Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-p5c6v Total loading time: 0 Render date: 2025-12-27T21:56:57.369Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  24 October 2017

Claude A. Pruneau
Affiliation:
Wayne State University, Michigan
HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the 'Save PDF' action button.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NC
This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC 4.0 https://creativecommons.org/cclicenses/

References

Aamodt, K., et al. (ALICE Collaboration). Higher harmonic anisotropic flow measurements of charged particles in pb-pb collisions at 2.76 TeV. Physical Review Letters, 107:032301, 2011.CrossRefGoogle Scholar
Abelev, B. I., et al. (STAR Collaboration). Centrality dependence of charged hadron and strange hadron elliptic flow from s(NN)∗∗(1/2) = 200-GeV Au + Au collisions. Physical Review C, 77:054901, 2008.10.1103/PhysRevC.77.054901CrossRefGoogle Scholar
B. I. et al. (STAR Collaboration). Beam-energy and system-size dependence of dynamical net charge fluctuations. Physical Review C, 79:024906, 2009.Google Scholar
Abelev, B. I., Aggarwal, M. M., Ahammed, Z., et al. K/π fluctuations at relativistic energies. Physical Review Letters, 103(9):092301, 2009.CrossRefGoogle ScholarPubMed
Abramowitz, M. and Stegun, I. A.. Handbook of mathematical functions. New York: Dover Publications, 1965.Google Scholar
Adamova, D., et al. (CERES Collaboration). Event-by-event fluctuations of the mean transverse momentum in 40, 80, and 158 agev/c Pb + Au collisions. Nuclear Physics A, 727(1):97119, 2003.10.1016/j.nuclphysa.2003.07.018CrossRefGoogle Scholar
Adams, J., et al. (STAR Collaboration). Azimuthal anisotropy in Au+Au collisions at s(NN)∗∗(1/2) = 200-GeV. Physical Review C, 72:014904, 2005.CrossRefGoogle Scholar
Adams, J., et al. (STAR Collaboration). Event by event pT fluctuations in Au – Au collisions at = 130 GeV. Physical Review C, 71:064906, 2005.CrossRefGoogle Scholar
Adams, J., et al. (STAR Collaboration). Incident energy dependence of pt correlations at RHIC. Physical Review C, 72:044902, 2005.10.1103/PhysRevC.72.044902CrossRefGoogle Scholar
Adler, C., et al. (STAR Collaboration). Elliptic flow from two- and four-particle correlations in Au+Au collisions at = 130 GeV. Physical Review C, 66:034904, 2002.10.1103/PhysRevC.66.034904CrossRefGoogle Scholar
Adler, C., et al. (STAR Collaboration). Disappearance of back-to-back high-pT hadron correlations in central Au+Au collisions at = 200 GeV. Physical Review Letters, 90:082302, 2003.10.1103/PhysRevLett.90.082302CrossRefGoogle Scholar
Adler, S. S., et al. (PHENIX Collaboration). Measurement of nonrandom event-by-event fluctuations of average transverse momentum in = 200 GeV – Au and pp collisions. Physical Review Letters, 93(9):092301, 2004.10.1103/PhysRevLett.93.092301CrossRefGoogle ScholarPubMed
Adye, T.. Unfolding algorithms and tests using RooUnfold. ArXiv e-prints, May 2011.Google Scholar
Agostinelli, S., Allison, J., Amako, K., et al. Geant4, a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250303, 2003.10.1016/S0168-9002(03)01368-8CrossRefGoogle Scholar
Aitkin, Murray A, Francis, Brian, and Hinde, John. Statistical modelling in GLIM 4, Volume 32. Oxford: Oxford University Press, 2005.CrossRefGoogle Scholar
Ajitanand, N. N., Alexander, J. M., Chung, P., et al. Decomposition of harmonic and jet contributions to particle-pair correlations at ultrarelativistic energies. Physical Review C, 72:011902, Jul 2005.CrossRefGoogle Scholar
Albrow, M. and Raja, R.. In Proceedings, Hadronic Shower Simulation Workshop, Batavia, September 6–8, 2006. AIP Conference Proceedings, 896:1254, 2007.CrossRefGoogle Scholar
Alexopoulos, T., Bachtis, M., Gazis, E., and Tsipolitis, G.. Implementation of the legendre transform for track segment reconstruction in drift tube chambers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 592(3):456462, 2008.CrossRefGoogle Scholar
Alver, B., Back, B. B., Baker, M. D., et al. Importance of correlations and fluctuations on the initial source eccentricity in high-energy nucleus-nucleus collisions. Physical Review C, 77:014906, 2008.10.1103/PhysRevC.77.014906CrossRefGoogle Scholar
Amsler, C. et al. (Particle Data Group). Review of particle physics. Physics Letters B, 667(1):16, 2008.10.1016/j.physletb.2008.07.018CrossRefGoogle Scholar
Andronic, A. and Wessels, J. P.. Transition radiation detectors. Nuclear Instruments and Methods in Physics Research A, 666:130147, 2012.10.1016/j.nima.2011.09.041CrossRefGoogle Scholar
Anticic, T., Baatar, B., Barna, D., et al. Transverse momentum fluctuations in nuclear collisions at 158A gev. Physical Review C, 70(3):034902, 2004.10.1103/PhysRevC.70.034902CrossRefGoogle Scholar
Anykeyev, V. B., Spiridonov, A. A., and Zhigunov, V. P.. Comparative investigation of unfolding methods. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 303(2):350369, 1991.10.1016/0168-9002(91)90802-WCrossRefGoogle Scholar
Archambault, J. P., Artamonov, A., Cadabeschi, M., et al. Energy calibration of the at-las liquid argon forward calorimeter. Journal of Instrumentation, 3(2):P02002, 2008.10.1088/1748-0221/3/02/P02002CrossRefGoogle Scholar
Avery, Paul. Applied fitting theory vi: Formulas for kinematic fitting. CLEO Note CBX, 98–37, 1998.Google Scholar
Barlow, Roger J.. Statistics: A guide to the use of statistical methods in the physical sciences, volume 29. New York: John Wiley & Sons, 1989.Google Scholar
Barnes, V. E., Connolly, P. L., Crennell, D. J., et al. Observation of a hyperon with strangeness minus three. Physical Review Letters, 12:204206, 1964.10.1103/PhysRevLett.12.204CrossRefGoogle Scholar
Barnett, R. M., Carone, C. D., Groom, D. E., et al. Review of particle physics. Physical Review D, 54:1708, Jul 1996.10.1103/PhysRevD.54.1CrossRefGoogle ScholarPubMed
Bass, S. A., Bleicher, M., Brandstetter, M., Ernst, C., Gerland, L., et al. Urqmd: A new molecular dynamics model from ganil to CERN energies. In Structure of vacuum and elementary matter: Proceedings, International Conference on Nuclear Physics at the Turn of the Millennium, Wilderness, South Africa, March 10–16, 1996, pp. 399405.Google Scholar
Bass, Steffen A., Danielewicz, Pawel, and Pratt, Scott. Clocking hadronization in relativistic heavy-ion collisions with balance functions. Physical Review Letters, 85:26892692, 2000.10.1103/PhysRevLett.85.2689CrossRefGoogle ScholarPubMed
Bass, Steffen A., Danielewicz, Pawel, and Pratt, Scott. Clocking hadronization in relativistic heavy ion collisions with balance functions. Physical Review Letters, 85:26892692, 2000.CrossRefGoogle ScholarPubMed
Giuseppe Battistoni, F. Cerutti, Fasso, A., A. Ferrari, Muraro, S., Ranft, J., Roesler, S., and Sala, P. R.. The fluka code: Description and benchmarking. In Hadronic Shower Simulation Workshop (AIP Conference Proceedings, Volume 896), pp. 3149, 2007.10.1063/1.2720455CrossRefGoogle Scholar
Baturin, S. S. and Kanareykin, A. D.. Cherenkov radiation from short relativistic bunches: General approach. Physical Review Letters, 113:214801, 2014.10.1103/PhysRevLett.113.214801CrossRefGoogle ScholarPubMed
Beaudette, Florian. The CMS particle flow algorithm. arXiv:1401.8155 [hep-ex].Google Scholar
Beringer, J., et al. (Particle Data Group). Review of particle physics. Physical Review D, 86:324325, 2012.10.1103/PhysRevD.86.010001CrossRefGoogle Scholar
Besset, Didier H.. Object-oriented implementation of numerical methods: An introduction with Java and Smalltalk. Burlington, MA: Morgan Kaufmann, 2001.Google Scholar
Bhalerao, Rajeev S., Ollitrault, Jean-Yves, and Pal, Subrata. Characterizing flow fluc-tuations with moments. Physics Letters, B742:9498, 2015.CrossRefGoogle Scholar
Bhalerao, R. S., Borghini, N., and Ollitrault, J. Y.. Analysis of anisotropic flow with Lee-Yang zeroes. Nuclear Physics A, 727:373426, 2003.10.1016/j.nuclphysa.2003.08.007CrossRefGoogle Scholar
Bichsel, Hans. A method to improve tracking and particle identification in tpcs and silicon detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 562(1):154197, 2006.10.1016/j.nima.2006.03.009CrossRefGoogle Scholar
Billoir, Pierre and Qian, Sijin. Simultaneous pattern recognition and track filtering by the Kalman filtering method. Nuclear Instruments and Methods in Physics Research A, 294(1–2):219228, 1990.10.1016/0168-9002(90)91835-YCrossRefGoogle Scholar
Billoir, Pierre. Further test for the simultaneous pattern recognition and track filtering by the Kalman filtering method. Nuclear Instruments and Methods in Physics Research A, 295(3):492500, 1990.CrossRefGoogle Scholar
Billoir, Pierre. Track fitting with multiple scattering: A new method. Nuclear Instru-ments and Methods in Physics Research, 225(2):352366, 1984.10.1016/0167-5087(84)90274-6CrossRefGoogle Scholar
Billoir, Pierre. Progressive track recognition with a Kalman-like fitting procedure. Computer Physics Communications, 57(1):390394, 1989.10.1016/0010-4655(89)90249-XCrossRefGoogle Scholar
Pierre Billoir, R. Frühwirth, and Meinhard Regler. Track element merging strategy and vertex fitting in complex modular detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 241(1):115131, 1985.10.1016/0168-9002(85)90523-6CrossRefGoogle Scholar
Billoir, Pierre and Qian, Sijin. Fast vertex fitting with a local parametrization of tracks. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 311(1):139150, 1992.10.1016/0168-9002(92)90859-3CrossRefGoogle Scholar
Bleicher, M., Jeon, S., and Koch, V.. Event-by-event fluctuations of the charged particle ratio from nonequilibrium transport theory. Physical Review C, 62:061902, 2000.10.1103/PhysRevC.62.061902CrossRefGoogle Scholar
Blobel, V.. Alignment algorithms. In Blusk, S., Buchmuller, O., Jacholkowski, A., Ruf, T., Schieck, J., and Viret, S. (eds.), Proceedings, First LHC Detector Alignment Workshop, CERN, Geneva, Switzerland, September 4–6, 2006, p. 5.Google Scholar
Blobel, Volker. An unfolding method for high energy physics experiments. arXiv preprint hep-ex/0208022, 2002.Google Scholar
Blume, Christoph. Search for the critical point and the onset of deconfinement. Central European Journal of Physics, 10(6):12451253, 2012.Google Scholar
Bock, Rudolf K. and Vasilescu, Angela. The particle detector briefbook. Berlin and Heidelberg: Springer-Verlag 1998.10.1007/978-3-662-03727-0CrossRefGoogle Scholar
Bonvicini, G.. Private communication, 2009.Google Scholar
Bopp, Fritz W., Engel, R., and Ranft, J.. Rapidity gaps and the PHOJET Monte Carlo. pp. 729741, 1998.Google Scholar
Borghini, N., Bhalerao, R. S., and Ollitrault, J.-Y.. Anisotropic flow from lee yang zeros: A practical guide. Journal of Physics G: Nuclear and Particle Physics, 30(8):S1213, 2004.10.1088/0954-3899/30/8/092CrossRefGoogle Scholar
Borghini, Nicolas. Multiparticle correlations from momentum conservation. European Physical Journal, C30:381385, 2003.10.1140/epjc/s2003-01265-6CrossRefGoogle Scholar
Borghini, Nicolas. Momentum conservation and correlation analyses in heavy-ion collisions at ultrarelativistic energies. Physical Review C, 75:021904, 2007.10.1103/PhysRevC.75.021904CrossRefGoogle Scholar
Borghini, Nicolas, Dinh, Phuong Mai, and Ollitrault, Jean-Yves. Flow analysis from cumulants: A practical guide. In International Workshop on the Physics of the Quark Gluon Plasma Palaiseau, France, September 4–7, 2001.Google Scholar
Box, G. E. P. and Muller, Mervin E.. A note on the generation of random normal deviates. Annals of Mathematical Statistics, 29(2):610611, 1958.10.1214/aoms/1177706645CrossRefGoogle Scholar
Brown, Lawrence D., Tony Cai, T., and Anirban DasGupta. Interval estimation for a binomial proportion. Statistical Science, 16(2):101133, 2001.10.1214/ss/1009213286CrossRefGoogle Scholar
Brun, Rene and Rademakers, Fons. ROOT, an object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 389(1):8186, 1997.10.1016/S0168-9002(97)00048-XCrossRefGoogle Scholar
Bugge, Lars and Myrheim, Jan. Tracking and track fitting. Nuclear Instruments and Methods, 179(2):365381, 1981.10.1016/0029-554X(81)90063-XCrossRefGoogle Scholar
Buzzatti, Alessandro and Gyulassy, Miklos. An overview of the CUJET model: Jet Flavor Tomography applied at RHIC and LHC. Nuclear Physics A, 910–911:490493, 2013.10.1016/j.nuclphysa.2012.12.009CrossRefGoogle Scholar
Cerny, Vladimir. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1):4151, 1985.10.1007/BF00940812CrossRefGoogle Scholar
Chen, Zhe. Bayesian filtering: From kalman filters to particle filters, and beyond. Statistics, 182(1):169, 2003.10.1080/02331880309257CrossRefGoogle Scholar
Cheng, Sen, Petriconi, Silvio, Pratt, Scott, Skoby, Michael, Gale, Charles, et al. Statistical and dynamic models of charge balance functions. Physical Review C, 69:054906, 2004.10.1103/PhysRevC.69.054906CrossRefGoogle Scholar
Clopper, C. J. and Pearson, E. S.. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika, 26(4):404413, 1934.10.1093/biomet/26.4.404CrossRefGoogle Scholar
Corcella, G., Knowles, I. G., Marchesini, G., Moretti, S., Odagiri, K., et al. HERWIG 6: An event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). JHEP, 0101:010, 2001.Google Scholar
Cowan, Glen. Statistical data analysis. Oxford: Oxford University Press, 1998.10.1093/oso/9780198501565.001.0001CrossRefGoogle Scholar
Cowan, Glen. A survey of unfolding methods for particle physics. In Prepared for Conference on Advanced Statistical Techniques in Particle Physics, Durham, England, pp. 1822, 2002.Google Scholar
Cox, Richard T.. Probability, frequency and reasonable expectation. American Journal of Physics, 14(1):113, 1946.10.1119/1.1990764CrossRefGoogle Scholar
Crassidis, J. L. and Junkins, J. L.. Optimal estimation of dynamic systems. Boca Raton, FL: CRC Press, 2004.10.1201/9780203509128CrossRefGoogle Scholar
Cucciarelli, S.. The performance of the cms pixel detector and the primary-vertex finding. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 549(1):4954, 2005.10.1016/j.nima.2005.04.024CrossRefGoogle Scholar
D’Agostini, G.. Fits, and especially linear fits, with errors on both axes, extra variance of the data points and other complications. ArXiv Physics e-prints, November 2005.Google Scholar
D’Agostini, G.. Improved iterative Bayesian unfolding. ArXiv e-prints, October 2010.Google Scholar
Dalitz, R. H.. Cxii. on the analysis of τ-meson data and the nature of the τ -meson. Philosophical Magazine, 44(357):10681080, 1953.Google Scholar
Dalitz, R. H.. Decay of τ mesons of known charge. Physical Review, 94(4):1046, 1954.10.1103/PhysRev.94.1046CrossRefGoogle Scholar
Damgov, J., Genchev, V., and Mavrodiev, S. C.. Nonlinear energy calibration of CMS calorimeters for single pions. 2001.Google Scholar
Das, S. R.. On a new approach for finding all the modified cut-sets in an incompatibility graph. IEEE Transactions on Computers, 100(2):187193, 1973.CrossRefGoogle Scholar
Dyson, F. W., Eddington, A. S., and Davidson, C.. A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 220(571–581):291333, 1920.Google Scholar
Fabjan, Christian W. and Ludlam, T.. Calorimetry in high-energy physics. Annual Review of Nuclear and Particle Science, 32(1):335389, 1982.10.1146/annurev.ns.32.120182.002003CrossRefGoogle Scholar
Feldman, Gary J. and Cousins, Robert D.. Unified approach to the classical statistical analysis of small signals. Physical Review D, 57(7):3873, 1998.10.1103/PhysRevD.57.3873CrossRefGoogle Scholar
Ferbel, Thomas. Experimental techniques in high-energy nuclear and particle physics. Singapore: World Scientific, 1991.10.1142/1571CrossRefGoogle Scholar
Fink, Daniel. A compendium of conjugate priors. See www.people.cornell.edu/pages/df36/CONJINTRnew%20TEX.pdf, p. 46, 1997.Google Scholar
Fisyak, Y.. Private communication, 2015.Google Scholar
Fletcher, R.. Practical methods of optimization: Unconstrained optimization. New York: John Wiley & Sons, 1980.Google Scholar
Foa, L.. Inclusive study of high-energy multiparticle production and two-body correlations. Physics Reports, 22:156, 1975.10.1016/0370-1573(75)90050-2CrossRefGoogle Scholar
Frühwirth, R.. Application of Kalman filtering to track and vertex fitting. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 262(2–3):444450, 1987.10.1016/0168-9002(87)90887-4CrossRefGoogle Scholar
Frühwirth, R., Vanlaer, Pascal, and Waltenberger, Wolfgang. Adaptive vertex fitting. Technical report, CERN-CMS-NOTE-2007-008, 2007.Google Scholar
Widl, E. and Frühwirth, Rudolph. Application of the Kalman alignment algorithm to the CMS tracker. Journal of Physics: Conference Series, 291(3):3265, 2010.Google Scholar
Frühwirth, Rudolf and Regler, Meinhard. Data analysis techniques for high-energy physics, Vol. 11. Cambridge: Cambridge University Press, 2000.Google Scholar
Fu, Daihong, Dyer, Kenneth C, Lewis, Stephen H., and Hurst, Paul J.. A digital background calibration technique for time-interleaved analog-to-digital converters. IEEE Journal of Solid-State Circuits, 33(12):19041911, 1998.Google Scholar
Gagunashvili, N. D.. Densities mixture unfolding for data obtained from detectors with finite resolution and limited acceptance. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 778:92101, 2015.10.1016/j.nima.2015.01.014CrossRefGoogle Scholar
Gazdzicki, M. and Mrowczynski, S.. A Method to study ‘equilibration’ in nucleusnucleus collisions. Zeitschrift für Physik C, 54:127132, 1992.CrossRefGoogle Scholar
Gelb, A.. Applied optimal estimation. Cambridge, MA: MIT Press, 2004.Google Scholar
Glazov, A., Kisel, I., Konotopskaya, E., and Ososkov, G.. Filtering tracks in discrete detectors using a cellular automaton. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 329(1):262268, 1993.10.1016/0168-9002(93)90945-ECrossRefGoogle Scholar
Golutvin, I. A., Kiryushin, Yu T., Movchan, S. A., Ososkov, G. A., Pal’chik, V. V., and Tikhonenko, E. A.. Robust optimal estimates of the parameters of muon track segments in cathode strip chambers for cms experiments. Instruments and Experimental Techniques, 45(6):735741, 2002.10.1023/A:1021410517722CrossRefGoogle Scholar
Gregoire, T. G.. Design-based and model-based inference in survey sampling: Appreciating the difference. Canadian Journal of Forest Research, 28(10):14291447, 1998.CrossRefGoogle Scholar
Gregory, Phil. Bayesian logical data analysis for the physical sciences: A comparative approach with mathematica support. Cambridge: Cambridge University Press, 2005.10.1017/CBO9780511791277CrossRefGoogle Scholar
Guenter Grindhammer, M. Rudowicz, and S. Peters. The fast simulation of electromagnetic and hadronic showers. Nuclear Instruments and Methods, 290:469, 1990.Google Scholar
Grupen, Claus and Schwartz, Boris. Particle detectors. http://ajbell.web.cern.ch/ajbell/Documents/eBooks/Particle_Detectors_Grupen.pdf 2008.10.1017/CBO9780511534966CrossRefGoogle Scholar
Haahr, M.. True random number service. www.random.org/.Google Scholar
Hampel, F. R., Ronchetti, E., Rousseeuw, P., and Stahel, W.. Robust statistics: The approach based on influence functions. New York: John Wiley & Sons, 1986.Google Scholar
Hansroul, M., Jeremie, H., and Savard, D.. Fast circle fit with the conformal mapping method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 270(2):498501, 1988.10.1016/0168-9002(88)90722-XCrossRefGoogle Scholar
Harney, H. L.. Bayesian inference: Parameter estimation and decisions. Advanced Texts in Physics. Berlin and Heidelberg: Springer, 2014.Google Scholar
Heckel, Stefan, et al. (ALICE Collaboration). Event-by-event mean pt fluctuations in pp and PPb collisions measured by the alice experiment at the lhc. Journal of Physics G: Nuclear and Particle Physics, 38(12):124095, 2011.10.1088/0954-3899/38/12/124095CrossRefGoogle Scholar
Hirayama, H., Namito, Y., Bielajew, A. F., Wilderman, S. J., and Nelson, W. R.. The EGS5 code system. 2005.10.2172/877459CrossRefGoogle Scholar
Hocker, Andreas and Kartvelishvili, Vakhtang. SVD approach to data unfolding. Nuclear Instruments and Methods A, 372:469481, 1996.10.1016/0168-9002(95)01478-0CrossRefGoogle Scholar
Holland, John H.. Adaptation in natural and artificial systems. Cambridge, MA: MIT Press, 1992.10.7551/mitpress/1090.001.0001CrossRefGoogle Scholar
Hoppner, C., Neubert, S., Ketzer, B., and Paul, S.. A novel generic framework for track fitting in complex detector systems. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 620(2–3):518525, 2010.10.1016/j.nima.2010.03.136CrossRefGoogle Scholar
Hough, P. V. C.. Machine analysis of bubble chamber pictures. Conference Proceedings, C590914:554558, 1959.Google Scholar
Huang, Kerson. Introduction to statistical mechanics. Hoboken, NJ: John Wiley & Sons, 2001.Google Scholar
Hulsbergen, W. D.. The global covariance matrix of tracks fitted with a Kalman filter and an application in detector alignment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600(2):471477, 2009.10.1016/j.nima.2008.11.094CrossRefGoogle Scholar
Jackson, David J.. A topological vertex reconstruction algorithm for hadronic jets. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 388(1):247253, 1997.10.1016/S0168-9002(97)00341-0CrossRefGoogle Scholar
James, F.. Monte Carlo phase space. CERN 68-15, 1968.Google Scholar
James, F.. A review of pseudorandom number generators. Computer Physics Communications, 60(3):329344, 1990.10.1016/0010-4655(90)90032-VCrossRefGoogle Scholar
James, F. and Roos, M.. Minuit: A system for function minimization and analysis of the parameter errors and correlations. Computer Physics Communications, 10:343367, 1975.10.1016/0010-4655(75)90039-9CrossRefGoogle Scholar
James, Frederick. Statistical methods in experimental physics, Vol. 7. Singapore: World Scientific, 2006.10.1142/6096CrossRefGoogle Scholar
Jaynes, Edwin T.. Probability theory: The logic of science. Cambridge: Cambridge University Press, 2003.10.1017/CBO9780511790423CrossRefGoogle Scholar
Jeffreys, Harold. Scientific inference. Cambridge: Cambridge University Press, 1973.Google Scholar
Jeffreys, Harold. The theory of probability. Oxford: Oxford University Press, 1998.10.1093/oso/9780198503682.001.0001CrossRefGoogle Scholar
Jeon, S. and Koch, V.. Fluctuations of particle ratios and the abundance of hadronic resonances. Physical Review Letters, 83:54355438, 1999.10.1103/PhysRevLett.83.5435CrossRefGoogle Scholar
Jeon, S. and Koch, V.. Charged particle ratio fluctuation as a signal for QGP. Physical Review Letters, 85:20762079, 2000.10.1103/PhysRevLett.85.2076CrossRefGoogle Scholar
Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82(1):3545, 1960.Google Scholar
Kendall, M. G. and Stuart, A.. The advanced theory of statistics, Vol. 1. London: C. Griffin and Co., 1969.Google Scholar
Kharzeev, Dmitri E.. The chiral magnetic effect and anomaly-induced transport. Progress in Particle and Nuclear Physics, 75(0):133151, 2014.10.1016/j.ppnp.2014.01.002CrossRefGoogle Scholar
Kharzeev, Dmitri E., McLerran, Larry D., and Warringa, Harmen J.. The effects of topological charge change in heavy ion collisions: “Event by event p. and cp violation.” Nuclear Physics A, 803(3):227253, 2008.10.1016/j.nuclphysa.2008.02.298CrossRefGoogle Scholar
Scott Kirkpatrick, C. Daniel Gelatt, Vecchi, Mario P., et al. Optimization by simulated annealing. Science, 220(4598):671680, 1983.10.1126/science.220.4598.671CrossRefGoogle Scholar
Kisel, Ivan. Event reconstruction in the cbm experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 566(1):8588, 2006.10.1016/j.nima.2006.05.040CrossRefGoogle Scholar
Kittel, W. and De Wolf, E. A.. Soft Multihadron Dynamics. Singapore: World Scientific, 2005.10.1142/5805CrossRefGoogle Scholar
Kolmogorov, Andrej N.. Sulla determinazione empirica di una legge di distribuzione. na, 1933.Google Scholar
Kopylov, G.. JETP, 8:996, 1959.Google Scholar
Kopylov, G. I.. Like particle correlations as a tool to study the multiple production mechanism. Physics Letters B, 50(4):472474, 1974.10.1016/0370-2693(74)90263-9CrossRefGoogle Scholar
Kuhn, Thomas S.. The structure of scientific revolutions. Chicago: University of Chicago Press, 2012.10.7208/chicago/9780226458144.001.0001CrossRefGoogle Scholar
Lange, D. J.. The EvtGen particle decay simulation package. Nuclear Instruments and Methods, A462:152155, 2001.10.1016/S0168-9002(01)00089-4CrossRefGoogle Scholar
Bin Le, T. W. Rondeau, J. H. Reed, and C. W. Bostian. Analog-to-digital converters. IEEE Signal Processing Magazine, 22(6):6977, Nov 2005.10.1109/MSP.2005.1550190CrossRefGoogle Scholar
Leo, William R.. Techniques for nuclear and particle physics experiments: A how-to approach. Heidelberg and New York: Springer-Verlag, 1994.10.1007/978-3-642-57920-2CrossRefGoogle Scholar
Levenberg, Kenneth. A method for the solution of certain non–linear problems in least squares. 1944.10.1090/qam/10666CrossRefGoogle Scholar
Lin, Zi-wei, Subrata Pal, C.M. Ko, Bao-An Li, and Bin Zhang. Multiphase transport model for heavy ion collisions at RHIC. Nuclear Physics A, 698:375378, 2002.CrossRefGoogle Scholar
Lyons, Louis. Open statistical issues in particle physics. Annals of Applied Statistics, 887–915, 2008.10.1214/08-AOAS163CrossRefGoogle Scholar
Mankel, Rainer. A concurrent track evolution algorithm for pattern recognition in the hera-b main tracking system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 395(2):169184, 1997.10.1016/S0168-9002(97)00705-5CrossRefGoogle Scholar
Donald W Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431441, 1963.10.1137/0111030CrossRefGoogle Scholar
Matsumoto, Makoto and Nishimura, Takuji. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation, 8(1):330, January 1998.10.1145/272991.272995CrossRefGoogle Scholar
Mertens, S., Lasserre, T., Groh, S., et al. Sensitivity of next-generation tritium betadecay experiments for keV-scale sterile neutrinos. JCAP, 1502(02):20, 2015.Google Scholar
Metropolis, Nicholas, Rosenbluth, Arianna W., Rosenbluth, Marshall N., Teller, Augusta H., and Teller, Edward. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):10871092, 1953.10.1063/1.1699114CrossRefGoogle Scholar
Michalewicz, Zbigniew. Genetic Algorithms + Data Structures = Evolution Programs (2nd, extended ed.). New York: Springer-Verlag, 1994.10.1007/978-3-662-07418-3CrossRefGoogle Scholar
Mitchell, Melanie. An introduction to genetic algorithms. Cambridge, MA: MIT Press, 1996.10.7551/mitpress/3927.001.0001CrossRefGoogle Scholar
Mrowczynski, Stanislaw. Transverse momentum and energy correlations in the equilibrium system from high-energy nuclear collisions. Physics Letters, B439:611, 1998.10.1016/S0370-2693(98)01046-6CrossRefGoogle Scholar
Nelder, John A. and Mead, Roger. A simplex method for function minimization. Computer Journal, 7(4):308313, 1965.10.1093/comjnl/7.4.308CrossRefGoogle Scholar
Newcombe, Robert G.. Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine, 17(8):857872, 1998.10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Neyman, Jerzy. Outline of a theory of statistical estimation based on the classical theory of probability. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 236(767):333380, 1937.Google Scholar
Olive, K. A., et al. (Particle Data Group). Review of particle physics. Chinese Physics, C38:090001, 2014.Google Scholar
Ollitrault, Jean-Yves. On the measurement of azimuthal anisotropies in nucleus-nucleus collisions. 1997.Google Scholar
Pinganaud, W.. Contributions to the development of the silicon microstrip detector for the star experiment at rhic. 2000. Thesis, Universite de Nantes.Google Scholar
Podolanski, J. and Armenteros, R.. Iii. analysis of v-events. Philosophical Magazine, 45(360):1330, 1954.Google Scholar
Powell, M. J. D.. An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal, 7(2):155162, 1964.10.1093/comjnl/7.2.155CrossRefGoogle Scholar
Pratt, Scott. General charge balance functions: A tool for studying the chemical evolution of the Quark-Gluon Plasma. Physical Review C, 85:014904, 2012.10.1103/PhysRevC.85.014904CrossRefGoogle Scholar
William H Press. Numerical recipes, 3rd ed.: The art of scientific computing. Cambridge: Cambridge University Press, 2007.Google Scholar
Pruneau, C., Gavin, S., and Voloshin, S.. Methods for the study of particle production fluctuations. Physical Review C, 66:044904, 2002.10.1103/PhysRevC.66.044904CrossRefGoogle Scholar
Pruneau, C. A.. Methods for jet studies with three-particle correlations. Physical Review C, 74:064910, 2006.10.1103/PhysRevC.74.064910CrossRefGoogle Scholar
Pruneau, C. A.. Net charge fluctuations at RHIC. Acta Physica Hungarica, A25:401408, 2006.10.1556/APH.25.2006.2-4.30CrossRefGoogle Scholar
Pruneau, C. A.. Three-particle cumulant study of conical emission. Physical Review C, 79:044907, 2009.10.1103/PhysRevC.79.044907CrossRefGoogle Scholar
Pruneau, C. A., Gavin, S., and Voloshin, S.. Net charge dynamic fluctuations. Nuclear Physics A, 715:661664, 2003.10.1016/S0375-9474(02)01556-7CrossRefGoogle Scholar
Pruneau, Claude A., Gavin, Sean, and Voloshin, Sergei A.. Transverse radial flow effects on two- and three-particle angular correlations. Nuclear Physics A, 802(14):107121, 2008.10.1016/j.nuclphysa.2008.01.031CrossRefGoogle Scholar
Ravan, Shantam, Pujahari, Prabhat, Prasad, Sidharth, and Pruneau, Claude A.. Correcting Correlation Function Measurements. Physical Review C, 89(2):024906, 2014.10.1103/PhysRevC.89.024906CrossRefGoogle Scholar
Renk, Thorsten. YaJEM: A Monte Carlo code for in-medium shower evolution. International Journal of Modern Physics E, 20:15941599, 2011.10.1142/S0218301311019933CrossRefGoogle Scholar
Ronchetti, F. and the ALICE collaboration. The alice electromagnetic calorimeter project. Journal of Physics: Conference Series, 160(1):012012, 2009.Google Scholar
Rousseeuw, Peter J. and Leroy, Annick M.. Robust regression and outlier detection, Vol. 589. Hoboken, NJ: John Wiley & Sons, 2005.Google Scholar
Royall, Richard. Statistical evidence: A likelihood paradigm, Vol. 71. Boca Raton, FL: CRC press, 1997.Google Scholar
Sage, Andrew P. and Melsa, James L.. Estimation theory with applications to communications and control. New York: McGraw-Hill, 1971.10.1109/TSMC.1971.4308330CrossRefGoogle Scholar
Schenke, Bjoern, Gale, Charles, and Jeon, Sangyong. MARTINI: An Event generator for relativistic heavy-ion collisions. Physical Review C, 80:054913, 2009.CrossRefGoogle Scholar
Schnedermann, Ekkard, Sollfrank, Josef, and Heinz, Ulrich. Thermal phenomenology of hadrons from 200 A gev s+s collisions. Physical Review C, 48:24622475, Nov 1993.10.1103/PhysRevC.48.2462CrossRefGoogle Scholar
Schulz, Michael, Fischer, Daniel, Ferger, Thomas, Moshammer, Robert, and Ullrich, Joachim. Four-particle dalitz plots to visualize atomic break-up processes. Journal of Physics B: Atomic, Molecular and Optical Physics, 40(15):3091, 2007.10.1088/0953-4075/40/15/009CrossRefGoogle Scholar
Shannon, Claude E. and Weaver, Warren. The mathematical theory of communication. University of Illinois Press, 2015.Google Scholar
Sharma, M. and Pruneau, C. A.. Methods for the study of transverse momentum differential correlations. Physical Review C, 79:024905, 2009.10.1103/PhysRevC.79.024905CrossRefGoogle Scholar
Sjostrand, Torbjorn and Bengtsson, Mats. The Lund Monte Carlo for jet fragmentation and e+ e- physics. Jetset Version 6.3: An update. Computer Physics Communications, 43:367, 1987.10.1016/0010-4655(87)90054-3CrossRefGoogle Scholar
Sjostrand, Torbjorn, Mrenna, Stephen, and Skands, Peter Z.. A brief introduction to PYTHIA 8.1. Computer Physics Communications, 178:852867, 2008.10.1016/j.cpc.2008.01.036CrossRefGoogle Scholar
Sorge, H., Mattiello, R., Jahns, A., Stoecker, Horst, and Greiner, W.. Meson production in P-A and A-A collisions at AGS energies. Physics Letters, B271:3742, 1991.10.1016/0370-2693(91)91274-YCrossRefGoogle Scholar
Srivastava, P. and Sudarshan, G.. Multiple production of pions in nuclear collisions. Physical Review, 110:765766, 1958.10.1103/PhysRev.110.765CrossRefGoogle Scholar
Strandlie, Are and Frühwirth, Rudolf. Track and vertex reconstruction: From classical to adaptive methods. Reviews of Modern Physics, 82(2):1419, 2010.10.1103/RevModPhys.82.1419CrossRefGoogle Scholar
Viret, S., Parkes, C., and Gersabeck, M.. Alignment procedure of the “LHCb” vertex detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 596(2):157163, 2008.10.1016/j.nima.2008.07.153CrossRefGoogle Scholar
Voloshin, Sergei. Fluctuations in the mixed event technique. 1994.Google Scholar
Voloshin, Sergei. Transverse radial expansion in nuclear collisions and two particle correlations. Physics Letters B, 632(4):490494, 2006.10.1016/j.physletb.2005.11.024CrossRefGoogle Scholar
Voloshin, Sergei, Poskanzer, Arthur M., and Snellings, Raimond. Collective phenomena in non-central nuclear collisions. 2008.Google Scholar
Voloshin, Sergei A.. Discussing the possibility of observation of parity violation in heavy ion collisions. Physical Review C, 62:044901, Aug 2000.10.1103/PhysRevC.62.044901CrossRefGoogle Scholar
Voloshin, Sergei A.. Toward the energy and the system size dependence of elliptic flow: Working on flow fluctuations. 2006.Google Scholar
Voloshin, Sergei A, Poskanzer, Arthur M, Tang, Aihong, and Wang, Gang. Elliptic flow in the gaussian model of eccentricity fluctuations. Physics Letters B, 659(3):537541, 2008.10.1016/j.physletb.2007.11.043CrossRefGoogle Scholar
Walden, R. H.. Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas in Communications, 17(4):539550, Apr 1999.10.1109/49.761034CrossRefGoogle Scholar
Waltenberger, Wolfgang. Development of vertex finding and vertex fitting algorithms for CMS.Google Scholar
Wang, Xin-Nian and Gyulassy, Miklos. HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions. Physical Review D, 44:35013516, 1991.10.1103/PhysRevD.44.3501CrossRefGoogle Scholar
Wang, Yongge and Nicol, Tony. Statistical Properties of Pseudo Random Sequences and Experiments with PHP and Debian OpenSSL, Vol. 8712 of Lecture Notes in Computer Science. Cham, Switzerland: Springer International Publishing, 2014.Google Scholar
Hans-Peter Wellisch, J. P. Kubenka, Oberlack, H., and Schacht, P.. Hadronic calibration of the H1 LAr calorimeter using software weighting techniques. Max-Planck- Inst. für Physik, 1994.Google Scholar
Werner, K.. Analysis of proton – nucleus and nucleus-nucleus scattering at 200-agev by the multistring model Venus. Physics Letters, B208:520, 1988.Google Scholar
Werner, Klaus. The hadronic interaction model EPOS. Nuclear Physics Proceedings, 175–176:8187, 2008.10.1016/j.nuclphysbps.2007.10.012CrossRefGoogle Scholar
Whitmore, J.. Multiparticle Production in the Fermilab Bubble Chambers. Physics Reports, 27:187273, 1976.10.1016/0370-1573(76)90004-1CrossRefGoogle Scholar
Wigmans, Richard. Advances in hadron calorimetry. Annual Review of Nuclear and Particle Science, 41(1):133185, 1991.10.1146/annurev.ns.41.120191.001025CrossRefGoogle Scholar
Williams, M. C. S.. Particle identification using time of flight. Journal of Physics G, 39:123001, 2012.10.1088/0954-3899/39/12/123001CrossRefGoogle Scholar
Wilson, Edwin B.. Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association, 22(158):209212, 1927.10.1080/01621459.1927.10502953CrossRefGoogle Scholar
William A Zajc. kno scaling isn’t what it used to be. Physics Letters B, 175(2):219222, 1986.10.1016/0370-2693(86)90720-3CrossRefGoogle Scholar
Zapp, Korinna C., Krauss, Frank, and Wiedemann, Urs A.. A perturbative framework for jet quenching. JHEP, 1303:080, 2013.Google Scholar
Zarchan, P. and Musoff, H.. Fundamentals of Kalman filtering: A practical approach. American Institute of Aeronautics and Astronautics, 2000.Google Scholar

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Claude A. Pruneau, Wayne State University, Michigan
  • Book: Data Analysis Techniques for Physical Scientists
  • Online publication: 24 October 2017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Claude A. Pruneau, Wayne State University, Michigan
  • Book: Data Analysis Techniques for Physical Scientists
  • Online publication: 24 October 2017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Claude A. Pruneau, Wayne State University, Michigan
  • Book: Data Analysis Techniques for Physical Scientists
  • Online publication: 24 October 2017
Available formats
×