from Part III - Generative Models for Biomedical Imaging
Published online by Cambridge University Press: 15 September 2023
In this chapter, we provide an overview of a recent image-reconstruction method that uses a deep generative algorithm for dynamic magnetic resonance-imaging (dMRI). We begin by briefly introducing the imaging modality of dMRI, the associated image-reconstruction problem, and existing reconstruction approaches. Next, we introduce the time-dependent deep image prior (TD-DIP), which exploits the structure of convolutional neural networks (CNNs) as a regularizing prior. We show some representative results and discuss the pros and cons of this regularizing paradigm. Finally, we discuss a few potential remaining limitations.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.