system or the dorsal stream. Cortex, 79, 155158.CrossRefGoogle ScholarPubMed
Skottun, B. C., & Skoyles, J. R. (2006a). Attention, reading and dyslexia. Clinical & Experimental Optometry, 89, 241245.CrossRefGoogle ScholarPubMed
Skottun, B. C., & Skoyles, J. R. (2006b). Is coherent motion an appropriate test for magnocellular sensitivity? Brain and Cognition, 61, 172180.CrossRefGoogle ScholarPubMed
Skottun, B. C., & Skoyles, J. R. (2008). Dyslexia and rapid visual processing: A commentary. Journal of Clinical and Experimental Neuropsychology, 30, 666673.CrossRefGoogle ScholarPubMed
Skottun, B. C., & Skoyles, J. R. (2010a). L- and M-cone ratios and magnocellular sensitivity in reading. International Journal of Neuroscience, 120, 241244.CrossRefGoogle ScholarPubMed
Skottun, B. C., & Skoyles, J. R. (2010b). Temporal order judgment in dyslexia – Task difficulty or temporal processing deficiency? Neuropsychologia, 48, 22262229.CrossRefGoogle ScholarPubMed
Skottun, B. C., & Skoyles, J. R. (2011). Dyslexia, magnocellular integrity and rapidly presented stimuli. Nature Precedings, 11.Google Scholar
Skoyles, J. R., & Skottun, B. C. (2004). On the prevalence of magnocellular deficits in the visual system of non-dyslexic individuals. Brain and Language, 88, 7982.CrossRefGoogle ScholarPubMed
Slavin, R. E., Lake, C., Chambers, B., Cheung, A., & Davis, S. (2009). Effective reading programs for the elementary grades: A best-evidence synthesis. Review of Educational Research, 79, 13911466.CrossRefGoogle Scholar
Slavin, R. E., Lake, C., Davis, S., & Madden, N. A. (2011). Effective programs for struggling readers: A best-evidence synthesis. Educational Research Review, 6, 126.CrossRefGoogle Scholar
Sleeman, M., Everatt, J., Arrow, A., & Denston, A. (2022a). The identification and classification of struggling readers based on the simple view of reading. Dyslexia, 28(3), 256275.CrossRefGoogle ScholarPubMed
Sleeman, M., Everatt, J., Arrow, A., & Denston, A. (2022b). Evaluation of the “Three Steps in Screening for Dyslexia” assessment protocol designed for New Zealand teachers. New Zealand Journal of Educational Studies, 118.Google Scholar
Sleeter, C. E. (1987). Why is there learning disabilities? A critical analysis of the birth of the field with its social context. In Popkewitz, T. (ed.), The Formation of School Subjects: The Struggle for Creating an American Institution (pp. 210237). London: Routledge.Google Scholar
Slomowitz, R. F., Narayan, A. J., Pennington, B. F., et al. (2021). In search of cognitive promotive and protective factors for word reading. Scientific Studies of Reading, 25(5), 397416.CrossRefGoogle ScholarPubMed
Smalle, E. H., Szmalec, A., Bogaerts, L., et al. (2019). Literacy improves short-term serial recall of spoken verbal but not visuospatial items – Evidence from illiterate and literate adults. Cognition, 185, 144150.CrossRefGoogle Scholar
Smith, F. (1971). Understanding Reading: A Psycholinguistic Analysis of Reading and Learning to Read. New York: Holt, Rinehart & Winston.Google Scholar
Smith, J. L. M., Nelson, N. J., Smolkowski, K., et al. (2016). Examining the efficacy of a multitiered intervention for at-risk readers in grade 1. Elementary School Journal, 116(4), 549573.CrossRefGoogle Scholar
Smith, S. D. (2007). Genes, language development, and language disorders. Mental Retardation and Developmental Disabilities, 13, 95105.CrossRefGoogle ScholarPubMed
Smith, S. D., Kimberling, W. J., Pennington, B. F., & Lubs, H. A. (1983). Specific reading disability: Identification of an inherited form through linkage analyses. Science, 219, 13451347.CrossRefGoogle Scholar
Smolkowski, K., & Cummings, K. D. (2016). Evaluation of the DIBELS diagnostic system for the selection of native and proficient English speakers at risk of reading difficulties. Journal of Psychoeducational Assessment, 34(2), 103118.CrossRefGoogle Scholar
Snow, C. E., & Juel, C. (2005). Teaching children to read: What do we know about how to do it? In Snowling, M. J., & Hulme, C. (eds.), The Science of Reading: A Handbook (pp. 501520). Oxford: Blackwell.CrossRefGoogle Scholar
Snow, C. E., Burns, M. S., & Griffin, P. (1998). Preventing Reading Difficulties in Young Children. Washington, DC: National Academy Press.Google Scholar
Snowling, M. J. (2008). Specific disorders and broader phenotypes: The case of dyslexia. Quarterly Journal of Experimental Psychology, 61, 142156.CrossRefGoogle ScholarPubMed
Snowling, M. J. (2010). Dyslexia. In Cooper, C. L., Field, J., Goswami, U., Jenkins, R., & Sahakian, B. J. (eds.), Mental Capital and Mental Wellbeing (pp. 775783). Oxford: Blackwell.Google Scholar
Snowling, M. J. (2013). Early identification and interventions for dyslexia: A contemporary view. Journal of Research in Special Educational Needs, 13(1), 714.CrossRefGoogle ScholarPubMed
Snowling, M. J. (2015). Open dialogue peer review: A response to Elliott. The Psychology of Education Review, 39(1), 2021.CrossRefGoogle Scholar
Snowling, M. J. (2019). Dyslexia: A Very Short Introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
Snowling, M. J., Gooch, D., McArthur, G., & Hulme, C. (2018). Language skills, but not frequency discrimination, predict reading skills in children at risk of dyslexia. Psychological Science, 29, 12701282.CrossRefGoogle Scholar
Snowling, M. J., Hayiou-Thomas, M. E., Nash, H. M., & Hulme, C. (2020). Dyslexia and developmental language disorder: Comorbid disorders with distinct effects on reading comprehension. Journal of Child Psychology and Psychiatry, 61(6), 672680.CrossRefGoogle ScholarPubMed
Snowling, M. J., & Hulme, C. (1994). The development of phonological skills in children. Philosophical Transactions of the Royal Society B, 346, 2126.Google Scholar
Snowling, M. J., & Hulme, C. (2003). A critique of claims from Reynolds, Nicolson & Hambly (2003) that DDAT is an effective treatment for reading problems: “Lies, damned lies and (inappropriate) statistics.” Dyslexia, 9, 17.CrossRefGoogle Scholar
Snowling, M. J., & Hulme, C. (2021). Annual Research Review: Reading disorders revisited – The critical importance of oral language. Journal of Child Psychology and Psychiatry, 62(5), 635653.CrossRefGoogle ScholarPubMed
Snowling, M. J., & Melby-Lervåg, M. (2016). Oral language deficits in familial dyslexia: A meta-analysis and review. Psychological Bulletin, 142(5), 498.CrossRefGoogle ScholarPubMed
Snowling, M. J., Moll, K., & Hulme, C. (2021). Language difficulties are a shared risk factor for both reading disorder and mathematics disorder. Journal of Experimental Child Psychology, 202, 105009.CrossRefGoogle ScholarPubMed
Snowling, M. J., Nash, H. M., Gooch, D. C., et al. (2019). Developmental outcomes for children at high risk of dyslexia and children with developmental language disorder. Child Development, 90, e548–e564CrossRefGoogle ScholarPubMed
Snowling, M. J., Hulme, C., & Nation, K. (2020). Defining and understanding dyslexia: Past present and future. Oxford Review of Education, 46(4), 501513.CrossRefGoogle ScholarPubMed
Snyder, H. R., Miyake, A., & Hankin, B. L. (2015). Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Frontiers in Psychology, 6, 328.CrossRefGoogle Scholar
Sokolowski, H. M., & Peters, L. (2022). Persistence and fade-out of responses to reading and mathematical interventions. In Skeide, M. A. (ed.), The Cambridge Handbook of Dyslexia and Dyscalculia (pp. 362377). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Solari, E., Petscher, Y., & Hall, C. (2021). What does science say about Orton-Gillingham interventions? An explanation and commentary on the Stevens et al. (2021) meta-analysis. https://doi.org/10.31234/osf.io/mcw82CrossRefGoogle Scholar
Soler, J. (2010). Dyslexia lessons: The politics of dyslexia and reading problems. In Hall, K., Goswami, U., Harrison, C., Ellis, S., & Soler, J. (eds.), Interdisciplinary Perspectives on Learning to Read (pp. 179192). London: Routledge.Google Scholar
Solity, J. (2022). Instructional Psychology and Teaching Reading: An analysis of the evidence underpinning government policy and practice. Review of Education, 10(1), e3349.CrossRefGoogle Scholar
Solomyak, O., & Marantz, A. (2010). Evidence for early morphological decomposition in visual word recognition. Journal of Cognitive Neuroscience, 22, 20422057.CrossRefGoogle ScholarPubMed
Song, M., & Miskel, C. (2002). Interest Groups in National Reading Policy: Perceived Influence and Beliefs on Teaching Reading. Ann Arbor, MI: University of Michigan, Center for the Improvement of Early Reading Achievement.Google Scholar
Song, S., Georgiou, G. K., Su, M., & Hua, S. (2016). How well do phonological awareness and rapid automatized naming correlate with Chinese reading accuracy and fluency? A meta-analysis. Scientific Studies of Reading, 20(2), 99123.CrossRefGoogle Scholar
Sonuga-Barke, E. J. S. (2016). Distinguishing between the challenges posed by surface and deep forms of heterogeneity to diagnostic systems: Do we need a new approach to subtyping of child and adolescent psychiatric disorders? Journal of Child Psychology and Psychiatry, 57(1), 13.CrossRefGoogle Scholar
Soroli, E., Szenkovits, G., & Ramus, F. (2010). Exploring dyslexics’ phonological deficit III: Foreign speech perception and production. Dyslexia, 16, 318340.CrossRefGoogle ScholarPubMed
Spector, J. E. (2005). Instability of double-deficit subtypes among at-risk first grade students. Reading Psychology, 26, 285312.CrossRefGoogle Scholar
Speece, D. L. (2005). Hitting the moving target known as reading development: Some thoughts on screening children for secondary interventions. Journal of Learning Disabilities, 38, 487493.CrossRefGoogle ScholarPubMed
Sperry, D. E., Sperry, L. L., & Miller, P. J. (2019). Reexamining the verbal environments of children from different socioeconomic backgrounds. Child Development, 90(4), 13031318CrossRefGoogle ScholarPubMed
Spiegel, J. A., Goodrich, J. M., Morris, B. M., Osborne, C. M., & Lonigan, C. J. (2021). Relations between executive functions and academic outcomes in elementary school children: A meta-analysis. Psychological Bulletin, 147(4), 329.CrossRefGoogle ScholarPubMed
Spinelli, D., De Luca, M., Judica, A., & Zoccolotti, P. (2002). Crowding effects on word identification in developmental dyslexia. Cortex, 38, 179200.CrossRefGoogle ScholarPubMed
Spironelli, C., & Angrilli, A. (2006). Language lateralization in phonological, semantic and orthographic tasks: A slow evoked potential study. Behavioural Brain Research, 175, 296304.CrossRefGoogle ScholarPubMed
Spironelli, C., Angrilli, A., & Pertile, M. (2008). Language plasticity in aphasics after recovery: Evidence from slow evoked potentials. Neuroimage, 40, 912922.CrossRefGoogle ScholarPubMed
Spironelli, C., Penolazzi, B., & Angrilli, A. (2008). Dysfunctional hemispheric asymmetry of theta and beta EEG activity during linguistic tasks in developmental dyslexia. Biological Psychology, 77, 123131.CrossRefGoogle ScholarPubMed
Sprick, J. T., Bouck, E. C., Berg, T. R., & Coughlin, C. (2020). Attendance and specific learning disability identification: A survey of practicing school psychologists. Learning Disabilities Research & Practice, 35(3), 139149.CrossRefGoogle Scholar
Stagg, S. D., & Kiss, N. (2021). Room to read: The effect of extra-large letter spacing and coloured overlays on reading speed and accuracy in adolescents with dyslexia. Research in Developmental Disabilities, 119, 104065.CrossRefGoogle ScholarPubMed
Stahl, S. A., & Miller, P. D. (1989). Whole language and language experience approaches for beginning reading: A quantitative research synthesis. Review of Educational Research, 59, 87116.CrossRefGoogle Scholar
Stainthorp, R., Stuart, M., Powell, D., Quinlan, P., & Garwood, H. (2010). Visual processing deficits in children with slow RAN performance. Scientific Studies of Reading, 14, 266292.CrossRefGoogle Scholar
Stankiewicz, P., & Lupski, J. R. (2010). Structural variation in the human genome and its role in disease. Annual Review of Medicine, 61, 437455.CrossRefGoogle ScholarPubMed
Stanley, C., Heo, J., Petscher, Y., Al Otaiba, S., & Wanzek, J. (2023). Direct impact of mindset on reading-based outcomes in upper elementary students with reading difficulties. Frontiers in Education, 8.CrossRefGoogle Scholar
Stanovich, K. E. (1980). Toward an interactive-compensatory model of individual differences in the development of reading fluency. Reading Research Quarterly, 16, 3271.CrossRefGoogle Scholar
Stanovich, K. E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 21, 360407.CrossRefGoogle Scholar
Stanovich, K. E. (1988). Explaining the differences between the dyslexic and the garden-variety poor reader: The phonological-core variable-difference model. Journal of Learning Disabilities, 21, 590604.CrossRefGoogle ScholarPubMed
Stanovich, K. E. (2000). Progress in Understanding Reading: Scientific Foundations and New Frontiers. New York: Guilford Press.Google Scholar
Stanovich, K. E. (2005). The future of a mistake: Will discrepancy measurement continue to make the learning disabilities field a pseudoscience? Learning Disability Quarterly, 28, 103106.CrossRefGoogle Scholar
Stanovich, K. E., & Siegel, L. S. (1994). Phenotypic performance profile of children with reading disabilities: A regression-based test of the phonological-core variable-difference model. Journal of Educational Psychology, 86, 2453.CrossRefGoogle Scholar
Stanovich, K. E., & Stanovich, P. J. (1997). Further thoughts on aptitude/achievement discrepancy. Educational Psychology in Practice, 13, 38.CrossRefGoogle Scholar
Stanovich, K. E., (1991). Discrepancy definitions of reading disability: Has intelligence led us astray? Reading Research Quarterly, 26, 729.CrossRefGoogle Scholar
Steacy, L. M., Kirby, J. R., Parrila, R., & Compton, D. L. (2014). Classification of double deficit groups across time: An analysis of group stability from kindergarten to second grade. Scientific Studies of Reading, 18(4), 255273.CrossRefGoogle Scholar
Stefanac, N., Spencer-Smith, M., Brosnan, M., et al. (2019). Visual processing speed as a marker of immaturity in lexical but not sublexical dyslexia. Cortex, 120, 567581.CrossRefGoogle Scholar
Stein, J. (2008). The neurobiological basis of dyslexia. In Reid, H., Fawcett, A., Manis, F., & Siegel, L. (eds.), The Sage Handbook of Dyslexia (pp. 5376). London: Sage.CrossRefGoogle Scholar
Stein, J. (2012). The magnocellular theory of dyslexia. In Benasich, A. A., & Fitch, R. H. (eds.), Developmental Dyslexia: Early Precursors, Neurobehavioral Markers, and Biological Substrates (pp. 32–45). Baltimore: Paul H. Brookes Publishing.Google Scholar
Stein, J. (2018). What is developmental dyslexia? Brain Sciences, 8(2), 26.CrossRefGoogle ScholarPubMed
Stein, J. (2019). The current status of the magnocellular theory of developmental dyslexia. Neuropsychologia, 130, 6677.CrossRefGoogle ScholarPubMed
Stein, J. (2022a). The visual basis of reading and reading difficulties. Frontiers in Neuroscience, 16.CrossRefGoogle ScholarPubMed
Stein, J. (2022b). Developmental dyslexia – A useful concept? Asia Pacific Journal of Developmental Differences, 9(2), 158171.Google Scholar
Stein, J. (2023). Theories about developmental dyslexia. Brain Sciences, 13.CrossRefGoogle ScholarPubMed
Stein, J., & Talcott, J. B. (1999). Impaired neuronal timing in developmental dyslexia – The magnocellular hypothesis. Dyslexia, 5(2), 5977.3.0.CO;2-F>CrossRefGoogle Scholar
Stein, J., Talcott, J. B., & Walsh, V. (2000). Controversy about the visual magnocellular deficit in developmental dyslexics. Trends in Cognitive Science, 4, 209211.CrossRefGoogle ScholarPubMed
Stein, J., & Walsh, V. (1997). To see but not to read: The magnocellular theory of dyslexia. Trends in Neuroscience, 20, 147152.CrossRefGoogle Scholar
Steinberg, E., & Andrist, C. G. (2012). Dyslexia comes to Congress: A call to action. International Dyslexia Association. https://dyslexiaida.org. Accessed April 23, 2023.Google Scholar
Steinbrink, C., Vogt, K., Kastrup, A., et al. (2008). The contribution of white and gray matter differences to developmental dyslexia: Insights from DTI and VBM at 3.0 T. Neuropsychologia, 46, 31703178.CrossRefGoogle ScholarPubMed
Steinle, P. K., Stevens, E., & Vaughn, S. (2022). Fluency interventions for struggling readers in grades 6 to 12: A research synthesis. Journal of Learning Disabilities, 55(1), 321.CrossRefGoogle ScholarPubMed
Stephenson, J. (2009). A case study of unfounded concepts underpinning controversial practices: Lost in “Space Dyslexia.” International Journal of Disability, Development and Education, 56, 3747.CrossRefGoogle Scholar
Stephenson, S. (1904). Congenital word blindness. Lancet, 2, 827828.CrossRefGoogle Scholar
Stephenson, S. (1907). Six cases of congenital word-blindness affecting three generations of one family. Ophthalmoscope, 5, 482484.Google Scholar
Sternberg, R. J. (2021). Adaptive Intelligence: Surviving and Thriving in Times of Uncertainty. New York: Cambridge University Press.CrossRefGoogle Scholar
Sternberg, R. J., & Grigorenko, E. L. (1999). Our Labeled Children: What Every Parent and Teacher Needs to Know about Learning Disabilities. Reading, MA: Perseus Publishing Group.Google Scholar
Sternberg, R. J., & Grigorenko, E. L. (2002a). Dynamic Testing. New York: Cambridge University Press.Google Scholar
Sternberg, R. J., & Grigorenko, E. L. (2002b). Difference scores in the identification of children with learning disabilities: It’s time to use a different method. Journal of School Psychology, 40, 6583.CrossRefGoogle Scholar
Sternberg, R. J. (2004). Four alternative futures for education in the United States: It’s our choice. School Psychology Review, 33(1), 6777.CrossRefGoogle Scholar
Stevens, E. A., Austin, C., Moore, C., et al. (2021). Current state of the evidence: Examining the effects of Orton-Gillingham reading interventions for students with or at risk for word-level reading disabilities. Exceptional Children, 87(4), 397417.CrossRefGoogle ScholarPubMed
Stevens, E. A., Walker, M. A., & Vaughn, S. (2017). The effects of reading fluency interventions on the reading fluency and reading comprehension performance of elementary students with learning disabilities: A synthesis of the research from 2001 to 2014. Journal of Learning Disabilities, 50(5), 576590.CrossRefGoogle ScholarPubMed
Stevenson, J. (2011). Commentary: A contribution to evidence-informed education policy – Reflections on Strong, Torgerson, Torgerson, and Hulme. Journal of Child Psychology and Psychiatry, 52, 236237.CrossRefGoogle ScholarPubMed
Stoodley, C. J., & Stein, J. F. (2011). The cerebellum and dyslexia. Cortex, 47, 101116.CrossRefGoogle ScholarPubMed
Stoodley, C. J., & Stein, J. F. (2013). Cerebellar function in developmental dyslexia. Cerebellum, 12(2), 267276.CrossRefGoogle ScholarPubMed
Stoodley, C. J., Fawcett, A. J., Nicolson, R. I., & Stein, J. F. (2006). Balancing and pointing tasks in dyslexic and control adults. Dyslexia, 12, 276288.CrossRefGoogle ScholarPubMed
Strauss, A. A., & Lehtinen, L. E. (1947). Psychopathology and Education of the Brain-Injured Child. New York: Grune & Stratton.Google Scholar
Strong, G. K., Torgerson, C. J., Torgerson, D., & Hulme, C. (2011). A systematic meta-analytic review of evidence for the effectiveness of the “Fast ForWord” language intervention program. Journal of Child Psychology and Psychiatry, 52, 236237.CrossRefGoogle ScholarPubMed
Studdert-Kennedy, M., & Mody, M. (1995). Auditory temporal perception deficits in the reading impaired: A critical review of the evidence. Psychonomic Bulletin and Review, 2, 508514.CrossRefGoogle ScholarPubMed
Stuebing, K. K., Barth, A. E., Molfese, P. J., Weiss, B., & Fletcher, J. M. (2009). IQ is not strongly related to response to reading instruction: A meta-analytic interpretation. Exceptional Children, 76, 3151.CrossRefGoogle Scholar
Stuebing, K. K., Fletcher, J. M., Branum-Martin, L., & Francis, D. J. (2012). Evaluation of the technical adequacy of three methods for identifying specific learning disabilities based on cognitive discrepancies. School Psychology Review, 41, 322.CrossRefGoogle ScholarPubMed
Stuebing, K. K., Fletcher, J. M., LeDoux, J. M., et al. (2002). Validity of IQ-discrepancy classifications of reading disabilities: A meta-analysis. American Educational Research Journal, 39, 469518.CrossRefGoogle Scholar
Stuebing, K. K., Barth, A. E., Trahan, L. H., et al. (2015). Are child cognitive characteristics strong predictors of responses to intervention? A meta-analysis. Review of Educational Research, 85(3), 395429.CrossRefGoogle ScholarPubMed
Suggate, S. P. (2016). A meta-analysis of the long-term effects of phonemic awareness, phonics, fluency, and reading comprehension interventions. Journal of Learning Disabilities, 49(1), 7796.CrossRefGoogle ScholarPubMed
Suhr, J. A., & Johnson, E. E. (2022). First do no harm: Ethical issues in pathologizing normal variations in behavior and functioning. Psychological Injury and Law, 15(3), 253267.CrossRefGoogle Scholar
Sun, Y., Gao, Y., Zhou, Y., et al. (2014). Association study of developmental dyslexia candidate genes DCDC2 and KIAA0319 in Chinese population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 165, 627634.CrossRefGoogle Scholar
Surányi, Z., Csépe, V., Richardson, U., et al. (2009). Sensitivity to rhythmic parameters in dyslexic children: A comparison of Hungarian and English. Reading and Writing, 22, 4156.CrossRefGoogle Scholar
Suttle, C. M., Lawrenson, J. G., & Conway, M. L. (2018). Efficacy of coloured overlays and lenses for treating reading difficulty: An overview of systematic reviews. Clinical and Experimental Optometry, 101(4), 514520.CrossRefGoogle ScholarPubMed
Swanson, H. L. (1999). Reading research for students with LD: A meta-analysis of intervention outcomes. Journal of Learning Disabilities, 32, 504532.CrossRefGoogle ScholarPubMed
Swanson, H. L., & Hsieh, C.-J. (2009). Reading disabilities in adults: A selective meta-analysis of the literature. Review of Educational Research, 79, 13621390.CrossRefGoogle Scholar
Swanson, H. L., Hoskyn, M., & Lee, C. (1999). Interventions for Students with Learning Disabilities: A Meta-Analysis of Treatment Outcomes. New York: Guilford.Google Scholar
Swanson, H. L., Trainin, G., Necoechea, D. M., & Hammill, D. D. (2003). Rapid naming, phonological awareness, and reading: A meta-analysis of the correlation evidence. Review of Educational Research, 73, 407440.CrossRefGoogle Scholar
Swanson, H. L., Zheng, X., & Jerman, O. (2009). Working memory, short-term memory, and reading disabilities: A selective meta-analysis of the literature. Journal of Learning Disabilities, 42, 260287.CrossRefGoogle ScholarPubMed
Szadokierski, I., Burns, M. K., & McComas, J. J. (2017). Predicting intervention effectiveness from reading accuracy and rate measures through the instructional hierarchy: Evidence for a skill-by-treatment interaction. School Psychology Review, 46(2), 190200.CrossRefGoogle Scholar
Szalkowski, C. E., Fiondella, C. F., Truong, D. T., et al. (2013). The effects of KIAA0319 knockdown on cortical and subcortical anatomy in male rats. International Journal of Developmental Neuroscience, 31(2), 116122.CrossRefGoogle ScholarPubMed
Szenkovits, G., & Ramus, F. (2005). Exploring dyslexics’ phonological deficit I: Lexical vs. sub-lexical and input vs. output processes. Dyslexia, 11, 253268.CrossRefGoogle ScholarPubMed
Szenkovits, G., Darma, Q., Darcy, I., & Ramus, F. (2016). Exploring dyslexics’ phonological deficit II: Phonological grammar. First Language, 36(3), 316337.CrossRefGoogle Scholar
Szűcs, D., & Ioannidis, J. P. (2020). Sample size evolution in neuroimaging research: An evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals. NeuroImage, 221, 117164.CrossRefGoogle Scholar
Taipale, M., Kaminen, N., Nopola-Hemmi, J., et al. (2003). A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proceedings of the National Academy of Sciences of the United States of America, 100, 11553–11558.Google ScholarPubMed
Talcott, J. B., Witton, C., Hebb, G. S., et al. (2002). On the relationship between dynamic visual and auditory processing and literacy skills; results from a large primary-school study. Dyslexia, 8, 204225.CrossRefGoogle ScholarPubMed
Talcott., J. B., Hansen, P. C., Willis-Owen, C., et al. (1998). Visual magnocellular impairment in adult developmental dyslexics. Neuro-ophthalmology, 20, 187201.CrossRefGoogle Scholar
Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9, 182198.CrossRefGoogle ScholarPubMed
Tallal, P., & Gaab, N. (2006). Dynamic auditory processing, musical experience and language development. Trends in Neurosciences, 29, 382390.CrossRefGoogle ScholarPubMed
Tallal, P., Miller, S. L., Bedi, G., et al. (1996). Language comprehension in language-learning impaired children improved with acoustically modified speech. Science, 271, 8184.CrossRefGoogle ScholarPubMed
Tambyraja, S. R., Farquharson, K., & Justice, L. (2020). Reading risk in children with speech sound disorder: Prevalence, persistence, and predictors. Journal of Speech, Language, and Hearing Research, 63(11), 37143726.CrossRefGoogle ScholarPubMed
Tan, Y., Chanoine, V., Cavalli, E., Anton, J. L., & Ziegler, J. C. (2022). Is there evidence for a noisy computation deficit in developmental dyslexia? Frontiers of Human Neuroscience, 16, 919465.CrossRefGoogle ScholarPubMed
Tan, Z., Wei, H., Song, X., et al. (2022). Positron emission tomography in the neuroimaging of autism spectrum disorder: A review. Frontiers in Neuroscience, 16.CrossRefGoogle ScholarPubMed
Tanaka, H., Black, J. M., Hulme, C., et al. (2011). The brain basis of the phonological deficit in dyslexia is independent of IQ. Psychological Science, 22(11), 14421451.CrossRefGoogle ScholarPubMed
Tanaka, H., & Hoeft, F. (2017). Time to revisit reading discrepancies in twice exceptional students. The Examiner. International Dyslexia Association. https://bit.ly/47DKP65. Accessed May 29, 2023.Google Scholar
Tang, J., Peng, P., Cha, K., & Zhao, J. (2023). Visual attention span deficits in developmental dyslexia: A meta-analysis. Research in Developmental Disabilities, 141, 104590.CrossRefGoogle ScholarPubMed
Tannock, R., Frijters, J. C., Martinussen, R., et al. (2018). Combined modality intervention for ADHD with comorbid reading disorders: A proof of concept study. Journal of Learning Disabilities, 51(1), 5572.CrossRefGoogle ScholarPubMed
Tansey, M. (1991). Wechsler (WISC-R) changes following treatment of learning disabilities via EEG biofeedback training in a private practice setting. Australian Journal of Psychology, 34, 147153.CrossRefGoogle Scholar
Taran, N., Farah, R., DiFrancesco, M., et al. (2022). The role of visual attention in dyslexia: Behavioral and neurobiological evidence. Human Brain Mapping, 43, 17201737.CrossRefGoogle ScholarPubMed
Tarkar, A., Loges, N. T., Slagle, C. E., et al. (2013). DYX1C1 is required for axonemal dynein assembly and ciliary motility [Article]. Nature Genetics, 45, 9951003.CrossRefGoogle ScholarPubMed
Taskov, T., & Dushanova, J. (2020). Reading-network in developmental dyslexia before and after visual training. Symmetry, 12(11), 1842.CrossRefGoogle Scholar
Taylor, J., Roehrig, A. D., Soden Hensler, B., Connor, C. M., & Schatschneider, C. (2010). Teacher quality moderates the genetic effects on early reading. Science, 328, 512514.CrossRefGoogle ScholarPubMed
Taylor, J. S. H., Rastle, K., & Davis, M. H. (2013). Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies. Psychological Bulletin, 139, 766791.CrossRefGoogle Scholar
Taylor, W. P., Miciak, J., Fletcher, J. M., & Francis, D. J. (2017). Cognitive discrepancy models for specific learning disabilities identification: Simulations of psychometric limitations. Psychological Assessment, 29(4), 446457.CrossRefGoogle ScholarPubMed
Temple, E., Deutsch, G. K., Poldrack, R. A., et al. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 100, 28602865.CrossRefGoogle ScholarPubMed
Temple, E., Poldrack, R. A., Salidis, J., et al. (2001). Disrupted neural responses to phonological and orthographic processing in dyslexic children: An fMRI study. Neuroreport, 12, 299307.CrossRefGoogle ScholarPubMed
Theodoridou, D., Christodoulides, P., Zakopoulou, V., & Syrrou, M. (2021). Developmental dyslexia: Environment matters. Brain Sciences, 11(6), 782.CrossRefGoogle ScholarPubMed
Thiede, A., Glerean, E., Kujala, T., & Parkkonen, L. (2020). Atypical MEG inter-subject correlation during listening to continuous natural speech in dyslexia. Neuroimage, 216.CrossRefGoogle ScholarPubMed
Thomas, C. J. (1905). Congenital “word-blindness” and its treatment. Ophthalmoscope, 3, 380385.Google Scholar
Thomas, T., Litwin, G., Francis, D. J., & Grigorenko, E. L. (2023). Exploring genetic and neural risk of specific reading disability within a nuclear twin family case study: A translational clinical application. Journal of Personalized Medicine, 13, 156.CrossRefGoogle ScholarPubMed
Thompson, C., Bacon, A. M., & Auburn, T. (2015). Disabled or differently-enabled? Dyslexic identities in online forum postings. Disability & Society, 30(9), 13281344.CrossRefGoogle Scholar
Thompson, P. A., Hulme, C., Nash, H. M., et al. (2015). Developmental dyslexia: Predicting individual risk. Journal of Child Psychology and Psychiatry, 56(9), 976987.CrossRefGoogle ScholarPubMed
Thompson, T. M., Sharfi, D., Lee, M., et al. (2013). Comparison of whole-genome DNA methylation patterns in whole blood, saliva, and lymphoblastoid cell lines. Behavior Genetics, 43, 168176.CrossRefGoogle ScholarPubMed
Thomson, J. M., Leong, V., & Goswami, U. (2013). Auditory processing interventions and developmental dyslexia: A comparison of phonemic and rhythmic approaches. Reading and Writing, 26(2), 139161.CrossRefGoogle Scholar
Thomson, M. (1990). Developmental Dyslexia. London: Whurr.Google Scholar
Thomson, M. (2003). Monitoring dyslexics’ intelligence and attainments: A follow-up study. Dyslexia, 9, 317.CrossRefGoogle ScholarPubMed
Thomson, M. (2009). The Psychology of Dyslexia: A Handbook for Teachers. 2nd edition. Oxford: Wiley-Blackwell.Google Scholar
Thornton, K. E., & Carmody, D. P. (2005). Electroencephalogram biofeedback for reading disability and traumatic brain injury. Child and Adolescent Psychiatric Clinics of North America, 14, 137162.CrossRefGoogle ScholarPubMed
Timms, H., & Heimans, J. (2018). New Power. New York: Doubleday Press.Google Scholar
Tindal, G., Nese, J. F. T., Stevens, J. J., & Alonzo, J. (2016). Growth on oral reading fluency measures as a function of special education and measurement sufficiency. Remedial and Special Education, 37, 2840.CrossRefGoogle Scholar
Toffalini, E., Giofrè, D., Pastore, M., et al. (2021). Dyslexia treatment studies: A systematic review and suggestions on testing treatment efficacy with small effects and small samples. Behavior Research Methods, 53(5), 19541972.CrossRefGoogle ScholarPubMed
Tønnessen, F. E. (1995) On defining “dyslexia.” Scandinavian Journal of Educational Research, 39, 139156.CrossRefGoogle Scholar
Tønnessen, F. E. (1997). How can we best define “dyslexia”? Dyslexia, 3, 7892.3.0.CO;2-2>CrossRefGoogle Scholar
Torgesen, J. K. (2004). Lessons learned from research on interventions for students who have difficulty learning to read. In McCardle, P., & Chhabra, V. (eds.), The Voice of Evidence in Reading Research (pp. 355382). Baltimore: Brookes.Google Scholar
Torgesen, J. K. (2005). Recent discoveries on remedial interventions for children with dyslexia. In Snowling, M. J., & Hulme, C. (eds.), The Science of Reading: A Handbook (pp. 521537). Oxford: Blackwell.CrossRefGoogle Scholar
Torgesen, J. K., Alexander, A. W., Wagner, R. K., et al. (2001). Intensive remedial instruction for children with severe reading disabilities: Immediate and long-term outcomes from two instructional approaches. Journal of Learning Disabilities, 34, 3358.CrossRefGoogle ScholarPubMed
Torgesen, J. K., Rashotte, C. A., & Alexander, A. W. (2001). Principles of fluency instruction in reading: Relationships with established empirical outcomes. In Wolf, M. (ed.), Dyslexia, Fluency, and the Brain (pp. 333355). Parkton, MD: York.Google Scholar
Torgesen, J. K., Foorman, B. R., & Wagner, R. K. (no date) Dyslexia: A brief for educators, parents, and legislators in Florida. FCRR Technical Report #8. Florida Center for Reading Research. https://files.eric.ed.gov/fulltext/ED542605.pdfGoogle Scholar
Torppa, M., Parrila, R., Niemi, P., et al. (2013). The double deficit hypothesis in the transparent Finnish orthography: A longitudinal study from kindergarten to Grade 2. Reading and Writing: An Interdisciplinary Journal, 26(8), 13531380.CrossRefGoogle Scholar
Toste, J. R. (2016). How does the magic happen? Preparing teachers to meet the needs of students with dyslexia. The Huffington Post.Google Scholar
Toste, J. R., Didion, L., Peng, P., Filderman, M. J., & McClelland, A. M. (2020). A meta-analytic review of the relations between motivation and reading achievement for K–12 students. Review of Educational Research, 90(3), 420456.CrossRefGoogle Scholar
Townend, J. (2000). Phonological awareness and other foundational skills of literacy. In Townend, J., & Turner, M. (eds.), Dyslexia in Practice: A Guide for Teachers (pp. 1–29). London: Kluwer.CrossRefGoogle Scholar
Tran, C., Gagnon, F., Wigg, K. G., et al. (2013). A family-based association analysis and meta-analysis of the reading disabilities candidate gene DYX1C1. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 162, 146156.CrossRefGoogle Scholar
Tran, C., Wigg, K. G., Zhang, K., et al. (2014). Association of the ROBO1 gene with reading disabilities in a family-based analysis. Genes, Brain, and Behavior, 13, 430438.CrossRefGoogle Scholar
Tressoldi, P. E., Lonciari, I., & Vio, C. (2000). Treatment of specific developmental reading disorders, derived from single- and dual-route models. Journal of Learning Disabilities, 33, 278285.CrossRefGoogle ScholarPubMed
Tridas, E. Q., Petscher, Y., Stanley, C., Sanfillippo, J., & Gaab, N. (2023). Pediatric early analysis of risk for literacy problems: Draft (PEARL-D). https://doi.org/10.31219/osf.io/hdxgfCrossRefGoogle Scholar
Troia, G. A., & Whitney, S. D. (2003). A close look at the efficacy of Fast ForWord Language for children with academic weaknesses. Contemporary Educational Psychology, 28, 465494.CrossRefGoogle Scholar
Truong, D. T., Adams, A. K., Paniagua, S., et al. (2019). Multivariate genome-wide association study of rapid automatised naming and rapid alternating stimulus in Hispanic American and African-American youth. Journal of Medical Genetics, 56(8), 557566.CrossRefGoogle ScholarPubMed
Tsujimoto, K. C., Boada, R., Gottwald, S., et al. (2019). Causal attribution profiles as a function of reading skills, hyperactivity, and inattention. Scientific Studies of Reading, 23(3), 254272.CrossRefGoogle ScholarPubMed
Tsujimoto, K. C., Frijters, J. C., Boada, R., et al. (2018). Achievement attributions are associated with specific rather than general learning delays. Learning and Individual Differences, 64, 821.CrossRefGoogle ScholarPubMed
Tunmer, W. E. (2008). Recent developments in reading intervention research: Introduction to the special issue. Reading and Writing: An Interdisciplinary Journal, 21, 299316.CrossRefGoogle Scholar
Tunmer, W. E. (2011). Foreword. In Brady, S. A., Braze, D., & Fowler, C. A. (eds.), Explaining Individual Differences in Reading: Theory and Evidence (pp. ix–xiii). New York: Psychology Press.Google Scholar
Tunmer, W. E., & Chapman, J. W. (2003). The reading recovery approach to preventive early intervention. As good as it gets? Reading Psychology, 24, 337360.CrossRefGoogle Scholar
Tunmer, W. E., & Greaney, K. (2010). Defining dyslexia. Journal of Learning Disabilities, 43, 229243.CrossRefGoogle ScholarPubMed
Tunmer, W. E., & Hoover, W. A. (2019). The cognitive foundations of learning to read: A framework for preventing and remediating reading difficulties. Australian Journal of Learning Difficulties, 24(1), 7593.CrossRefGoogle Scholar
Tunmer, W. E., & Nicholson, T. (2011). The development and teaching of word recognition skill. In Kamil, M. L., Pearson, P. D., Moje, E. B., & Afflerbach, P. (eds.), Handbook of Reading Research: Vol. 4 (pp. 405–431). London: Routledge.Google Scholar
Tunmer, W. E., & Prochnow, J. E. (2009). Cultural relativism and literacy education: Explicit teaching based on specific learning needs is not deficit theory. In Openshaw, R., & Rata, E. (eds.), Thinking inside the Square: Political and Cultural Conformity in New Zealand (pp. 154–190). Auckland: Pearson Education.Google Scholar
Tunmer, W. E., Greaney, K. T., & Prochnow, J. E. (2015). Pedagogical constructivism in New Zealand literacy education: A flawed approach to teaching reading. In Tunmer, W. E., & Chapman, J. W. (eds.), Excellence and Equity in Literacy Education (pp. 121–144). London: Palgrave Macmillan.CrossRefGoogle Scholar
Turesky, T. K., Sanfilippo, J., Zuk, J., et al. (2022). Home language and literacy environment and its relationship to socioeconomic status and white matter structure in infancy. Brain Structure and Function, 227(8), 26332645.CrossRefGoogle ScholarPubMed
Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. Neuroimage, 16, 765780.CrossRefGoogle ScholarPubMed
Turker, S., & Hartwigsen, G. (2021). Exploring the neurobiology of reading through non-invasive brain stimulation: A review. Cortex, 141, 497521.CrossRefGoogle ScholarPubMed
Turker, S., & Hartwigsen, G. (2022). The use of noninvasive brain stimulation techniques to improve reading difficulties in dyslexia: A systematic review. Human Brain Mapping, 43(3), 11571173.CrossRefGoogle ScholarPubMed
Ulfarsson, M. O., Walters, G. B., Gustafsson, O., et al. (2017). 15q11.2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia. Translational Psychiatry, 7, e1109.CrossRefGoogle ScholarPubMed
US Department of Education. (2004). Individuals with Disabilities Education Improvement Act of 2004 (IDEA). Washington, DC.Google Scholar
Vadasy, P. F., Sanders, E. A., & Abbott, R. D. (2008). Effects of supplemental early reading intervention at 2-year follow-up: Reading skill growth patterns and predictors. Scientific Studies of Reading, 12, 5189.CrossRefGoogle Scholar
Vaessen, A., & Blomert, L. (2010). Long-term cognitive dynamics of fluent reading development. Journal of Experimental Child Psychology, 105, 213231.CrossRefGoogle ScholarPubMed
Vaessen, A., Gerretsen, P., & Blomert, L. (2009). Naming problems do not reflect a second independent core deficit in dyslexia: Double deficits explored. Journal of Experimental Child Psychology, 103, 202221.CrossRefGoogle Scholar
Valdois, S. (2022). The visual-attention span deficit in developmental dyslexia: Review of evidence for a visual-attention-based deficit. Dyslexia, 28(4), 397415.CrossRefGoogle ScholarPubMed
Valdois, S., Bidet-Ildei, C., Lassus-Sangosse, D., et al. (2011). A visual processing but no phonological disorder in a child with mixed dyslexia. Cortex, 47, 11971218.CrossRefGoogle Scholar
Valdois, S., Lassus-Sangosse, D., & Lobier, M. (2012). Impaired letter-string processing in developmental dyslexia: What visual-to-phonology code mapping disorder? Dyslexia, 18, 7793.CrossRefGoogle ScholarPubMed
Valdois, S., Reilhac, C., Ginestet, E., & Line Bosse, M. (2021). Varieties of cognitive profiles in poor readers: Evidence for a VAS-impaired subtype. Journal of Learning Disabilities, 54(3), 221233.CrossRefGoogle ScholarPubMed
van Atteveldt, N., Formisano, E., Goebel, R., & Blomert, L. (2004). Integration of letters and speech sounds in the human brain. Neuron, 43, 271282.CrossRefGoogle ScholarPubMed
van Bergen, E., de Jong, P. F., Plakas, A., Maassen, B., & van der Leij, A. (2012). Child and parental literacy levels within families with a history of dyslexia. Journal of Child Psychology and Psychiatry, 53, 2836.CrossRefGoogle ScholarPubMed
van Bergen, E., Hart, S. A., Latvala, A., et al. (2022). Literacy skills seem to fuel literacy enjoyment, rather than vice versa. Developmental Science, e13325.Google ScholarPubMed
van Bergen, E., Snowling, M. J., de Zeeuw, E. L., et al. (2018). Why do children read more? The influence of reading ability on voluntary reading practices. Journal of Child Psychology and Psychiatry, 59(11), 12051214.CrossRefGoogle Scholar
van Bergen, E., van der Leij, A., & de Jong, P. F. (2014). The intergenerational multiple deficit model and the case of dyslexia. Frontiers in Human Neuroscience, 346.Google ScholarPubMed
van Bergen, E., van Zuijen, T., Bishop, D., & de Jong, P. F. (2017). Why are home literacy environment and children’s reading skills associated? What parental skills reveal. Reading Research Quarterly, 52(2), 147160.CrossRefGoogle Scholar
van Bueren, N. E. R., Kroesbergen, E. H., & Cohen Kadosh, R. (2022). Cognitive enhancement and brain stimulation in dyslexia and dyscalculia. In Skeide, M. A. (ed.). The Cambridge Handbook of Dyslexia and Dyscalculia (pp. 350361). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
van den Boer, M., de Bree, E. H., & de Jong, P. F. (2018). Simulation of dyslexia. How literacy and cognitive skills can help distinguish college students with dyslexia from malingerers. Plos one, 13(5), e0196903.CrossRefGoogle ScholarPubMed
van den Boer, M., Van Bergen, E., & de Jong, P. F. (2015). The specific relation of visual attention span with reading and spelling in Dutch. Learning and Individual Differences, 39, 141149.CrossRefGoogle Scholar
van den Noort, M., Struys, E., & Bosch, P. (2015). Transcranial magnetic stimulation research on reading and dyslexia: A new clinical intervention technique for treating dyslexia? Neuroimmunology and Neuroinflammation, 2, 145152.CrossRefGoogle Scholar
van Dijk, W., Schatschneider, C., Al Otaiba, S., & Hart, S. (2023). Student behavior ratings and response to Tier 1 reading intervention: Which students do not benefit? Journal of Research on Educational Effectiveness. https://doi.org/10.1080/19345747.2023.2194894CrossRefGoogle Scholar
van Herck, S., Vanden Bempt, F., Economou, M., et al. (2022). Ahead of maturation: Enhanced speech envelope training boosts rise time discrimination in pre-readers at cognitive risk for dyslexia. Developmental Science, 25(3), e13186.CrossRefGoogle ScholarPubMed
van Viersen, S., de Bree, E. H., Zee, M., et al. (2018). Pathways into literacy: The role of early oral language abilities and family risk for dyslexia. Psychological Science, 29(3), 418428.CrossRefGoogle ScholarPubMed
Vander Stappen, C., Dricot, L., & Van Reybroeck, M. (2020). RAN training in dyslexia: Behavioral and brain correlates. Neuropsychologia, 146, 107566.CrossRefGoogle ScholarPubMed
Vanderauwera, J., Altarelli, I., Vandermosten, M., et al. (2016). Atypical structural asymmetry of the planum temporale is related to family history of dyslexia. Cerebral Cortex, 28(1), 6372.CrossRefGoogle Scholar
VanDerHeyden, A. M. (2018). Why do school psychologists cling to ineffective practices? Let’s do what works. School Psychology Forum, 12(1), 4452.Google Scholar
VanDerHeyden, A. M., Burns, M. K., & Bonifay, W. (2018). Is more screening better? The relationship between frequent screening, accurate decisions, and reading proficiency. School Psychology Review, 47(1), 6282.CrossRefGoogle Scholar
Vandermosten, M., Boets, B., Luts, H., et al. (2010). Adults with dyslexia are impaired in categorizing speech and nonspeech sounds on the basis of temporal cues. Proceedings of the National Academy of Sciences, 107, 10389–10394.CrossRefGoogle ScholarPubMed
Vandermosten, M., Boets, B., Poelmans, H., et al. (2012). A tractography study in dyslexia: Neuroanatomic correlates of orthographic, phonological and speech processing. Brain, 135, 935948.CrossRefGoogle ScholarPubMed
Vandermosten, M., Boets, B., Wouters, J., & Ghesquière, P. (2012). A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. Neuroscience & Biobehavioral Reviews, 36, 15321552.CrossRefGoogle ScholarPubMed
Vandermosten, M., Correia, J., Vanderauwera, J., et al. (2020). Brain activity patterns of phonemic representations are atypical in beginning readers with family risk for dyslexia. Developmental Science, 23(1), e12857.CrossRefGoogle ScholarPubMed
Vargo, F. E., Grossner, G. S., & Spafford, C. S. (1995). Digit span and other WISC-R scores in the diagnosis of dyslexic children. Perceptual and Motor Skills, 80, 12191229.CrossRefGoogle Scholar
Vaughn, S., & Fletcher, J. M. (2010). Thoughts on rethinking response to intervention with secondary students. School Psychology Review, 39, 296299.CrossRefGoogle ScholarPubMed
Vaughn, S., & Fletcher, J. M. (2012). Response to intervention with secondary school students with reading difficulties. Journal of Learning Disabilities, 45, 244256.CrossRefGoogle ScholarPubMed
Vaughn, S., & Fletcher, J. M. (2021). Identifying and teaching students with significant reading problems. American Educator, 44(4), 4.Google Scholar
Vaughn, S., & Roberts, G. (2007). Secondary interventions in reading: Providing additional instruction for students at risk. Teaching Exceptional Children, 39, 4046.CrossRefGoogle Scholar
Vaughn, S., Cirino, P. T., Wanzek, J., et al. (2010). Response to intervention for middle school students with reading difficulties: Effects of a primary and secondary intervention. School Psychology Review, 39, 321.CrossRefGoogle ScholarPubMed
Vaughn, S., Fletcher, J. M., Francis, D. J., et al. (2008). Response to intervention with older students with reading difficulties. Learning and Individual Differences, 18, 338345.CrossRefGoogle ScholarPubMed
Vaughn, S., Grills, A. E., Capin, P., et al. (2022). Examining the effects of integrating anxiety management instruction within a reading intervention for upper elementary students with reading difficulties. Journal of Learning Disabilities, 55(5), 408426.CrossRefGoogle ScholarPubMed
Vaughn, S., Martinez, L. R., Williams, K. J., et al. (2019). Efficacy of a high school extensive reading intervention for English learners with reading difficulties. Journal of Educational Psychology, 111(3), 373386.CrossRefGoogle Scholar
Vaughn, S., Roberts, G. J., Miciak, J., Taylor, P., & Fletcher, J. M. (2019). Efficacy of a word-and text-based intervention for students with significant reading difficulties. Journal of Learning Disabilities, 52(1), 3144.CrossRefGoogle ScholarPubMed
Vaughn, S., Wexler, J., Roberts, G., et al. (2011). Effects of individualized and standardized interventions on middle school students with reading disabilities. Exceptional Children, 77, 391407.CrossRefGoogle ScholarPubMed
Vehmas, S., & Watson, N. (2014). Moral wrongs, disadvantages, and disability: A critique of critical disability studies. Disability and Society, 29, 638650.CrossRefGoogle Scholar
Velayos-Baeza, A., Toma, C., Paracchini, S., & Monaco, A. (2007). The dyslexia-associated gene KIAA0319 encodes highly N- and O-glycosylated plasma membrane and secreted isoforms. Human Molecular Genetics, 17, 859871.CrossRefGoogle ScholarPubMed
Vellutino, F. R. (1979). Dyslexia: Theory and research. Cambridge, MA: MIT Press.Google Scholar
Vellutino, F. R. (1987). Dyslexia. Scientific American, 256, 3441.CrossRefGoogle ScholarPubMed
Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology & Psychiatry, 45, 240.CrossRefGoogle ScholarPubMed
Vellutino, F. R., Scanlon, D. M., & Jaccard, J. (2003). Toward distinguishing between cognitive and experiential deficits as primary sources of difficulty in learning to read: A two year follow-up of difficult to remediate, readily remediated poor readers. In Foorman, B. R. (ed.), Preventing and Remediating Reading Difficulties: Bringing Science to Scale (pp. 73120). Baltimore: York Press.Google Scholar
Vellutino, F. R., Scanlon, D. M., & Lyon, G. R. (2000). Differentiating between difficult-to-remediate and readily remediated poor readers: More evidence against the IQ-achievement discrepancy definition for reading disability. Journal of Learning Disabilities, 33, 223238.CrossRefGoogle ScholarPubMed
Vellutino, F. R., Scanlon, D. M., & Tanzman, M. S. (1998). The case for early intervention in diagnosing specific reading disability. Journal of School Psychology, 36, 367397.CrossRefGoogle Scholar
Vellutino, F. R., Scanlon, D. M., Sipay, E. R., et al. (1996). Cognitive profiles of difficult-to-remediate and readily remediated poor readers: Early intervention as a vehicle for distinguishing between cognitive and experiential deficits as basic causes of specific reading disability. Journal of Educational Psychology, 88, 601638.CrossRefGoogle Scholar
Vellutino, F. R., Scanlon, D. M., Zhang, H., & Schatschneider, C. (2008). Using response to kindergarten and first grade intervention to identify children at-risk for long-term reading difficulties. Reading and Writing, 21, 437480.CrossRefGoogle Scholar
Verhoeven, L., & Perfetti, C. (2022). Universals in learning to read across languages and writing systems. Scientific Studies of Reading, 26(2), 150164CrossRefGoogle Scholar
Verhoeven, L., Perfetti, , & Pugh, K. (2019). Developmental dyslexia – A cross linguistic perspective. In Perfetti, C., Pugh, K., & Verhoeven, L. (eds.), Developmental Dyslexia across Languages and Writing Systems (pp. 122). New York: Cambridge University Press.CrossRefGoogle Scholar
Verhoeven, L., van Leeuwe, J., & Vermeer, A. (2011). Vocabulary growth and reading development across the elementary school years. Scientific Studies of Reading, 15(1), 825.CrossRefGoogle Scholar
Verpalen, A., Van de Vijver, F., & Backus, A. (2018). Bias in dyslexia screening in a Dutch multicultural population. Annals of Dyslexia, 68(1), 4368.CrossRefGoogle Scholar
Vicari, S., Finzi, A., Menghini, D., et al. (2005). Do children with developmental dyslexia have an implicit learning deficit? Journal of Neurology, Neurosurgery and Psychiatry, 76, 13921397.CrossRefGoogle ScholarPubMed
Vicari, S., Marotta, L., Menghini, D., Molinari, M., & Petrosini, L. (2003). Implicit learning deficit in children with developmental dyslexia. Neuropsychologia, 41, 108114.CrossRefGoogle ScholarPubMed
Vidyasagar, T. R. (2019). Visual attention and neural oscillations in reading and dyslexia: Are they possible targets for remediation? Neuropsychologia, 130, 5965.CrossRefGoogle ScholarPubMed
Vidyasagar, T. R., & Pammer, K. (2010). Dyslexia: A deficit in visuo-spatial attention, not in phonological processing. Trends in Cognitive Sciences, 14(2), 5763.CrossRefGoogle ScholarPubMed
Vigneau, M., Beaucousin, V., Herve, P. Y., et al. (2006). Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. Neuroimage, 30, 14141432.CrossRefGoogle ScholarPubMed
Vinckenbosch, E., Robichon, F., & Eliez, S. (2005). Gray matter alteration in dyslexia: Converging evidence from volumetric and voxel-by-voxel MRI analyses. Neuropsychologia, 43, 324331.CrossRefGoogle ScholarPubMed
Virsu, V., Lahti-Nuuttila, P., & Laasonen, M. (2003). Crossmodal temporal processing acuity impairment aggravates with age in developmental dyslexia. Neuroscience Letters, 336(3), 151154.CrossRefGoogle ScholarPubMed
Virtala, P., Kujala, T., Partanen, E., Hamalainen, J. A., & Winkler, I. (2023). Neural phoneme discrimination in variable speech in newborns; associations with dyslexia risk and later language skills. Brain and Cognition, 168, 105974.CrossRefGoogle Scholar
Visser, L., Kalmar, J., Linkersdörfer, J., et al. (2020). Comorbidities between specific learning disorders and psychopathology in elementary school children in Germany. Frontiers in Psychiatry, 292.CrossRefGoogle ScholarPubMed
Vitsios, D., Dhindsa, R. S., Middleton, L., Gussow, A. B., & Petrovski, S. (2021). Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning. Nature Communications, 12(1), 1504.CrossRefGoogle ScholarPubMed
Vogel, A., Petersen, S. E., & Schlaggar, B. (2014). The VWFA: It’s not just for words anymore. Frontiers in Human Neuroscience, 8.Google Scholar
Vogel, A. C., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2012). The putative visual word form area is functionally connected to the dorsal attention network. Cerebral Cortex, 22, 537549.CrossRefGoogle ScholarPubMed
Volkmer, S., & Schulte-Körne, G. (2018). Cortical responses to tone and phoneme mismatch as a predictor of dyslexia? A systematic review. Schizophrenia Research, 191, 148160.CrossRefGoogle ScholarPubMed
von Plessen, K., Lundervold, A., Duta, N., et al. (2002). Less developed corpus callosum in dyslexic subjects – A structural MRI study. Neuropsychologia, 40, 10351044.CrossRefGoogle ScholarPubMed
Vosskuhl, J., Strüber, D., & Herrmann, C. S. (2018). Non-invasive brain stimulation: A paradigm shift in understanding brain oscillations. Frontiers in Human Neuroscience, 12.CrossRefGoogle ScholarPubMed
Vourkas, M., Micheloyannis, S., Simos, P. G., et al. (2011). Dynamic task-specific brain network connectivity in children with severe reading difficulties. Neuroscience Letters, 488, 123128.CrossRefGoogle ScholarPubMed
Vukovic, R. K., & Siegel, L. S. (2006). The double-deficit hypothesis: A comprehensive analysis of the evidence. Journal of Learning Disabilities, 39, 2547.CrossRefGoogle ScholarPubMed
Wadsworth, S. J., DeFries, J. C., Willcutt, E. G., Pennington, B. F., & Olson, R. K. (2015). The Colorado longitudinal twin study of reading difficulties and ADHD: Etiologies of comorbidity and stability. Twin Research and Human Genetics, 18, 755761.CrossRefGoogle ScholarPubMed
Wadsworth, S. J., Olson, R. K., & DeFries, J. C. (2010). Differential genetic etiology of reading difficulties as a function of IQ: An update. Behavior Genetics, 40, 751758.CrossRefGoogle ScholarPubMed
Wagner, R. K. (2008). Rediscovering dyslexia: New approaches for identification and classification. In Reid, G., Fawcett, A., Manis, F., & Siegel, L. (eds.), The Sage Handbook of Dyslexia (pp. 174191). London: Sage.CrossRefGoogle Scholar
Wagner, R. K., & Lonigan, C. J. (2022). Early identification of children with dyslexia: Variables differentially predict poor reading versus unexpected poor reading. Reading Research Quarterly, 58(2), 188202.CrossRefGoogle ScholarPubMed
Wagner, R. K., & Muse, A. (2006). Short-term memory deficits in developmental dyslexia. In Alloway, T. P., & Gathercole, S. E. (eds.), Working Memory and Neurodevelopmental Disorders. New York: Psychology Press.Google Scholar
Wagner, R. K., & Torgesen, J. K. (1987). The nature of phonological processing and its causal role in the acquisition of reading skills. Psychological Bulletin, 101, 192212.CrossRefGoogle Scholar
Wagner, R. K., Edwards, A. A., Malkowski, A., et al. (2019). Combining old and new for better understanding and predicting dyslexia. New Directions for Child and Adolescent Development, 165, 1123.CrossRefGoogle Scholar
Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1999). Comprehensive Test of Phonological Processing. Austin: Pro-Ed.Google Scholar
Wagner, R. K., Torgesen, J. K., Rashotte, C. A., et al. (1997). Changing relations between phonological processing abilities and word-level reading as children develop from beginning to skilled readers: A five-year longitudinal study. Developmental Psychology, 33, 468479.CrossRefGoogle Scholar
Wagner, R. K., Zirps, F. A., Edwards, A. A., et al. (2020). The prevalence of dyslexia: A new approach to its estimation. Journal of Learning Disabilities, 53(5), 354365.CrossRefGoogle ScholarPubMed
Wagner, R. K., Moxley, J., Schatschneider, C., & Zirps, F. A. (2023). A bayesian probabilistic framework for the identification of individuals with dyslexia. Scientific Studies of Reading, 27(1), 6781.CrossRefGoogle ScholarPubMed
Walker, J. E. (2010). Recent advances in quantitative EEG as an aid to diagnosis and as a guide to neurofeedback training for cortical hypofunctions, hyperfunctions, disconnections, and hyperconnections: Improving efficacy in complicated neurological and psychological disorders. Applied Psychophysiology and Biofeedback, 35(1), 2527.CrossRefGoogle ScholarPubMed
Walker, J. E., & Norman, C. A. (2006). The neurophysiology of dyslexia: A selective review with implications for neurofeedback remediation and results of treatment in twelve consecutive patients. Journal of Neurotherapy: Investigations in Neuromodulation Neurofeedback and Applied Neuroscience, 10, 4555.CrossRefGoogle Scholar
Walker, K., Hall, S., Klein, R. G., & Phillips, D. (2006). Development of perceptual correlates of reading performance. Brain Research, 1124(1), 126141.CrossRefGoogle ScholarPubMed
Walker, N. (2014). Neurodiversity: Some basic terms & definitions. https://neuroqueer.com/neurodiversity-terms-and-definitions. Accessed December 3, 2023.Google Scholar
Wang, J. J., Bi, H. Y., Gao, L. Q., & Wydell, T. N. (2010). The visual magnocellular pathway in Chinese-speaking children with developmental dyslexia. Neuropsychologia, 48, 36273633.CrossRefGoogle ScholarPubMed
Wang, J., Joanisse, M. F., & Booth, J. R. (2020). Neural representations of phonology in temporal cortex scaffold longitudinal reading gains in 5- to 7-year-old children. Neuroimage, 207, 116359.CrossRefGoogle Scholar
Wang, J., Pines, J., Joanisse, M., & Booth, J. R. (2021). Reciprocal relations between reading skill and the neural basis of phonological awareness in 7- to 9-year-old children. Neuroimage, 236.CrossRefGoogle ScholarPubMed
Wang, J., Tong, F., Joanisse, M. F., & Booth, J. R. (2023). A sculpting effect of reading on later representational quality of phonology revealed by multi-voxel pattern analysis in young children. Brain and Language, 239, 105252.CrossRefGoogle ScholarPubMed
Wang, S., Tzeng, O. J. L., & Aslin, R. N. (2022). Predictive brain signals mediate association between shared reading and expressive vocabulary in infants. PLoS ONE, 17, e0272438.Google ScholarPubMed
Wang, Y., Mauer, M. V., Raney, T., et al. (2017). Development of tract-specific white matter pathways during early reading development in at-risk children and typical controls. Cerebral Cortex, 27, 24692485.Google ScholarPubMed
Wang, Y., Paramasivam, M., Thomas, A., et al. (2006). Dyx1c1 functions in neuronal migration in developing neocortex. Neuroscience, 143, 515522.CrossRefGoogle ScholarPubMed
Wang, Y., Yin, X., Rosen, G., et al. (2011). Dcdc2 knockout mice display exacerbated developmental disruptions following knockdown of doublecortin. Neuroscience, 190, 398408.CrossRefGoogle ScholarPubMed
Wanzek, J., Al Otaiba, S., Petscher, Y., et al. (2021). Comparing effects of reading intervention versus reading and mindset intervention for upper elementary students with reading difficulties. Journal of Learning Disabilities, 54(3), 203220.CrossRefGoogle ScholarPubMed
Wanzek, J., & Roberts, G. (2012). Reading interventions with varying instructional emphases for fourth graders with reading difficulties. Learning Disability Quarterly, 35(2), 90101CrossRefGoogle Scholar
Wanzek, J., Stevens, E. A., Williams, K. J., et al. (2018). Current evidence on the effects of intensive early reading interventions. Journal of Learning Disabilities, 51(6), 612624.CrossRefGoogle ScholarPubMed
Wanzek, J., Vaughn, S. (2007). Research-based implications from extensive early reading interventions. School Psychology Review, 36(4), 541561.CrossRefGoogle Scholar
Wanzek, J., Vaughn, S., Scammacca, N. K., et al. (2016) Meta-analyses of the effects of tier 2 type reading interventions in grades K-3. Educational Psychology Review, 28, 551576.CrossRefGoogle ScholarPubMed
Wanzek, J., Vaughn, S., Scammacca, N. K., et al. (2013). Extensive reading interventions for students with reading difficulties after grade 3. Review of Educational Research, 83(2), 163195.CrossRefGoogle Scholar
Wanzek, J., Wexler, J., Vaughn, S., & Ciullo, S. (2010). Reading interventions for struggling readers in the upper elementary grades: A synthesis of 20 years of research. Reading and Writing, 23, 889912.CrossRefGoogle ScholarPubMed
Wanzek, J., Wood, C., & Schatschneider, C. (2022). Elementary classroom vocabulary experiences. Remedial and Special Education, 43(3), 147159.CrossRefGoogle Scholar
Ward, S. B., Ward, T. J., Hatt, C. V., Young, D. L., & Molner, N. R. (1995). The incidence and utility of the ACID, ACIDS and SCAD profiles in a referred population. Psychology in the Schools, 32, 267276.3.0.CO;2-Q>CrossRefGoogle Scholar
Washburn, E. K., Mulcahy, C. A., Musante, G., & Joshi, R. (2017). Novice teachers’ knowledge of reading-related disabilities and dyslexia. Learning Disabilities: A Contemporary Journal, 15(2), 169191.Google Scholar
Watkins, E. (1922). How to Teach Silent Reading to Beginners. Philadelphia and London: Lippincott.Google Scholar
Watkins, M. W. (2000). Cognitive profile analysis: A shared professional myth. School Psychology Quarterly, 15, 465479.CrossRefGoogle Scholar
Watkins, M. W., & Canivez, G. L. (2021). Are there cognitive profiles unique to students with learning disabilities? A latent profile analysis of Wechsler Intelligence Scale for Children–fourth edition scores. School Psychology Review, 113.Google Scholar
Watkins, M. W., Canivez, G. L., Dombrowski, S. C., et al. (2022). Long-term stability of Wechsler Intelligence Scale for Children–fifth edition scores in a clinical sample. Applied Neuropsychology: Child, 11(3), 422428.CrossRefGoogle Scholar
Watkins, M. W., Kush, J. C., & Glutting, J. J. (1997). Discriminant and predictive validity of the WISC-III ACID profile among children with learning disabilities. Psychology in the Schools, 34, 309319.3.0.CO;2-G>CrossRefGoogle Scholar
Webster, R., Russell, A., & Blatchford, P. (2015). Maximising the Impact of Teaching Assistants: Guidance for School Leaders and Teachers. London: Routledge.CrossRefGoogle Scholar
Wechsler, D. (2014). Wechsler Intelligence Scale for Children, Fifth Edition (WISC-V). San Antonio, TX: NCS Pearson.Google Scholar
Wegener, S., Beyersmann, E., Wang, H. C., & Castles, A. (2022). Oral vocabulary knowledge and learning to read new words: A theoretical review. Australian Journal of Learning Difficulties, 27(2), 253278.CrossRefGoogle Scholar
Weirauch, M. T., Yang, A., Albu, M., et al. (2014). Determination and inference of eukaryotic transcription factor sequence specificity. Cell, 158(6), 14311443.CrossRefGoogle ScholarPubMed
Weis, R., & Droder, S. J. (2019). Development and initial validation of a reading-specific performance validity test: The College Assessment of Reading Effort (CARE). Psychological Injury and Law, 12(1), 2941.CrossRefGoogle Scholar
Weis, R., & Waters, E. A. (2023). Evidence-based accommodations for postsecondary students with disabilities: Beware the base rate fallacy. Psychological Injury and Law, 114.Google Scholar
Weisberg, D. S., Keil, F. C., Goodstein, J., Rawson, E., & Gray, J. R. (2008). The seductive allure of neuroscience explanations. Journal of Cognitive Neuroscience, 20(3), 470477.CrossRefGoogle ScholarPubMed
Weisberg, D. S., Taylor, J. C., & Hopkins, E. J. (2015). Deconstructing the seductive allure of neuroscience explanations, Judgment and Decision Making, 10(5), 429441.CrossRefGoogle Scholar
Weiss, Y., Cweigenberg, H. G., & Booth, J. R. (2018). Neural specialization of phonological and semantic processing in young children. Human Brain Mapping, 39, 43344348.CrossRefGoogle ScholarPubMed
Werth, R. (2019). What causes dyslexia? Identifying the causes and effective compensatory therapy. Restorative Neurology and Neuroscience, 37(6), 591608.CrossRefGoogle ScholarPubMed
Werth, R. (2021a). Is developmental dyslexia due to a visual and not a phonological impairment? Brain Sciences, 11(10), 1313.CrossRefGoogle ScholarPubMed
Werth, R. (2021b). Dyslexic readers improve without training when using a computer-guided reading strategy. Brain Sciences, 11(5), 526.CrossRefGoogle ScholarPubMed
West, T. G. (2022). Dyslexic strengths in times of adversity. Asia Pacific Journal of Developmental Differences, 9(2), 194203.Google Scholar
Westendorp, M., Hartman, E., Houwen, S., Smith, J., & Visscher, C. (2011). The relationship between gross motor skills and academic achievement in children with learning disabilities. Research in Developmental Disabilities, 32, 27732779.CrossRefGoogle ScholarPubMed
Wexler, J., Vaughn, S., Edmonds, M., & Reutebuch, C. L. (2008). A synthesis of fluency interventions for secondary struggling readers. Reading and Writing, 21, 317347.CrossRefGoogle ScholarPubMed
What Works Clearinghouse. (2007). Fast ForWord. https://bit.ly/4ap2ssv. Accessed December 8, 2023.Google Scholar
What Works Clearinghouse. (2010). Orton-Gillingham-based strategies (unbranded). US Department of Education, Institute of Education Sciences. https://bit.ly/47FRKM6. Accessed December 3, 2023.Google Scholar
Wheldall, K., Castles, A., & Nayton, M. (2014). Should we dispense with the D word. Learning Difficulties Australia Bulletin, 46(1&2), 14.Google Scholar
White, A. L., Boynton, G. M., & Yeatman, J. D. (2019). The link between reading ability and visual spatial attention across development. Cortex, 121, 4459.CrossRefGoogle ScholarPubMed
White, J., Mather, N., & Kirkpatrick, J. (2020). Preservice educators’ and noneducators’ knowledge and perceptions of responsibility about dyslexia. Dyslexia, 26(2), 220242.CrossRefGoogle ScholarPubMed
White, S., Milne, E., Rosen, S., et al. (2006). The role of sensorimotor impairments in dyslexia: A multiple case study of dyslexic children. Developmental Science, 9, 237269.CrossRefGoogle ScholarPubMed
Whitehouse, A. J., & Bishop, D. V. (2008). Cerebral dominance for language function in adults with specific language impairment or autism. Brain, 131, 31933200.CrossRefGoogle ScholarPubMed
Whitehouse, A. J., Spector, T. D., & Cherkas, L. F. (2009). No clear genetic influences on the association between dyslexia and anxiety in a population-based sample of female twins. Dyslexia, 15, 282290.CrossRefGoogle Scholar
Wilcox, G., Galilee, A., Stamp, J., Makarenko, E., & MacMaster, F. P. (2020). The importance of research on integrating transcranial direct current stimulation (TDCS) with evidence-based reading interventions. Journal of Pediatric Neuropsychology, 6, 218228.CrossRefGoogle Scholar
Wilkins, A. (2021). Visual stress: Origins and treatment. CNS (6), 7486.Google Scholar
Wilkins, A. J. (1995). Visual Stress. Oxford: Oxford University Press.CrossRefGoogle Scholar
Wilkins, A. J. (2003). Reading through Colour. London: Wiley.Google Scholar
Wilkins, A. J., & Evans, B. J. (2022). Do coloured filters work? In A. J. Wilkins, & Evans, B. J. (eds.), Vision, Reading Difficulties, and Visual Stress (pp. 169193). Cham, Switzerland: Springer Nature.CrossRefGoogle Scholar
Willcutt, E. G., & Pennington, B. F. (2000). Psychiatric comorbidity in children and adolescents with reading disability. Journal of Child Psycholology and Psychiatry, 41, 10391048.CrossRefGoogle ScholarPubMed
Willcutt, E. G., & Petrill, S. A. (2023). Comorbidity between reading disability and attention‐deficit/hyperactivity disorder in a community sample: Implications for academic, social, and neuropsychological functioning. Mind, Brain, and Education, 110.Google Scholar
Williams, V. J., Juranek, J., Cirino, P., & Fletcher, J. M. (2018). Cortical thickness and local gyrification in children with developmental dyslexia. Cerebral Cortex, 28, 963973.CrossRefGoogle ScholarPubMed
Wilmot, A., Pizzey, H., Leitão, S., Hasking, P., & Boyes, M. (2022). Growing up with dyslexia: Child and parent perspectives on school struggles, self-esteem, and mental health. Dyslexia, 29(1), 4054.CrossRefGoogle ScholarPubMed
Wilsher, C. R., & Taylor, E. A. (1994). Piracetam in developmental reading disorders: A review. European Child & Adolescent Psychiatry, 3(2), 5971.CrossRefGoogle ScholarPubMed
Wimmer, H., Schurz, M., Sturm, D., et al. (2010). A dual-route perspective on poor reading in a regular orthography: An fMRI study. Cortex, 46, 12841298.CrossRefGoogle Scholar
Witton, C., Swoboda, K., Shapiro, L. R., & Talcott, J. B. (2020). Auditory frequency discrimination in developmental dyslexia: A meta-analysis. Dyslexia, 26(1), 3651.CrossRefGoogle ScholarPubMed
Wolf, M. (2007). Proust and the Squid: The Story and Science of the Reading Brain. New York: HarperCollins.Google Scholar
Wolf, M., & Bowers, P. G. (1999). The double-deficit hypothesis for the developmental dyslexias. Journal of Educational Psychology, 91, 415438.CrossRefGoogle Scholar
Wolf, M., Bowers, P. G., & Biddle, K. (2000). Naming-speed processes, timing, and reading: A conceptual review. Journal of Learning Disabilities, 33, 387407.CrossRefGoogle Scholar
Wolf, M., Gotlieb, R. J. M., Kim, S. A., et al. (2024). Towards a dynamic, comprehensive conceptualization of dyslexia. Annals of Dyslexia, 122.Google ScholarPubMed
Wolf, M., Miller, L., & Donnelly, K. (2000). Retrieval, Automaticity, Vocabulary Elaboration, Orthography (RAVE-O): A comprehensive, fluency-based reading intervention program. Journal of Learning Disabilities, 33, 375386.CrossRefGoogle ScholarPubMed
Wolf, M., O’Rourke, A. G., Gidney, C., et al. (2002). The second deficit: An investigation of the independence of phonological and naming-speed deficits in developmental dyslexia. Reading & Writing, 15, 4372.CrossRefGoogle Scholar
Wolff, P. H., Melngailis, I., Obregon, M., & Bedrosian, M. (1995). Family patterns of developmental dyslexia, Part II: Behavioral phenotypes. American Journal of Medical Genetics, 60, 494505.CrossRefGoogle ScholarPubMed
Wolff, U., & Gustafsson, J. E. (2022). Early phonological training preceding kindergarten training: Effects on reading and spelling. Reading and Writing, 123.Google Scholar
Wood, S. G., Moxley, J. H., Tighe, E. L., & Wagner, R. K. (2018). Does use of text-to-speech and related read-aloud tools improve reading comprehension for students with reading disabilities? A meta-analysis. Journal of Learning Disabilities, 51(1), 7384.CrossRefGoogle ScholarPubMed
Woodcock, R. W. (1987). Woodcock Reading Mastery Tests Revised. Circle Pines, MN: American Guidance Service.Google Scholar
World Health Organization. (2023) International Classification of Diseases, 11th Revision. (ICD-11). https://icd.who.int/en. Accessed December 3, 2023.Google Scholar
Worthy, J., Daly-Lesch, A., Tily, S., Godfrey, V., & Salmerón, C. (2021). A critical evaluation of dyslexia information on the internet. Journal of Literacy Research, 53(1), 528.CrossRefGoogle Scholar
Worthy, J., DeJulio, S., Svrcek, N., et al. (2016). Teachers’ understandings, perspectives, and experiences of dyslexia. Literacy Research: Theory, Method and Practice, 65, 436453.Google Scholar
Worthy, J., Godfrey, V., Tily, S., Daly-Lesch, A., & Salmerón, C. (2019). Simple answers and quick fixes: Dyslexia and the brain on the internet. Literacy Research: Theory, Method, and Practice, 68(1), 314333.Google Scholar
Worthy, J., Lammert, C., Long, S. L., Salmerón, C., & Godfrey, V. (2018a). “What if we were committed to giving every individual the services and opportunities they need?” Teacher educators’ understandings, perspectives, and practices surrounding dyslexia. Research in the Teaching of English, 53(2), 125148.CrossRefGoogle Scholar
Worthy, J., Salmerón, C., Long, S. L., Lammert, C., & Godfrey, V. (2018b). “Wrestling with the politics and ideology”: Teacher educators’ responses to dyslexia discourse and legislation. Literacy Research: Theory, Method, and Practice, 67(1), 377393.Google Scholar
Worthy, J., Svrcek, N., Daly-Lesch, A., & Tily, S. (2018). “We know for a fact”: Dyslexia interventionists and the power of authoritative discourse. Journal of Literacy Research, 50(3), 359382.CrossRefGoogle Scholar
Worthy, J., Villarreal, D., Godfrey, V., et al. (2017). A critical analysis of dyslexia legislation in three states. Literacy Research: Theory, Method, and Practice, 66(1), 406421.Google Scholar
Wray, N. R., Wijmenga, C., Sullivan, P. F., Yang, J., & Visscher, P. M. (2018). Common disease is more complex than implied by the core gene omnigenic model. Cell, 173, 15731580.CrossRefGoogle ScholarPubMed
Wright, C. M., & Conlon, E. G. (2009). Auditory and visual processing in children with dyslexia. Developmental Neuropsychology, 34, 330355.CrossRefGoogle ScholarPubMed
Wright, C. M., Conlon, E. G., & Dyck, M. (2012). Visual search deficits are independent of magnocellular deficits in dyslexia. Annals of Dyslexia, 62, 5369.CrossRefGoogle ScholarPubMed
Wu, S., Stratton, K. K., & Gadke, D. L. (2020). Maximizing repeated readings: The effects of a multicomponent reading fluency intervention for children with reading difficulties. Contemporary School Psychology, 24(2), 217227.CrossRefGoogle Scholar
Wyse, D., & Bradbury, A. (2022). Reading wars or reading reconciliation? A critical examination of robust research evidence, curriculum policy and teachers’ practices for teaching phonics and reading. Review of Education, 10(1), e3314.CrossRefGoogle Scholar
Xia, Z., Hoeft, F., Zhang, L., & Shu, H. (2016). Neuroanatomical anomalies of dyslexia: Disambiguating the effects of disorder, performance, and maturation. Neuropsychologia, 81, 6878.CrossRefGoogle ScholarPubMed
Xiao, P., Zhu, K., Feng, Y., et al. (2023). Associations between dyslexia and children’s mental health: Findings from a follow-up study in China. Psychiatry Research, 115188.CrossRefGoogle ScholarPubMed
Xu, B., Grafman, J., Gaillard, W. D., et al. (2001). Conjoint and extended neural networks for the computation of speech codes: The neural basis of selective impairment in reading sords and pseudowords. Cerebral Cortex, 11, 267277.CrossRefGoogle Scholar
YadenJr, D. B., Reinking, D., & Smagorinsky, P. (2021). The trouble with binaries: A perspective on the science of reading. Reading Research Quarterly, 56, S119–S129.CrossRefGoogle Scholar
Yamada, Y., Stevens, C., Dow, M., et al. (2011). Emergence of the neural network for reading in five-year-old beginning readers of different levels of pre-literacy abilities: An fMRI study. Neuroimage, 57, 704713.CrossRefGoogle ScholarPubMed
Yan, X., Perkins, K., & Cao, F. (2021). A hierarchical deficit model of reading disability: Evidence from dynamic causal modelling analysis. Neuropsychologia, 154, 107777.CrossRefGoogle ScholarPubMed
Yang, L., Li, C., Li, X., et al. (2022). Prevalence of developmental dyslexia in primary school children: A systematic review and meta-analysis. Brain Sciences, 12(2), 240.CrossRefGoogle ScholarPubMed
Yang, Y., Yang, Y. H., Li, J., Xu, M., & Bi, H.-Y. (2020). An audiovisual integration deficit underlies reading failure in nontransparent writing systems: An fMRI study of Chinese children with dyslexia. Journal of Neurolinguistics, 54, 100884.CrossRefGoogle Scholar
Yeager, D. S., & Dweck, C. S. (2020). What can be learned from growth mindset controversies? American Psychologist, 75(9), 12691284.CrossRefGoogle ScholarPubMed
Yeatman, J. D. (2022a), Neuroplasticity in response to reading intervention. In Skeide, M. A. (ed.), The Cambridge Handbook of Dyslexia and Dyscalculia (pp. 202211). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Yeatman, J. D. (2022b). The neurobiology of literacy. In Snowling, M. J., Hulme, C., & Nation, K. (eds.), The Science of Reading: A Handbook. 2nd edition (pp. 533555). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Yeatman, J. D., Ben-Shachar, M., Bammer, R., & Feldman, H. M. (2009). Using diffusion tensor imaging and fiber tracking to characterize diffuse perinatal white matter injury: A case report. Journal of Child Neurology, 24, 795800.CrossRefGoogle ScholarPubMed
Yeatman, J. D., Dougherty, R. F., Ben-Shachar, M., & Wandell, B. A. (2012). Development of white matter and reading skills. Proceedings of the National Academy of Sciences, 109(44), E3045–E3053.CrossRefGoogle ScholarPubMed
Yeatman, J. D., & White, A. L. (2021). Reading: The confluence of vision and language. Annual Review of Vision Science, 7, 487517CrossRefGoogle ScholarPubMed
Yeh, F.-C., Vettel, J. M., Singh, A., et al. (2016). Quantifying differences and similarities in whole-brain white matter architecture using local connectome fingerprints. PLoS Computational Biology, 12, e1005203.CrossRefGoogle ScholarPubMed
Youman, M., & Mather, N. (2015). Dyslexia laws in the USA: An update. Perspectives on Language and Literacy, 41(4), 1018.Google Scholar
Younger, R., & Meisinger, E. B. (2020). Group stability and reading profiles of students with dyslexia: A double-deficit perspective. Learning Disability Quarterly, 45(4), 239251.CrossRefGoogle Scholar
Yu, X., Zuk, J., & Gaab, N. (2018). What factors facilitate resilience in developmental dyslexia? Examining protective and compensatory mechanisms across the neurodevelopmental trajectory. Child Development Perspectives, 12, 240246.CrossRefGoogle ScholarPubMed
Yule, W. (1976). Dyslexia. Psychological Medicine, 6, 165167.CrossRefGoogle ScholarPubMed
Zane, T. (2005). Fads in special education: An overview. In Jacobson, J. W., Foxx, R. M., & Mulick, J. A. (eds.), Controversial Therapies for Developmental Disabilities: Fad, Fashion and Science in Professional Practice (pp. 175191). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Zhang, J., & McBride-Chang, C. (2010). Auditory sensitivity, speech perception, and reading development and impairment. Educational Psychology Review, 22, 323338.CrossRefGoogle Scholar
Zhang, M., Riecke, L., & Bonte, M. (2021). Neurophysiological tracking of speech-structure learning in typical and dyslexic readers. Neuropsychologia, 158, 107889.CrossRefGoogle ScholarPubMed
Zhang, S. Z., Inoue, T., Shu, H., & Georgiou, G. K. (2020). How does home literacy environment influence reading comprehension in Chinese? Evidence from a 3-year longitudinal study. Reading & Writing, 33, 17451767.CrossRefGoogle Scholar
Zhang, Z., & Peng, P. (2023) Longitudinal reciprocal relations among reading, executive function, and social-emotional skills: Maybe not for all. Journal of Educational Psychology, 115(3), 475501.CrossRefGoogle Scholar
Zhao, J., Liu, H., Li, J., et al. (2019). Improving sentence reading performance in Chinese children with developmental dyslexia by training based on visual attention span. Scientific Reports, 9(1), 119.CrossRefGoogle ScholarPubMed
Zhong, R., Yang, B., Tang, H., et al. (2013). Meta-analysis of the association between DCDC2 polymorphisms and risk of dyslexia. Molecular Neurobiology, 47, 435442.CrossRefGoogle ScholarPubMed
Ziegler, J. C., Bertrand, D., Tóth, D., et al. (2010). Orthographic depth and its impact on universal predictors of reading. Psychological Science, 21, 551559.CrossRefGoogle ScholarPubMed
Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychological Bulletin, 131, 329.CrossRefGoogle ScholarPubMed
Ziegler, J. C., Pech-Georgel, C., Dufau, S., & Grainger, J. (2010). Rapid processing of letters, digits and symbols: What purely visual-attentional deficit in developmental dyslexia? Developmental Science, 13, F8–F14.CrossRefGoogle ScholarPubMed
Zimmermann, L. M., Reed, D. K., & Aloe, A. M. (2021). A meta-analysis of non-repetitive reading fluency interventions for students with reading difficulties. Remedial and Special Education, 42(2), 7893.CrossRefGoogle Scholar
Zoccolotti, P. (2022). Success is not the entire story for a scientific theory: The case of the phonological deficit theory of dyslexia. Brain Sciences, 12(4), 425.CrossRefGoogle Scholar
Zoccolotti, P., De Luca, M., Di Filippo, G., Judica, A., & Martelli, M. (2009). Reading development in an orthographically regular language: Effects of length, frequency, lexicality and global processing ability. Reading and Writing, 22, 10531079.CrossRefGoogle Scholar
Zorzi, M., Barbiero, C., Facoetti, A., et al. (2012). Extra-large letter spacing improves reading in dyslexia. Proceedings of the National Academy of Sciences, 109, 11455–11459.CrossRefGoogle ScholarPubMed
Zoubrinetzky, R., Collet, G., Nguyen-Morel, M. A., Valdois, S., & Serniclaes, W. (2019). Remediation of allophonic perception and visual attention span in developmental dyslexia: A joint assay. Frontiers in Psychology, 10, 1502.CrossRefGoogle ScholarPubMed
Zou, L., Chen, W., Shao, S., et al. (2012). Genetic variant in KIAA0319, but not in DYX1C1, is associated with risk of dyslexia: An integrated meta-analysis. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 159b, 970976.CrossRefGoogle Scholar
Zoubrinetzky, R., Collet, G., Serniclaes, W., Nguyen-Morel, M. A., & Valdois, S. (2016). Relationships between categorical perception of phonemes, phoneme awareness, and visual attention span in developmental dyslexia. PloS one, 11(3), e0151015.CrossRefGoogle ScholarPubMed
Zugarramurdi, C., Fernández, L., Lallier, M., Valle-Lisboa, J. C., & Carreiras, M. (2022). Mind the orthography: Revisiting the contribution of prereading phonological awareness to reading acquisition. Developmental Psychology, 58(6), 10031016.CrossRefGoogle ScholarPubMed
Zumeta, R. O., Compton, D. L., & Fuchs, L. S. (2012). Using word identification fluency to monitor first-grade reading development. Exceptional Children, 78, 201220.CrossRefGoogle ScholarPubMed
Zuppardo, L., Serrano, F., Pirrone, C., & Rodriguez-Fuentes, A. (2023). More than words: Anxiety, self-esteem and behavioral problems in children and adolescents with dyslexia. Learning Disability Quarterly, 46(2), 7791.CrossRefGoogle Scholar
Zweig, E., & Pylkkänen, L. (2009). A visual M170 effect of morphological complexity. Language and Cognitive Processes, 24, 412439.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×