Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T21:27:10.506Z Has data issue: false hasContentIssue false

9 - Radioisotopes as Chronometers

Published online by Cambridge University Press:  10 February 2022

Harry McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

How radioactive isotope systems are used to derive ages in extraterrestrial materials

Type
Chapter
Information
Cosmochemistry , pp. 192 - 237
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggestions for Further Reading

Faure, G., and Mensing, T. M. (2005) Isotopes: Principles and Applications, 3rd Edition. John Wiley and Sons, Hoboken, 897 pp. A tremendous resource for details about various techniques of radiometric dating.Google Scholar
Nyquist, L. E., Bogard, D. D., and Shif, C.-Y. (2001a) Radiometric chronology of the Moon and Mars. In The Century of Space Science, Bleeker, A. M., Geiss, J., and Huber, M. C., editors, pp. 13251376, Klewer Academic Publishers, Amsterdam. An easy-to-read review of the history of radiometric chronology as it relates to the Moon and Mars.Google Scholar
Wasserburg, G. J., and Papanastassiou, D. A. (1982) Some short-lived nuclides in the early solar system – a connection with the placental ISM. In Essays in Nuclear Astrophysics, Barnes, C. A., Clayton, D. D., and Schramm, D. N., editors, pp. 77140, Cambridge University Press, Cambridge. A good review of the early history of chronology using short-lived radionuclides.Google Scholar
Aldrich, L. T., and Nier, A. O. (1948) Argon-40 in potassium minerals. Physical Review, 74, 876877.CrossRefGoogle Scholar
Amelin, Y. (2005) Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago. Science, 310, 839841.CrossRefGoogle ScholarPubMed
Audouze, J., and Schramm, D. M. (1972) 146Sm: A chronometer for p-process nucleosynthesis. Nature, 237, 447449.CrossRefGoogle Scholar
Birck, J. L., and Allègre, C. J. (1985) Evidence for the presence of 53Mn in the early solar system. Geophysical Research Letters, 12, 745748.CrossRefGoogle Scholar
Birck, J. L., and Allègre, C. J. (1988) Manganese chromium isotope systematics and the development of the early solar system. Nature, 331, 579584.CrossRefGoogle Scholar
Birck, J. L., and Lugmair, G. W. (1988) Nickel and chromium isotopes in Allende inclusions. Earth & Planetary Science Letters, 90, 131143.Google Scholar
Birck, J. L., Rotaru, M., and Allègre, C. J. (1999) 53Mn-53Cr evolution of the early solar system. Geochimica et Cosmochimica Acta, 63, 41114117.CrossRefGoogle Scholar
Blichert-Toft, J., Boyet, M., Télouk, P., and Albarède, F. (2002) 147Sm-143Nd and 176Lu-176Hf in eucrites and the differentiation of the HED parent body. Earth & Planetary Science Letters, 204, 167181.Google Scholar
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017) Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances, 3, e1700407.Google Scholar
Bouvier, A., Vervoort, J. D., and Patchett, P. J. (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk compositions of the terrestrial planets. Earth & Planetary Science Letters, 273, 4857.Google Scholar
Brazzle, R. H., Pravdivtseva, O. V., Meshik, A. P., and Hohenberg, C. M. (1999) Verification and interpretation of the I-Xe chronometer. Geochimica et Cosmochimica Acta, 63, 739760.CrossRefGoogle Scholar
Brennecka, G. A., Weyer, S., Wadhwa, M., et al. (2010) 238U/235U variations in meteorites: Extant 247Cm and implications for Pb-Pb dating. Science, 327 , 449451.CrossRefGoogle ScholarPubMed
Brown, H. (1947) An experimental method for the estimation of the age of the elements. Physical Review, 72, 348.CrossRefGoogle Scholar
Campbell, N. R., and Wood, A. (1906) The radioactivity of the alkali metals. Proceedings of the Cambridge Philosophical Society, 14, 1521.Google Scholar
Carlson, R. W., and Hauri, E. H. (2001) Extending the 107Pd-107Ag chronometer to low Pd/Ag meteorites with multicollector plasma-ionization mass spectrometry. Geochimica et Cosmochimica Acta, 65, 18391848.CrossRefGoogle Scholar
Chaussidon, M., Robert, F., and McKeegan, K. D. (2006) Li and B isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived B-10 and for the possible presence of the short-lived nuclide Be-7 in the early solar system. Geochimica et Cosmochimica Acta, 70, 224245.Google Scholar
Chen, J., and Wasserburg, G. J. (1990) The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets. Geochimica et Cosmochimica Acta, 54, 17291743.CrossRefGoogle Scholar
Chen, J. H., Papanastassiou, D. A., and Wasserburg, G. J. (1998) Re-Os systematics in chondrites and the fractionation of the platinum group elements in the early solar system. Geochimica et Cosmochimica Acta, 62, 33793392.Google Scholar
Chmeleff, J., von Blanckenburg, R., Kossert, K., and Jakob, D. (2010) Determination of the 10Be half-life by multicollection ICP-MS and liquid scintillation counting. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials & Atoms, 268, 192199.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.Google Scholar
Creaser, R. A., Papanastassiou, D. A., and Wasserburg, G. J. (1991) Negative thermal ion mass spectrometry of osmium, rhenium, and iridium. Geochimica et Cosmochimica Acta, 55, 397401.Google Scholar
Davis, A. M., and McKeegan, K. D. (2014) Short-lived radionuclides and early solar system chronology. In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 361395, Elsevier, Oxford.CrossRefGoogle Scholar
Debaille, V., Van Orman, J., Yin, Q.-Z., and Amelin, Y. (2017) The role of phosphates for the Lu-Hf chronology of meteorites. Earth & Planetary Science Letters, 473, 5261.Google Scholar
DePaolo, D. J., and Wasserburg, G. J. (1976a) Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3, 249252.Google Scholar
DePaolo, D. J., and Wasserburg, G. J. (1976b) Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophysical Research Letters, 3, 743746.Google Scholar
Desch, S. J., Connolly, H. C. Jr., and Srinivasan, G. (2004) An interstellar origin for the beryllium-10 in calcium-rich, aluminum-rich inclusions. Astrophysical Journal, 602, 528542.Google Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015) Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications, 6, 7444.Google Scholar
Edmunson, J., Borg, L. E., Nyquist, L. E., and Asmerom, Y. (2009) A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: Further evidence for early differentiation of the Moon. Geochimica et Cosmochimica Acta, 73, 514527.CrossRefGoogle Scholar
Endress, M., Zinner, E., and Bischoff, A. (1996) Early aqueous activity on primitive meteorite parent bodies. Nature, 379, 701703.CrossRefGoogle ScholarPubMed
Faure, G. (1986) Principles of Isotope Geology, 2nd Edition. John Wiley and Sons, New York.Google Scholar
Fujiya, W., Sugiura, N., Sano, Y., and Hiyagon, H. (2013) Mn-Cr ages of dolomites in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite. Earth & Planetary Science Letters, 362, 130142.Google Scholar
Gale, N. H., and Mussett, A. E. (1973) Episodic uranium-lead models and interpretation of variations in isotopic composition of lead in rocks. Reviews in Geophysics, 11, 3786.Google Scholar
Garner, E. L., Murphy, T. J., Bramlich, J. W., et al. (1975) Absolute isotopic abundance ratios and the atomic weight of a reference sample of potassium. Journal of Research of the National Bureau of Standards – A. Physics and Chemistry, 79A, 713725.Google Scholar
Gounelle, M., Shu, F. H., Shang, H., et al. (2001) Extinct radioactivities and protosolar cosmic rays: Self-shielding and light elements. Astrophysical Journal, 548, 10511070.Google Scholar
Gray, C. M., Papanastassiou, D. A., and Wasserburg, G. J. (1973) The identification of early condensates from the solar nebula. Icarus, 20, 213239.Google Scholar
Gray, C. M., and Compston, W. (1974) Excess 26Mg in the Allende meteorite. Nature, 251, 495497.CrossRefGoogle Scholar
Guan, Y., Huss, G. R., and Leshin, L. A. (2007) 60Fe-60Ni and 53Mn-53Cr isotope systems in sulfides from unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 71, 40824091.Google Scholar
Hahn, O., and Walling, E. (1938) Über die Möglichkeit geologischer Altersbestimmungen rubidiumhaltiger Mineralen and Gesteine. Zeitschrift Anorganishen Allgemeine Chemie, 236, 7882.CrossRefGoogle Scholar
Halliday, A. N., Rehkämper, M., Lee, D.-C., and Yi, W. (1996) Early evolution of the Earth and Moon: New constraints from Hf-W isotope geochemistry. Earth & Planetary Science Letters, 142, 7589.Google Scholar
Harper, C. L., and Jacobsen, S. B. (1996) Evidence for 182Hf in the early solar system and constraints on the timescale of terrestrial core formation. Geochimica et Cosmochimica Acta, 60, 11311153.CrossRefGoogle Scholar
Hemmendinger, A., and Smythe, W. R. (1937) The radioactive isotope of rubidium. Physical Review, 51, 10521053.CrossRefGoogle Scholar
Hirt, B., Tilton, G. R., and Hoffmeister, W. (1963) The half-life of 187Re. In Earth Science and Meteorites, Geiss, J., and Goldberg, E. D., editors, pp. 273280, North Holland, Amsterdam.Google Scholar
Hohenberg, C. M., and Pravdivtseva, O. V. (2008) I-Xe dating: From adolescence to maturity. Chemie der Erde, 68, 339351.CrossRefGoogle Scholar
Holden, N. E. (1990) Total half-lives for selected nuclides. Pure & Applied Chemistry, 62, 941958.Google Scholar
Holmes, A. (1946) An estimate of the age of the Earth. Nature, 157, 680684.Google Scholar
Holst, J. C., Olsen, M. B., Paton, C., et al. (2013) 182Hf–182W age dating of a 26Al-poor inclusion and implications for the origin of the short-lived radioisotopes in the early solar system. Proceedings of the National Academy of Sciences, USA, 110, 88198823.Google Scholar
Houtermans, F. G. (1946) Die Isotopenhäufigkeiten im natürlichen Blei und das Alter den Urans. Naturwissenschaften, 33, 186219.Google Scholar
Hult, M., Vidmar, R., Rosengard, U., et al. (2014) Half-life measurements of lutetium-176 using underground HPGe detectors. Applied Radiation & Isotopes, 87, 112117.Google Scholar
Hutcheon, I. D. (1982) Ion probe magnesium isotope measurements of Allende inclusions. ACS Symposium Series, 176, 95128.Google Scholar
Hutcheon, I. D., Armstrong, J. T., and Wasserburg, G. J. (1984) Excess 41K in Allende CAI: A hint re-examined (abstract). Meteoritics, 19, 243244.Google Scholar
Hutcheon, I. D., Krot, A. N., Keil, K., et al. (1998) 53Mn/53Cr dating of fayalite formation in the CV3 chondrite Mokoia: Evidence for asteroidal alteration. Science, 282, 18651867.CrossRefGoogle ScholarPubMed
Inghram, M. G. (1954) Stable isotope dilution as an analytical tool. Annual Review of Nuclear Science, 4, 8192.CrossRefGoogle Scholar
Jacobsen, B., Yin, Q.-Z., Moynier, F., et al. (2008) 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth & Planetary Science Letters, 272, 353364.CrossRefGoogle Scholar
Jacobsen, S. B., and Wasserburg, G. J. (1980) Sm-Nd isotopic evolution of chondrites. Earth & Planetary Science Letters, 50, 139155.Google Scholar
Jacobsen, S. B., and Wasserburg, G. J. (1984) Sm-Nd isotopic evolution of chondrites and achondrites. 2. Earth & Planetary Science Letters, 67, 137150.CrossRefGoogle Scholar
Jeffery, P. M., and Reynolds, J. H. (1961) Origin of excess Xe129 in stone meteorites. Journal of Geophysical Research, 66, 35823583.Google Scholar
Jilly-Rehak, C. E., Huss, G. R., and Nagashima, K. (2017) 53Mn-53Cr radiometric dating of secondary carbonates in CR chondrites: Timescales for parent body aqueous alteration. Geochimica et Cosmochimica Acta, 201, 224244.Google Scholar
Kaiser, T., and Wasserburg, G. J. (1983) The isotopic composition and concentration of Ag in iron meteorites. Geochimica et Cosmochimica Acta, 47, 4358.Google Scholar
Kelly, W. R., and Larimer, J. W. (1977) Chemical fractionations in meteorites, VIII. Iron meteorites and the cosmochemical history of the metal phase. Geochimica et Cosmochimica Acta, 41, 93111.CrossRefGoogle Scholar
Kelly, W. R., and Wasserburg, G. J. (1978) Evidence for the existence of 107Pd in the early solar system. Geophysical Research Letters, 5, 10791082.Google Scholar
Kohman, T. P. (1954) Geochronological significance of extinct natural radioactivity. Science, 119, 851852.CrossRefGoogle ScholarPubMed
Kita, N. T., Fukuda, K., Siron, G., and Kimura, M. (2020) Younger Al-Mg ages of chondrules in CO chondrites than L/LL chondrites. Goldschmidt Abstracts, 2020, 1329.CrossRefGoogle Scholar
Kleine, T., and Walker, R. J. (2017) Tungsten isotopes in planets. Annual Review of Earth & Planetary Sciences, 45, 389417.Google Scholar
Kleine, T., Mezger, K., Palme, H., et al. (2005) Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf–182W in CAIs, metal-rich chondrites, and iron meteorites. Geochimica et Cosmochimica Acta, 69, 58055818.Google Scholar
Korschinek, G., Bergmaier, A., Faestermann, T., et al. (2010) A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials & Atoms, 268, 187191.CrossRefGoogle Scholar
Kruijer, T. S., Kleine, T., Fischer-Godde, M., Burkhardt, C., and Wieler, R. (2014) Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions. Earth & Planetary Science Letters, 403, 317327.CrossRefGoogle Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. (2011) Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophysical Journal Letters, 735, L37.Google Scholar
Larsen, K. K., Wielandt, D., Schiller, M., et al. (2020) Episodic formation of refractory inclusions in the solar system and their presolar heritage. Earth & Planetary Science Letters, 535, 116088.Google Scholar
Lee, T., and Papanastassiou, D. A. (1974) Mg isotopic anomalies in the Allende meteorite and correlation with O and Sr effects. Geophysical Research Letters, 1, 225228.CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: Fossil or fuel? Astrophysical Journal Letters, 211, L107L110.CrossRefGoogle Scholar
Lindner, M., Leich, D. A., Russ, G. P., et al. (1989) Direct determination of the half-life of 187Re. Geochimica et Cosmochimica Acta, 53, 15971606.Google Scholar
Liu, M.-C. (2017) The initial 41Ca/40Ca ratios in two type A Ca-Al-rich inclusions: Implications for the origin of short-lived 41Ca. Geochimica et Cosmochimica Acta, 201, 123135.Google Scholar
Liu, M.-C., Chaussidon, M., Srinivasan, G., and McKeegan, K. D. (2012) A lower initial abundance of short-lived 41Ca in the early solar system and its implications for solar system formation. Astrophysical Journal, 761, 137.Google Scholar
Luck, J.-M., and Allègre, C. J. (1983) 187Re-187O systematics in meteorites and cosmochemical consequences. Nature, 302, 130132.CrossRefGoogle Scholar
Luck, J.-M., Birck, J. L., and Allègre, C. J. (1980) 187Re-187O systematics in meteorites: Early chronology of the solar system and age of the galaxy. Nature, 283, 256259.CrossRefGoogle Scholar
Ludwig, K. R. (2003) Isoplot-3.00, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 4, 70 pp.Google Scholar
Lugmair, G. W., and Galer, S. J. G. (1992) Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochimica et Cosmochimica Acta, 56, 16731694.CrossRefGoogle Scholar
Lugmair, G. W., and Shukolyukov, A. (1998) Early solar system timescales according to the 53Mn-53Cr system. Geochimica et Cosmochimica Acta, 62, 28632886.Google Scholar
Lugmair, G. W., Scheinin, N. B., and Marti, K. (1975a) Sm-Nd age and history of Apollo 17 basalt 75075: Evidence for early differentiation of the lunar exterior. Proceedings of the 6th Lunar Science Conference, Geochimica et Cosmochimica Acta Supplement, 6, 14191429.Google Scholar
Lugmair, G. W., Scheinin, N. B., and Marti, K. (1975b) Search for extinct 146Sm, 1. The isotopic abundance of 142Nd in the Juvinas meteorite. Earth & Planetary Science Letters, 27, 7984.Google Scholar
MacPherson, G. J., Huss, G. R., and Davis, A. M. (2003) Extinct 10Be in type A calcium-aluminum-rich inclusions from CV chondrites. Geochimica et Cosmochimica Acta, 67, 31653179.Google Scholar
Mahon, K. I. (1996) The new “York” regression: Application of an improved statistical method to geochemistry. International Geology Review, 38, 293303.Google Scholar
Makide, K., Nagashima, K., Krot, A. N., et al. (2011) Heterogeneous distribution of 26Al at the birth of the solar system. Astrophysical Journal Letters, 733, L31.CrossRefGoogle Scholar
Marhas, K. K., Goswami, J. N., and Davis, A. M. (2002) Short-lived nuclides in hibonite grains from Murchison: Evidence for solar system evolution. Science, 298, 21822185.Google Scholar
Marks, N. E., Borg, L. E., Hutcheon, I. D., et al. (2014) Samarium-neodymium chronology and rubidium-strontium systematics of an Allende calcium-aluminum-rich inclusion with implications for 146Sm half life. Earth & Planetary Science Letters, 405, 1524.Google Scholar
Mattauch, J. (1937) Das Paar Rb87-Sr87 and die Isobarenregel. Naturwissenschaften, 25, 189191.CrossRefGoogle Scholar
McDougall, I., and Harrison, M. T. (1988) Geochronology and Thermochronology by the 40Ar/39Ar method. In Oxford Monographs on Geology and Geophysics No. 9, Oxford University Press, Oxford, 212 pp.Google Scholar
McKeegan, K. D., Chaussidon, M., and Robert, F. (2000) Incorporation of short-lived 10Be in a calcium-aluminum-rich inclusion from the Allende meteorite. Science, 289, 13341337.CrossRefGoogle Scholar
Meisel, T., Walker, R. J., and Morgan, J. W. (1996) The osmium isotopic composition of the Earth’s primitive upper mantle. Nature, 383, 517520.CrossRefGoogle Scholar
Merrihue, C. M., and Turner, G. (1966) Potassium-argon dating by activation with fast neutrons. Journal of Geophysical Research, 71, 28522857.Google Scholar
Minster, J. F., and Allègre, C. J. (1981) 87Rb-87Sr dating of LL chondrites. Earth & Planetary Science Letters, 5, 361376.Google Scholar
Misawa, K., Shih, C.-Y., Reese, Y., et al. (2006) Rb-Sr, Sm-Nd and Ar-Ar isotopic systematics of Martian dunite Chassigny. Earth & Planetary Science Letters, 246, 90101.Google Scholar
Mishra, R. K., Marhas, K. K., and Sameer, L. (2016) Abundance of 60Fe inferred from nanoSIMS study of QUE 97008 (L3.05) chondrules. Earth & Planetary Science Letters, 436, 7181.Google Scholar
Mostefaoui, S., Lugmair, G. W., and Hoppe, P. (2005) 60Fe: A heat source for planetary differentiation from a nearby supernova explosion. Astrophysical Journal, 625, 271277.Google Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2014) 26Al in chondrules from CR2 chondrites. Geochemical Journal, 48, 561570.Google Scholar
Nagashima, K., Krot, A. N., and Komatsu, M. (2017) 26Al-26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites. Geochimica et Cosmochimica Acta, 201, 303319.Google Scholar
Nichols, R. H., Hohenberg, C. M., Kehm, K., et al. (1994) I-Xe studies of the Acapulco meteorite: Absolute ages of individual phosphate grains and the Bjurböle standard. Geochimica et Cosmochimica Acta, 58, 25232561.Google Scholar
Nier, A. O. (1935) Evidence for the existence of an isotope of potassium of mass 40. Physical Review, 48, 283284.Google Scholar
Nier, A. O. (1939a) The isotopic composition of uranium and the half-lives of uranium isotopes. Physical Review, 55, 150153.Google Scholar
Nier, A. O. (1939b) The isotopic constitution of radiogenic leads and the measurement of geological time. II. Physical Review, 55, 153163.Google Scholar
Nier, A. O. (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Physical Review, 77, 789793.Google Scholar
Nyquist, L. E., Bogard, D. D., Shih, C.-Y., et al. (2001b) Ages and geologic histories of martian meteorites. Space Science Reviews, 96, 105164.Google Scholar
Nyquist, L., Lindstrom, D., Mittlefehldt, D., et al. (2001c) Manganese-chromium formation intervals for chondrules from the Bushunpur and Chainpur meteorites. Meteoritics & Planetary Science, 36, 911938.CrossRefGoogle Scholar
Nyquist, L. E., Kleine, T., Shih, C.-Y., and Reese, Y. D. (2009) The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary mineralization. Geochimica et Cosmochimica Acta, 73, 51155136.Google Scholar
Ogliore, R. C., Huss, G. R., and Nagashima, K. (2011) Ratio estimation in SIMS analysis. Nuclear Instruments & Methods in Physics Research, Section B: Beam interactions with Materials & Atoms, 269, 19101918.Google Scholar
Papanastassiou, D. A., and Wasserburg, G. J. (1969) Initial strontium isotopic abundances and the resolution of small time differences in the formation of planetary objects. Earth & Planetary Science Letters, 5, 361376.Google Scholar
Papanastassiou, D. A., and Wasserburg, G. J. (1971) Rb-Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro Formation. Earth & Planetary Science Letters, 12, 3648.Google Scholar
Papanastassiou, D. A., Wasserburg, G. J., and Burnett, D. S. (1970) Rb-Sr ages of lunar rocks from the Sea of Tranquility. Earth & Planetary Science Letters, 8, 119.Google Scholar
Patchett, P. J., and Tatsumoto, M. (1980) Lu-Hf total-rock isochron for eucrite meteorites. Nature, 288, 571574.Google Scholar
Patterson, C. C. (1955) The Pb207/Pb206 ages of some stone meteorites. Geochimica et Cosmochimica Acta, 7, 151153.Google Scholar
Patterson, C. C. (1956) Age of meteorites and the earth. Geochimica et Cosmochimica Acta, 10, 230237.Google Scholar
Pravdivtseva, O., Krot, A. N., and Hohenberg, C. M. (2018) I-Xe dating of aqueous alteration in the CI chondrite Orgueil: I. Magnetite and ferromagnetic separates. Geochimica et. Cosmochimica Acta, 227, 3847.Google Scholar
Prinzhofer, A., Papanastassiou, D. A., and Wasserburg, G. J. (1992) Samarium-neodymium evolution of meteorites. Geochimica et Cosmochimica Acta, 56, 797815.Google Scholar
Reynolds, J. H. (1960a) Determination of the age of the elements. Physical Reviews Letters, 4, 810.Google Scholar
Reynolds, J. H. (1960b) Isotopic composition of xenon from enstatite chondrites. Zeitschrift für Naturforschung, 15a, 11121114.Google Scholar
Riches, A. J. V., Day, J. M. D., Walker, R. J., et al. (2012) Rhenium-osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites. Earth & Planetary Science Letters, 353354, 208218.Google Scholar
Rugel, G., Faestermann, T., Knie, K., et al. (2009) New measurement of the 60Fe half life. Physical Review Letters, 103, 072502.Google Scholar
Schönbächler, M., Carlson, R. W., Horan, M. F., et al. (2008) Silver isotope variations in chondrites: Volatile depletion and the initial 107Pd abundance of the solar system. Geochimica et Cosmochimica Acta, 72, 53305341.Google Scholar
Schumacher, E. (1956) Alterbestimmung von Steinmeteoriten mit der Rubidium-Strontium-Methode. Zeitschrift für Naturforschung, 11a, 206.Google Scholar
Shen, J. J., Papanastassiou, D. A., and Wasserburg, G. J. (1996) Precise Re-Os determinations and systematics of iron meteorites. Geochimica et Cosmochimica Acta, 60, 28872900.Google Scholar
Shimizu, N., Semet, M. P., and Allègre, C. J. (1978) Geochemical applications of quantitative ion microprobe analysis. Geochimica et Cosmochimica Acta, 42, 13211334.Google Scholar
Shirey, S. B., and Walker, R. J. (1995) Carius tube digestions for low-blank rhenium-osmium analysis. Analytical Chemistry, 67, 21362141.Google Scholar
Shirey, S. B., and Walker, R. J. (1998) The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Reviews of Earth & Planetary Science, 26, 423500.Google Scholar
Shukolyukov, A., and Lugmair, G. W. (1993a) Live iron-60 in the early solar system. Science, 259, 11381142.Google Scholar
Shukolyukov, A., and Lugmair, G. W. (1993b) 60Fe in eucrites. Earth & Planetary Science Letters, 119, 159166.Google Scholar
Siron, G., Fukuda, K., Kimura, M., and Kita, N. T. (2020) Al-Mg chronology of anorthite-bearing chondrules from unequilibrated ordinary chondrites: Clues on short duration of chondrules formation. Lunar and Planetary Science, 51, 1574.Google Scholar
Smoliar, M. I., Walker, R. J., and Morgan, J. W. (1996) Re-Os ages of Groups IIA, IIIA, IVA, and IVB iron meteorites. Science, 271, 10991102.CrossRefGoogle Scholar
Smythe, W. R., and Hemmendinger, A. (1937) The radioactive isotope of potassium. Physical Review, 51, 178182.Google Scholar
Srinivasan, G., and Chaussidon, M. (2013) Constraints on 10B and 41Ca distribution in the early solar system from 26Al and 10Be studies of Efremovka CAIs. Earth & Planetary Science Letters, 374, 1123.Google Scholar
Srinivasan, G., Ulyanov, A. A., and Goswami, J. N. (1994) 41Ca in the early solar system. Astrophysical Journal, 431, L67L70.Google Scholar
Srinivasan, G., Sahijpal, S., Ulyanov, A. A., and Goswami, J. N. (1996) Ion microprobe studies of Efremovka CAIs: II. Potassium isotope compositions and 41Ca in the early solar system. Geochimica et Cosmochimica Acta, 60, 18231835.Google Scholar
Steiger, R. H., and Jäger, E. (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth & Planetary Science Letters, 36, 359362.Google Scholar
Stewart, B. W., Papanastassiou, D. A., and Wasserburg, G. J. (1994) Sm-Nd chronology and petrogenesis of mesosiderites. Geochimica et Cosmochimica Acta, 58, 34873509.Google Scholar
Tachibana, S., and Huss, G. R. (2003) The initial abundance of 60Fe in the solar system. Astrophysical Journal Letters, 588, L41L44.CrossRefGoogle Scholar
Tachibana, S., Huss, G. R., Kita, N. T., et al. (2006) 60Fe in chondrites: Debris from a nearby supernova in the early solar system? Astrophysical Journal Letters, 639, L87L90.CrossRefGoogle Scholar
Tang, H., and Dauphas, N. (2012) Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth & Planetary Science Letters, 359360, 248263.Google Scholar
Tang, H., Liu, M-C., McKeegan, K. D., et al. (2017) 36Cl-36S in Allende CAIs: Implications for the origins of 36Cl in the early solar system. Lunar and Planetary Science, 48, #2618.Google Scholar
Telus, M., Huss, G. R., Ogliore, R. C., et al. (2016) Mobility of iron and nickel at low temperatures: Implications for 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 178, 87105.Google Scholar
Telus, M., Huss, G. R., Nagashima, K., et al. (2018) In situ 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 221, 342357.Google Scholar
Tera, F., and Wasserburg, G. J. (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth & Planetary Science Letters, 14, 281304.Google Scholar
Tera, F., and Wasserburg, G. J. (1974) U-Th-Pb systematics on lunar rocks and inferences about lunar evolution and the age of the Moon. Proceedings of the 5th Lunar Science Conference, Geochimica et Cosmochimica Acta Supplement, 5, 15711599.Google Scholar
Tera, F., and Carlson, R. W. (1999) Assessment of the Pb-Pb and U-Pb chronometry of the early solar system. Geochimica et Cosmochimica Acta, 63, 18771889.Google Scholar
Theis, K. J., Schönbächler, M., Benedix, G. K., et al. (2013) Palladium-silver chronology of IAB iron meteorites. Earth & Planetary Science Letters, 361, 402411.Google Scholar
Trappitsch, R., Boehnke, P., Stephan, T., et al. (2018) New constraints on the abundance of 60Fe in the early solar system. Astrophysical Journal Letters, 857, L15.Google Scholar
Turner, G., Huneke, J. C., Podosek, F. A., and Wasserburg, G. J. (1971) 40Ar-39Ar ages and cosmic-ray exposure ages of Apollo 14 samples. Earth & Planetary Science Letters, 12, 1935.Google Scholar
Urey, H. C. (1955) The cosmic abundances of potassium, uranium and thorium and the heat balances of the Earth, the Moon and Mars. Proceedings of the National Academy of Sciences, USA, 41, 127144.Google Scholar
Völkening, J., Köppe, M., and Heumann, K. G. (1991) Tungsten isotope ratio determinations by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry & Ion Processes, 107, 361368.Google Scholar
Wadhwa, M., Zinner, E., and Crozaz, G. (1997) Mn-Cr systematics in sulfides of unequilibrated enstatite chondrites. Meteoritics & Planetary Science, 32, 281292.Google Scholar
Wasserburg, G. J., and Hayden, R. J. (1955) Age of meteorites by the A40-K40 method. Physical Review, 97, 8687.Google Scholar
Wasserburg, G. J., Busso, M., Gallino, R., and Nollett, K. M. (2006) Short-lived nuclei in the early solar system: Possible AGB sources. Nuclear Physics A, 777, 569.Google Scholar
Wetherill, G. W., Aldrich, L. T., and Davis, G. L. (1955) 40Ar/40K ratios of feldspars and micas from the same rock. Geochimica et Cosmochimica Acta, 8, 171172.Google Scholar
Wetherill, G. W. (1956) Discordant uranium-lead ages. Transactions – American Geophysical Union, 37, 320326.Google Scholar
Williamson, J. H. (1968) Least-squares fitting of a straight line. Canadian Journal of Physics, 46, 18451847.Google Scholar
York, D. (1966) Least-squares fitting of a straight line. Canadian Journal of Physics, 44, 10791086.Google Scholar
York, D. (1969) Least squares fitting of a straight line with correlated errors. Earth & Planetary Science Letters, 5, 320324.CrossRefGoogle Scholar
Aldrich, L. T., and Nier, A. O. (1948) Argon-40 in potassium minerals. Physical Review, 74, 876877.CrossRefGoogle Scholar
Amelin, Y. (2005) Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago. Science, 310, 839841.CrossRefGoogle ScholarPubMed
Audouze, J., and Schramm, D. M. (1972) 146Sm: A chronometer for p-process nucleosynthesis. Nature, 237, 447449.CrossRefGoogle Scholar
Birck, J. L., and Allègre, C. J. (1985) Evidence for the presence of 53Mn in the early solar system. Geophysical Research Letters, 12, 745748.CrossRefGoogle Scholar
Birck, J. L., and Allègre, C. J. (1988) Manganese chromium isotope systematics and the development of the early solar system. Nature, 331, 579584.CrossRefGoogle Scholar
Birck, J. L., and Lugmair, G. W. (1988) Nickel and chromium isotopes in Allende inclusions. Earth & Planetary Science Letters, 90, 131143.Google Scholar
Birck, J. L., Rotaru, M., and Allègre, C. J. (1999) 53Mn-53Cr evolution of the early solar system. Geochimica et Cosmochimica Acta, 63, 41114117.CrossRefGoogle Scholar
Blichert-Toft, J., Boyet, M., Télouk, P., and Albarède, F. (2002) 147Sm-143Nd and 176Lu-176Hf in eucrites and the differentiation of the HED parent body. Earth & Planetary Science Letters, 204, 167181.Google Scholar
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017) Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances, 3, e1700407.Google Scholar
Bouvier, A., Vervoort, J. D., and Patchett, P. J. (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk compositions of the terrestrial planets. Earth & Planetary Science Letters, 273, 4857.Google Scholar
Brazzle, R. H., Pravdivtseva, O. V., Meshik, A. P., and Hohenberg, C. M. (1999) Verification and interpretation of the I-Xe chronometer. Geochimica et Cosmochimica Acta, 63, 739760.CrossRefGoogle Scholar
Brennecka, G. A., Weyer, S., Wadhwa, M., et al. (2010) 238U/235U variations in meteorites: Extant 247Cm and implications for Pb-Pb dating. Science, 327 , 449451.CrossRefGoogle ScholarPubMed
Brown, H. (1947) An experimental method for the estimation of the age of the elements. Physical Review, 72, 348.CrossRefGoogle Scholar
Campbell, N. R., and Wood, A. (1906) The radioactivity of the alkali metals. Proceedings of the Cambridge Philosophical Society, 14, 1521.Google Scholar
Carlson, R. W., and Hauri, E. H. (2001) Extending the 107Pd-107Ag chronometer to low Pd/Ag meteorites with multicollector plasma-ionization mass spectrometry. Geochimica et Cosmochimica Acta, 65, 18391848.CrossRefGoogle Scholar
Chaussidon, M., Robert, F., and McKeegan, K. D. (2006) Li and B isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived B-10 and for the possible presence of the short-lived nuclide Be-7 in the early solar system. Geochimica et Cosmochimica Acta, 70, 224245.Google Scholar
Chen, J., and Wasserburg, G. J. (1990) The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets. Geochimica et Cosmochimica Acta, 54, 17291743.CrossRefGoogle Scholar
Chen, J. H., Papanastassiou, D. A., and Wasserburg, G. J. (1998) Re-Os systematics in chondrites and the fractionation of the platinum group elements in the early solar system. Geochimica et Cosmochimica Acta, 62, 33793392.Google Scholar
Chmeleff, J., von Blanckenburg, R., Kossert, K., and Jakob, D. (2010) Determination of the 10Be half-life by multicollection ICP-MS and liquid scintillation counting. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials & Atoms, 268, 192199.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.Google Scholar
Creaser, R. A., Papanastassiou, D. A., and Wasserburg, G. J. (1991) Negative thermal ion mass spectrometry of osmium, rhenium, and iridium. Geochimica et Cosmochimica Acta, 55, 397401.Google Scholar
Davis, A. M., and McKeegan, K. D. (2014) Short-lived radionuclides and early solar system chronology. In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 361395, Elsevier, Oxford.CrossRefGoogle Scholar
Debaille, V., Van Orman, J., Yin, Q.-Z., and Amelin, Y. (2017) The role of phosphates for the Lu-Hf chronology of meteorites. Earth & Planetary Science Letters, 473, 5261.Google Scholar
DePaolo, D. J., and Wasserburg, G. J. (1976a) Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3, 249252.Google Scholar
DePaolo, D. J., and Wasserburg, G. J. (1976b) Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophysical Research Letters, 3, 743746.Google Scholar
Desch, S. J., Connolly, H. C. Jr., and Srinivasan, G. (2004) An interstellar origin for the beryllium-10 in calcium-rich, aluminum-rich inclusions. Astrophysical Journal, 602, 528542.Google Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015) Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications, 6, 7444.Google Scholar
Edmunson, J., Borg, L. E., Nyquist, L. E., and Asmerom, Y. (2009) A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: Further evidence for early differentiation of the Moon. Geochimica et Cosmochimica Acta, 73, 514527.CrossRefGoogle Scholar
Endress, M., Zinner, E., and Bischoff, A. (1996) Early aqueous activity on primitive meteorite parent bodies. Nature, 379, 701703.CrossRefGoogle ScholarPubMed
Faure, G. (1986) Principles of Isotope Geology, 2nd Edition. John Wiley and Sons, New York.Google Scholar
Fujiya, W., Sugiura, N., Sano, Y., and Hiyagon, H. (2013) Mn-Cr ages of dolomites in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite. Earth & Planetary Science Letters, 362, 130142.Google Scholar
Gale, N. H., and Mussett, A. E. (1973) Episodic uranium-lead models and interpretation of variations in isotopic composition of lead in rocks. Reviews in Geophysics, 11, 3786.Google Scholar
Garner, E. L., Murphy, T. J., Bramlich, J. W., et al. (1975) Absolute isotopic abundance ratios and the atomic weight of a reference sample of potassium. Journal of Research of the National Bureau of Standards – A. Physics and Chemistry, 79A, 713725.Google Scholar
Gounelle, M., Shu, F. H., Shang, H., et al. (2001) Extinct radioactivities and protosolar cosmic rays: Self-shielding and light elements. Astrophysical Journal, 548, 10511070.Google Scholar
Gray, C. M., Papanastassiou, D. A., and Wasserburg, G. J. (1973) The identification of early condensates from the solar nebula. Icarus, 20, 213239.Google Scholar
Gray, C. M., and Compston, W. (1974) Excess 26Mg in the Allende meteorite. Nature, 251, 495497.CrossRefGoogle Scholar
Guan, Y., Huss, G. R., and Leshin, L. A. (2007) 60Fe-60Ni and 53Mn-53Cr isotope systems in sulfides from unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 71, 40824091.Google Scholar
Hahn, O., and Walling, E. (1938) Über die Möglichkeit geologischer Altersbestimmungen rubidiumhaltiger Mineralen and Gesteine. Zeitschrift Anorganishen Allgemeine Chemie, 236, 7882.CrossRefGoogle Scholar
Halliday, A. N., Rehkämper, M., Lee, D.-C., and Yi, W. (1996) Early evolution of the Earth and Moon: New constraints from Hf-W isotope geochemistry. Earth & Planetary Science Letters, 142, 7589.Google Scholar
Harper, C. L., and Jacobsen, S. B. (1996) Evidence for 182Hf in the early solar system and constraints on the timescale of terrestrial core formation. Geochimica et Cosmochimica Acta, 60, 11311153.CrossRefGoogle Scholar
Hemmendinger, A., and Smythe, W. R. (1937) The radioactive isotope of rubidium. Physical Review, 51, 10521053.CrossRefGoogle Scholar
Hirt, B., Tilton, G. R., and Hoffmeister, W. (1963) The half-life of 187Re. In Earth Science and Meteorites, Geiss, J., and Goldberg, E. D., editors, pp. 273280, North Holland, Amsterdam.Google Scholar
Hohenberg, C. M., and Pravdivtseva, O. V. (2008) I-Xe dating: From adolescence to maturity. Chemie der Erde, 68, 339351.CrossRefGoogle Scholar
Holden, N. E. (1990) Total half-lives for selected nuclides. Pure & Applied Chemistry, 62, 941958.Google Scholar
Holmes, A. (1946) An estimate of the age of the Earth. Nature, 157, 680684.Google Scholar
Holst, J. C., Olsen, M. B., Paton, C., et al. (2013) 182Hf–182W age dating of a 26Al-poor inclusion and implications for the origin of the short-lived radioisotopes in the early solar system. Proceedings of the National Academy of Sciences, USA, 110, 88198823.Google Scholar
Houtermans, F. G. (1946) Die Isotopenhäufigkeiten im natürlichen Blei und das Alter den Urans. Naturwissenschaften, 33, 186219.Google Scholar
Hult, M., Vidmar, R., Rosengard, U., et al. (2014) Half-life measurements of lutetium-176 using underground HPGe detectors. Applied Radiation & Isotopes, 87, 112117.Google Scholar
Hutcheon, I. D. (1982) Ion probe magnesium isotope measurements of Allende inclusions. ACS Symposium Series, 176, 95128.Google Scholar
Hutcheon, I. D., Armstrong, J. T., and Wasserburg, G. J. (1984) Excess 41K in Allende CAI: A hint re-examined (abstract). Meteoritics, 19, 243244.Google Scholar
Hutcheon, I. D., Krot, A. N., Keil, K., et al. (1998) 53Mn/53Cr dating of fayalite formation in the CV3 chondrite Mokoia: Evidence for asteroidal alteration. Science, 282, 18651867.CrossRefGoogle ScholarPubMed
Inghram, M. G. (1954) Stable isotope dilution as an analytical tool. Annual Review of Nuclear Science, 4, 8192.CrossRefGoogle Scholar
Jacobsen, B., Yin, Q.-Z., Moynier, F., et al. (2008) 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth & Planetary Science Letters, 272, 353364.CrossRefGoogle Scholar
Jacobsen, S. B., and Wasserburg, G. J. (1980) Sm-Nd isotopic evolution of chondrites. Earth & Planetary Science Letters, 50, 139155.Google Scholar
Jacobsen, S. B., and Wasserburg, G. J. (1984) Sm-Nd isotopic evolution of chondrites and achondrites. 2. Earth & Planetary Science Letters, 67, 137150.CrossRefGoogle Scholar
Jeffery, P. M., and Reynolds, J. H. (1961) Origin of excess Xe129 in stone meteorites. Journal of Geophysical Research, 66, 35823583.Google Scholar
Jilly-Rehak, C. E., Huss, G. R., and Nagashima, K. (2017) 53Mn-53Cr radiometric dating of secondary carbonates in CR chondrites: Timescales for parent body aqueous alteration. Geochimica et Cosmochimica Acta, 201, 224244.Google Scholar
Kaiser, T., and Wasserburg, G. J. (1983) The isotopic composition and concentration of Ag in iron meteorites. Geochimica et Cosmochimica Acta, 47, 4358.Google Scholar
Kelly, W. R., and Larimer, J. W. (1977) Chemical fractionations in meteorites, VIII. Iron meteorites and the cosmochemical history of the metal phase. Geochimica et Cosmochimica Acta, 41, 93111.CrossRefGoogle Scholar
Kelly, W. R., and Wasserburg, G. J. (1978) Evidence for the existence of 107Pd in the early solar system. Geophysical Research Letters, 5, 10791082.Google Scholar
Kohman, T. P. (1954) Geochronological significance of extinct natural radioactivity. Science, 119, 851852.CrossRefGoogle ScholarPubMed
Kita, N. T., Fukuda, K., Siron, G., and Kimura, M. (2020) Younger Al-Mg ages of chondrules in CO chondrites than L/LL chondrites. Goldschmidt Abstracts, 2020, 1329.CrossRefGoogle Scholar
Kleine, T., and Walker, R. J. (2017) Tungsten isotopes in planets. Annual Review of Earth & Planetary Sciences, 45, 389417.Google Scholar
Kleine, T., Mezger, K., Palme, H., et al. (2005) Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf–182W in CAIs, metal-rich chondrites, and iron meteorites. Geochimica et Cosmochimica Acta, 69, 58055818.Google Scholar
Korschinek, G., Bergmaier, A., Faestermann, T., et al. (2010) A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials & Atoms, 268, 187191.CrossRefGoogle Scholar
Kruijer, T. S., Kleine, T., Fischer-Godde, M., Burkhardt, C., and Wieler, R. (2014) Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions. Earth & Planetary Science Letters, 403, 317327.CrossRefGoogle Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. (2011) Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophysical Journal Letters, 735, L37.Google Scholar
Larsen, K. K., Wielandt, D., Schiller, M., et al. (2020) Episodic formation of refractory inclusions in the solar system and their presolar heritage. Earth & Planetary Science Letters, 535, 116088.Google Scholar
Lee, T., and Papanastassiou, D. A. (1974) Mg isotopic anomalies in the Allende meteorite and correlation with O and Sr effects. Geophysical Research Letters, 1, 225228.CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: Fossil or fuel? Astrophysical Journal Letters, 211, L107L110.CrossRefGoogle Scholar
Lindner, M., Leich, D. A., Russ, G. P., et al. (1989) Direct determination of the half-life of 187Re. Geochimica et Cosmochimica Acta, 53, 15971606.Google Scholar
Liu, M.-C. (2017) The initial 41Ca/40Ca ratios in two type A Ca-Al-rich inclusions: Implications for the origin of short-lived 41Ca. Geochimica et Cosmochimica Acta, 201, 123135.Google Scholar
Liu, M.-C., Chaussidon, M., Srinivasan, G., and McKeegan, K. D. (2012) A lower initial abundance of short-lived 41Ca in the early solar system and its implications for solar system formation. Astrophysical Journal, 761, 137.Google Scholar
Luck, J.-M., and Allègre, C. J. (1983) 187Re-187O systematics in meteorites and cosmochemical consequences. Nature, 302, 130132.CrossRefGoogle Scholar
Luck, J.-M., Birck, J. L., and Allègre, C. J. (1980) 187Re-187O systematics in meteorites: Early chronology of the solar system and age of the galaxy. Nature, 283, 256259.CrossRefGoogle Scholar
Ludwig, K. R. (2003) Isoplot-3.00, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 4, 70 pp.Google Scholar
Lugmair, G. W., and Galer, S. J. G. (1992) Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochimica et Cosmochimica Acta, 56, 16731694.CrossRefGoogle Scholar
Lugmair, G. W., and Shukolyukov, A. (1998) Early solar system timescales according to the 53Mn-53Cr system. Geochimica et Cosmochimica Acta, 62, 28632886.Google Scholar
Lugmair, G. W., Scheinin, N. B., and Marti, K. (1975a) Sm-Nd age and history of Apollo 17 basalt 75075: Evidence for early differentiation of the lunar exterior. Proceedings of the 6th Lunar Science Conference, Geochimica et Cosmochimica Acta Supplement, 6, 14191429.Google Scholar
Lugmair, G. W., Scheinin, N. B., and Marti, K. (1975b) Search for extinct 146Sm, 1. The isotopic abundance of 142Nd in the Juvinas meteorite. Earth & Planetary Science Letters, 27, 7984.Google Scholar
MacPherson, G. J., Huss, G. R., and Davis, A. M. (2003) Extinct 10Be in type A calcium-aluminum-rich inclusions from CV chondrites. Geochimica et Cosmochimica Acta, 67, 31653179.Google Scholar
Mahon, K. I. (1996) The new “York” regression: Application of an improved statistical method to geochemistry. International Geology Review, 38, 293303.Google Scholar
Makide, K., Nagashima, K., Krot, A. N., et al. (2011) Heterogeneous distribution of 26Al at the birth of the solar system. Astrophysical Journal Letters, 733, L31.CrossRefGoogle Scholar
Marhas, K. K., Goswami, J. N., and Davis, A. M. (2002) Short-lived nuclides in hibonite grains from Murchison: Evidence for solar system evolution. Science, 298, 21822185.Google Scholar
Marks, N. E., Borg, L. E., Hutcheon, I. D., et al. (2014) Samarium-neodymium chronology and rubidium-strontium systematics of an Allende calcium-aluminum-rich inclusion with implications for 146Sm half life. Earth & Planetary Science Letters, 405, 1524.Google Scholar
Mattauch, J. (1937) Das Paar Rb87-Sr87 and die Isobarenregel. Naturwissenschaften, 25, 189191.CrossRefGoogle Scholar
McDougall, I., and Harrison, M. T. (1988) Geochronology and Thermochronology by the 40Ar/39Ar method. In Oxford Monographs on Geology and Geophysics No. 9, Oxford University Press, Oxford, 212 pp.Google Scholar
McKeegan, K. D., Chaussidon, M., and Robert, F. (2000) Incorporation of short-lived 10Be in a calcium-aluminum-rich inclusion from the Allende meteorite. Science, 289, 13341337.CrossRefGoogle Scholar
Meisel, T., Walker, R. J., and Morgan, J. W. (1996) The osmium isotopic composition of the Earth’s primitive upper mantle. Nature, 383, 517520.CrossRefGoogle Scholar
Merrihue, C. M., and Turner, G. (1966) Potassium-argon dating by activation with fast neutrons. Journal of Geophysical Research, 71, 28522857.Google Scholar
Minster, J. F., and Allègre, C. J. (1981) 87Rb-87Sr dating of LL chondrites. Earth & Planetary Science Letters, 5, 361376.Google Scholar
Misawa, K., Shih, C.-Y., Reese, Y., et al. (2006) Rb-Sr, Sm-Nd and Ar-Ar isotopic systematics of Martian dunite Chassigny. Earth & Planetary Science Letters, 246, 90101.Google Scholar
Mishra, R. K., Marhas, K. K., and Sameer, L. (2016) Abundance of 60Fe inferred from nanoSIMS study of QUE 97008 (L3.05) chondrules. Earth & Planetary Science Letters, 436, 7181.Google Scholar
Mostefaoui, S., Lugmair, G. W., and Hoppe, P. (2005) 60Fe: A heat source for planetary differentiation from a nearby supernova explosion. Astrophysical Journal, 625, 271277.Google Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2014) 26Al in chondrules from CR2 chondrites. Geochemical Journal, 48, 561570.Google Scholar
Nagashima, K., Krot, A. N., and Komatsu, M. (2017) 26Al-26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites. Geochimica et Cosmochimica Acta, 201, 303319.Google Scholar
Nichols, R. H., Hohenberg, C. M., Kehm, K., et al. (1994) I-Xe studies of the Acapulco meteorite: Absolute ages of individual phosphate grains and the Bjurböle standard. Geochimica et Cosmochimica Acta, 58, 25232561.Google Scholar
Nier, A. O. (1935) Evidence for the existence of an isotope of potassium of mass 40. Physical Review, 48, 283284.Google Scholar
Nier, A. O. (1939a) The isotopic composition of uranium and the half-lives of uranium isotopes. Physical Review, 55, 150153.Google Scholar
Nier, A. O. (1939b) The isotopic constitution of radiogenic leads and the measurement of geological time. II. Physical Review, 55, 153163.Google Scholar
Nier, A. O. (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Physical Review, 77, 789793.Google Scholar
Nyquist, L. E., Bogard, D. D., Shih, C.-Y., et al. (2001b) Ages and geologic histories of martian meteorites. Space Science Reviews, 96, 105164.Google Scholar
Nyquist, L., Lindstrom, D., Mittlefehldt, D., et al. (2001c) Manganese-chromium formation intervals for chondrules from the Bushunpur and Chainpur meteorites. Meteoritics & Planetary Science, 36, 911938.CrossRefGoogle Scholar
Nyquist, L. E., Kleine, T., Shih, C.-Y., and Reese, Y. D. (2009) The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary mineralization. Geochimica et Cosmochimica Acta, 73, 51155136.Google Scholar
Ogliore, R. C., Huss, G. R., and Nagashima, K. (2011) Ratio estimation in SIMS analysis. Nuclear Instruments & Methods in Physics Research, Section B: Beam interactions with Materials & Atoms, 269, 19101918.Google Scholar
Papanastassiou, D. A., and Wasserburg, G. J. (1969) Initial strontium isotopic abundances and the resolution of small time differences in the formation of planetary objects. Earth & Planetary Science Letters, 5, 361376.Google Scholar
Papanastassiou, D. A., and Wasserburg, G. J. (1971) Rb-Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro Formation. Earth & Planetary Science Letters, 12, 3648.Google Scholar
Papanastassiou, D. A., Wasserburg, G. J., and Burnett, D. S. (1970) Rb-Sr ages of lunar rocks from the Sea of Tranquility. Earth & Planetary Science Letters, 8, 119.Google Scholar
Patchett, P. J., and Tatsumoto, M. (1980) Lu-Hf total-rock isochron for eucrite meteorites. Nature, 288, 571574.Google Scholar
Patterson, C. C. (1955) The Pb207/Pb206 ages of some stone meteorites. Geochimica et Cosmochimica Acta, 7, 151153.Google Scholar
Patterson, C. C. (1956) Age of meteorites and the earth. Geochimica et Cosmochimica Acta, 10, 230237.Google Scholar
Pravdivtseva, O., Krot, A. N., and Hohenberg, C. M. (2018) I-Xe dating of aqueous alteration in the CI chondrite Orgueil: I. Magnetite and ferromagnetic separates. Geochimica et. Cosmochimica Acta, 227, 3847.Google Scholar
Prinzhofer, A., Papanastassiou, D. A., and Wasserburg, G. J. (1992) Samarium-neodymium evolution of meteorites. Geochimica et Cosmochimica Acta, 56, 797815.Google Scholar
Reynolds, J. H. (1960a) Determination of the age of the elements. Physical Reviews Letters, 4, 810.Google Scholar
Reynolds, J. H. (1960b) Isotopic composition of xenon from enstatite chondrites. Zeitschrift für Naturforschung, 15a, 11121114.Google Scholar
Riches, A. J. V., Day, J. M. D., Walker, R. J., et al. (2012) Rhenium-osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites. Earth & Planetary Science Letters, 353354, 208218.Google Scholar
Rugel, G., Faestermann, T., Knie, K., et al. (2009) New measurement of the 60Fe half life. Physical Review Letters, 103, 072502.Google Scholar
Schönbächler, M., Carlson, R. W., Horan, M. F., et al. (2008) Silver isotope variations in chondrites: Volatile depletion and the initial 107Pd abundance of the solar system. Geochimica et Cosmochimica Acta, 72, 53305341.Google Scholar
Schumacher, E. (1956) Alterbestimmung von Steinmeteoriten mit der Rubidium-Strontium-Methode. Zeitschrift für Naturforschung, 11a, 206.Google Scholar
Shen, J. J., Papanastassiou, D. A., and Wasserburg, G. J. (1996) Precise Re-Os determinations and systematics of iron meteorites. Geochimica et Cosmochimica Acta, 60, 28872900.Google Scholar
Shimizu, N., Semet, M. P., and Allègre, C. J. (1978) Geochemical applications of quantitative ion microprobe analysis. Geochimica et Cosmochimica Acta, 42, 13211334.Google Scholar
Shirey, S. B., and Walker, R. J. (1995) Carius tube digestions for low-blank rhenium-osmium analysis. Analytical Chemistry, 67, 21362141.Google Scholar
Shirey, S. B., and Walker, R. J. (1998) The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Reviews of Earth & Planetary Science, 26, 423500.Google Scholar
Shukolyukov, A., and Lugmair, G. W. (1993a) Live iron-60 in the early solar system. Science, 259, 11381142.Google Scholar
Shukolyukov, A., and Lugmair, G. W. (1993b) 60Fe in eucrites. Earth & Planetary Science Letters, 119, 159166.Google Scholar
Siron, G., Fukuda, K., Kimura, M., and Kita, N. T. (2020) Al-Mg chronology of anorthite-bearing chondrules from unequilibrated ordinary chondrites: Clues on short duration of chondrules formation. Lunar and Planetary Science, 51, 1574.Google Scholar
Smoliar, M. I., Walker, R. J., and Morgan, J. W. (1996) Re-Os ages of Groups IIA, IIIA, IVA, and IVB iron meteorites. Science, 271, 10991102.CrossRefGoogle Scholar
Smythe, W. R., and Hemmendinger, A. (1937) The radioactive isotope of potassium. Physical Review, 51, 178182.Google Scholar
Srinivasan, G., and Chaussidon, M. (2013) Constraints on 10B and 41Ca distribution in the early solar system from 26Al and 10Be studies of Efremovka CAIs. Earth & Planetary Science Letters, 374, 1123.Google Scholar
Srinivasan, G., Ulyanov, A. A., and Goswami, J. N. (1994) 41Ca in the early solar system. Astrophysical Journal, 431, L67L70.Google Scholar
Srinivasan, G., Sahijpal, S., Ulyanov, A. A., and Goswami, J. N. (1996) Ion microprobe studies of Efremovka CAIs: II. Potassium isotope compositions and 41Ca in the early solar system. Geochimica et Cosmochimica Acta, 60, 18231835.Google Scholar
Steiger, R. H., and Jäger, E. (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth & Planetary Science Letters, 36, 359362.Google Scholar
Stewart, B. W., Papanastassiou, D. A., and Wasserburg, G. J. (1994) Sm-Nd chronology and petrogenesis of mesosiderites. Geochimica et Cosmochimica Acta, 58, 34873509.Google Scholar
Tachibana, S., and Huss, G. R. (2003) The initial abundance of 60Fe in the solar system. Astrophysical Journal Letters, 588, L41L44.CrossRefGoogle Scholar
Tachibana, S., Huss, G. R., Kita, N. T., et al. (2006) 60Fe in chondrites: Debris from a nearby supernova in the early solar system? Astrophysical Journal Letters, 639, L87L90.CrossRefGoogle Scholar
Tang, H., and Dauphas, N. (2012) Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth & Planetary Science Letters, 359360, 248263.Google Scholar
Tang, H., Liu, M-C., McKeegan, K. D., et al. (2017) 36Cl-36S in Allende CAIs: Implications for the origins of 36Cl in the early solar system. Lunar and Planetary Science, 48, #2618.Google Scholar
Telus, M., Huss, G. R., Ogliore, R. C., et al. (2016) Mobility of iron and nickel at low temperatures: Implications for 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 178, 87105.Google Scholar
Telus, M., Huss, G. R., Nagashima, K., et al. (2018) In situ 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 221, 342357.Google Scholar
Tera, F., and Wasserburg, G. J. (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth & Planetary Science Letters, 14, 281304.Google Scholar
Tera, F., and Wasserburg, G. J. (1974) U-Th-Pb systematics on lunar rocks and inferences about lunar evolution and the age of the Moon. Proceedings of the 5th Lunar Science Conference, Geochimica et Cosmochimica Acta Supplement, 5, 15711599.Google Scholar
Tera, F., and Carlson, R. W. (1999) Assessment of the Pb-Pb and U-Pb chronometry of the early solar system. Geochimica et Cosmochimica Acta, 63, 18771889.Google Scholar
Theis, K. J., Schönbächler, M., Benedix, G. K., et al. (2013) Palladium-silver chronology of IAB iron meteorites. Earth & Planetary Science Letters, 361, 402411.Google Scholar
Trappitsch, R., Boehnke, P., Stephan, T., et al. (2018) New constraints on the abundance of 60Fe in the early solar system. Astrophysical Journal Letters, 857, L15.Google Scholar
Turner, G., Huneke, J. C., Podosek, F. A., and Wasserburg, G. J. (1971) 40Ar-39Ar ages and cosmic-ray exposure ages of Apollo 14 samples. Earth & Planetary Science Letters, 12, 1935.Google Scholar
Urey, H. C. (1955) The cosmic abundances of potassium, uranium and thorium and the heat balances of the Earth, the Moon and Mars. Proceedings of the National Academy of Sciences, USA, 41, 127144.Google Scholar
Völkening, J., Köppe, M., and Heumann, K. G. (1991) Tungsten isotope ratio determinations by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry & Ion Processes, 107, 361368.Google Scholar
Wadhwa, M., Zinner, E., and Crozaz, G. (1997) Mn-Cr systematics in sulfides of unequilibrated enstatite chondrites. Meteoritics & Planetary Science, 32, 281292.Google Scholar
Wasserburg, G. J., and Hayden, R. J. (1955) Age of meteorites by the A40-K40 method. Physical Review, 97, 8687.Google Scholar
Wasserburg, G. J., Busso, M., Gallino, R., and Nollett, K. M. (2006) Short-lived nuclei in the early solar system: Possible AGB sources. Nuclear Physics A, 777, 569.Google Scholar
Wetherill, G. W., Aldrich, L. T., and Davis, G. L. (1955) 40Ar/40K ratios of feldspars and micas from the same rock. Geochimica et Cosmochimica Acta, 8, 171172.Google Scholar
Wetherill, G. W. (1956) Discordant uranium-lead ages. Transactions – American Geophysical Union, 37, 320326.Google Scholar
Williamson, J. H. (1968) Least-squares fitting of a straight line. Canadian Journal of Physics, 46, 18451847.Google Scholar
York, D. (1966) Least-squares fitting of a straight line. Canadian Journal of Physics, 44, 10791086.Google Scholar
York, D. (1969) Least squares fitting of a straight line with correlated errors. Earth & Planetary Science Letters, 5, 320324.CrossRefGoogle Scholar

Other References

Aldrich, L. T., and Nier, A. O. (1948) Argon-40 in potassium minerals. Physical Review, 74, 876877.CrossRefGoogle Scholar
Amelin, Y. (2005) Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago. Science, 310, 839841.CrossRefGoogle ScholarPubMed
Audouze, J., and Schramm, D. M. (1972) 146Sm: A chronometer for p-process nucleosynthesis. Nature, 237, 447449.CrossRefGoogle Scholar
Birck, J. L., and Allègre, C. J. (1985) Evidence for the presence of 53Mn in the early solar system. Geophysical Research Letters, 12, 745748.CrossRefGoogle Scholar
Birck, J. L., and Allègre, C. J. (1988) Manganese chromium isotope systematics and the development of the early solar system. Nature, 331, 579584.CrossRefGoogle Scholar
Birck, J. L., and Lugmair, G. W. (1988) Nickel and chromium isotopes in Allende inclusions. Earth & Planetary Science Letters, 90, 131143.Google Scholar
Birck, J. L., Rotaru, M., and Allègre, C. J. (1999) 53Mn-53Cr evolution of the early solar system. Geochimica et Cosmochimica Acta, 63, 41114117.CrossRefGoogle Scholar
Blichert-Toft, J., Boyet, M., Télouk, P., and Albarède, F. (2002) 147Sm-143Nd and 176Lu-176Hf in eucrites and the differentiation of the HED parent body. Earth & Planetary Science Letters, 204, 167181.Google Scholar
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017) Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances, 3, e1700407.Google Scholar
Bouvier, A., Vervoort, J. D., and Patchett, P. J. (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk compositions of the terrestrial planets. Earth & Planetary Science Letters, 273, 4857.Google Scholar
Brazzle, R. H., Pravdivtseva, O. V., Meshik, A. P., and Hohenberg, C. M. (1999) Verification and interpretation of the I-Xe chronometer. Geochimica et Cosmochimica Acta, 63, 739760.CrossRefGoogle Scholar
Brennecka, G. A., Weyer, S., Wadhwa, M., et al. (2010) 238U/235U variations in meteorites: Extant 247Cm and implications for Pb-Pb dating. Science, 327 , 449451.CrossRefGoogle ScholarPubMed
Brown, H. (1947) An experimental method for the estimation of the age of the elements. Physical Review, 72, 348.CrossRefGoogle Scholar
Campbell, N. R., and Wood, A. (1906) The radioactivity of the alkali metals. Proceedings of the Cambridge Philosophical Society, 14, 1521.Google Scholar
Carlson, R. W., and Hauri, E. H. (2001) Extending the 107Pd-107Ag chronometer to low Pd/Ag meteorites with multicollector plasma-ionization mass spectrometry. Geochimica et Cosmochimica Acta, 65, 18391848.CrossRefGoogle Scholar
Chaussidon, M., Robert, F., and McKeegan, K. D. (2006) Li and B isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived B-10 and for the possible presence of the short-lived nuclide Be-7 in the early solar system. Geochimica et Cosmochimica Acta, 70, 224245.Google Scholar
Chen, J., and Wasserburg, G. J. (1990) The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets. Geochimica et Cosmochimica Acta, 54, 17291743.CrossRefGoogle Scholar
Chen, J. H., Papanastassiou, D. A., and Wasserburg, G. J. (1998) Re-Os systematics in chondrites and the fractionation of the platinum group elements in the early solar system. Geochimica et Cosmochimica Acta, 62, 33793392.Google Scholar
Chmeleff, J., von Blanckenburg, R., Kossert, K., and Jakob, D. (2010) Determination of the 10Be half-life by multicollection ICP-MS and liquid scintillation counting. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials & Atoms, 268, 192199.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.Google Scholar
Creaser, R. A., Papanastassiou, D. A., and Wasserburg, G. J. (1991) Negative thermal ion mass spectrometry of osmium, rhenium, and iridium. Geochimica et Cosmochimica Acta, 55, 397401.Google Scholar
Davis, A. M., and McKeegan, K. D. (2014) Short-lived radionuclides and early solar system chronology. In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 361395, Elsevier, Oxford.CrossRefGoogle Scholar
Debaille, V., Van Orman, J., Yin, Q.-Z., and Amelin, Y. (2017) The role of phosphates for the Lu-Hf chronology of meteorites. Earth & Planetary Science Letters, 473, 5261.Google Scholar
DePaolo, D. J., and Wasserburg, G. J. (1976a) Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3, 249252.Google Scholar
DePaolo, D. J., and Wasserburg, G. J. (1976b) Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophysical Research Letters, 3, 743746.Google Scholar
Desch, S. J., Connolly, H. C. Jr., and Srinivasan, G. (2004) An interstellar origin for the beryllium-10 in calcium-rich, aluminum-rich inclusions. Astrophysical Journal, 602, 528542.Google Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015) Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications, 6, 7444.Google Scholar
Edmunson, J., Borg, L. E., Nyquist, L. E., and Asmerom, Y. (2009) A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: Further evidence for early differentiation of the Moon. Geochimica et Cosmochimica Acta, 73, 514527.CrossRefGoogle Scholar
Endress, M., Zinner, E., and Bischoff, A. (1996) Early aqueous activity on primitive meteorite parent bodies. Nature, 379, 701703.CrossRefGoogle ScholarPubMed
Faure, G. (1986) Principles of Isotope Geology, 2nd Edition. John Wiley and Sons, New York.Google Scholar
Fujiya, W., Sugiura, N., Sano, Y., and Hiyagon, H. (2013) Mn-Cr ages of dolomites in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite. Earth & Planetary Science Letters, 362, 130142.Google Scholar
Gale, N. H., and Mussett, A. E. (1973) Episodic uranium-lead models and interpretation of variations in isotopic composition of lead in rocks. Reviews in Geophysics, 11, 3786.Google Scholar
Garner, E. L., Murphy, T. J., Bramlich, J. W., et al. (1975) Absolute isotopic abundance ratios and the atomic weight of a reference sample of potassium. Journal of Research of the National Bureau of Standards – A. Physics and Chemistry, 79A, 713725.Google Scholar
Gounelle, M., Shu, F. H., Shang, H., et al. (2001) Extinct radioactivities and protosolar cosmic rays: Self-shielding and light elements. Astrophysical Journal, 548, 10511070.Google Scholar
Gray, C. M., Papanastassiou, D. A., and Wasserburg, G. J. (1973) The identification of early condensates from the solar nebula. Icarus, 20, 213239.Google Scholar
Gray, C. M., and Compston, W. (1974) Excess 26Mg in the Allende meteorite. Nature, 251, 495497.CrossRefGoogle Scholar
Guan, Y., Huss, G. R., and Leshin, L. A. (2007) 60Fe-60Ni and 53Mn-53Cr isotope systems in sulfides from unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 71, 40824091.Google Scholar
Hahn, O., and Walling, E. (1938) Über die Möglichkeit geologischer Altersbestimmungen rubidiumhaltiger Mineralen and Gesteine. Zeitschrift Anorganishen Allgemeine Chemie, 236, 7882.CrossRefGoogle Scholar
Halliday, A. N., Rehkämper, M., Lee, D.-C., and Yi, W. (1996) Early evolution of the Earth and Moon: New constraints from Hf-W isotope geochemistry. Earth & Planetary Science Letters, 142, 7589.Google Scholar
Harper, C. L., and Jacobsen, S. B. (1996) Evidence for 182Hf in the early solar system and constraints on the timescale of terrestrial core formation. Geochimica et Cosmochimica Acta, 60, 11311153.CrossRefGoogle Scholar
Hemmendinger, A., and Smythe, W. R. (1937) The radioactive isotope of rubidium. Physical Review, 51, 10521053.CrossRefGoogle Scholar
Hirt, B., Tilton, G. R., and Hoffmeister, W. (1963) The half-life of 187Re. In Earth Science and Meteorites, Geiss, J., and Goldberg, E. D., editors, pp. 273280, North Holland, Amsterdam.Google Scholar
Hohenberg, C. M., and Pravdivtseva, O. V. (2008) I-Xe dating: From adolescence to maturity. Chemie der Erde, 68, 339351.CrossRefGoogle Scholar
Holden, N. E. (1990) Total half-lives for selected nuclides. Pure & Applied Chemistry, 62, 941958.Google Scholar
Holmes, A. (1946) An estimate of the age of the Earth. Nature, 157, 680684.Google Scholar
Holst, J. C., Olsen, M. B., Paton, C., et al. (2013) 182Hf–182W age dating of a 26Al-poor inclusion and implications for the origin of the short-lived radioisotopes in the early solar system. Proceedings of the National Academy of Sciences, USA, 110, 88198823.Google Scholar
Houtermans, F. G. (1946) Die Isotopenhäufigkeiten im natürlichen Blei und das Alter den Urans. Naturwissenschaften, 33, 186219.Google Scholar
Hult, M., Vidmar, R., Rosengard, U., et al. (2014) Half-life measurements of lutetium-176 using underground HPGe detectors. Applied Radiation & Isotopes, 87, 112117.Google Scholar
Hutcheon, I. D. (1982) Ion probe magnesium isotope measurements of Allende inclusions. ACS Symposium Series, 176, 95128.Google Scholar
Hutcheon, I. D., Armstrong, J. T., and Wasserburg, G. J. (1984) Excess 41K in Allende CAI: A hint re-examined (abstract). Meteoritics, 19, 243244.Google Scholar
Hutcheon, I. D., Krot, A. N., Keil, K., et al. (1998) 53Mn/53Cr dating of fayalite formation in the CV3 chondrite Mokoia: Evidence for asteroidal alteration. Science, 282, 18651867.CrossRefGoogle ScholarPubMed
Inghram, M. G. (1954) Stable isotope dilution as an analytical tool. Annual Review of Nuclear Science, 4, 8192.CrossRefGoogle Scholar
Jacobsen, B., Yin, Q.-Z., Moynier, F., et al. (2008) 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth & Planetary Science Letters, 272, 353364.CrossRefGoogle Scholar
Jacobsen, S. B., and Wasserburg, G. J. (1980) Sm-Nd isotopic evolution of chondrites. Earth & Planetary Science Letters, 50, 139155.Google Scholar
Jacobsen, S. B., and Wasserburg, G. J. (1984) Sm-Nd isotopic evolution of chondrites and achondrites. 2. Earth & Planetary Science Letters, 67, 137150.CrossRefGoogle Scholar
Jeffery, P. M., and Reynolds, J. H. (1961) Origin of excess Xe129 in stone meteorites. Journal of Geophysical Research, 66, 35823583.Google Scholar
Jilly-Rehak, C. E., Huss, G. R., and Nagashima, K. (2017) 53Mn-53Cr radiometric dating of secondary carbonates in CR chondrites: Timescales for parent body aqueous alteration. Geochimica et Cosmochimica Acta, 201, 224244.Google Scholar
Kaiser, T., and Wasserburg, G. J. (1983) The isotopic composition and concentration of Ag in iron meteorites. Geochimica et Cosmochimica Acta, 47, 4358.Google Scholar
Kelly, W. R., and Larimer, J. W. (1977) Chemical fractionations in meteorites, VIII. Iron meteorites and the cosmochemical history of the metal phase. Geochimica et Cosmochimica Acta, 41, 93111.CrossRefGoogle Scholar
Kelly, W. R., and Wasserburg, G. J. (1978) Evidence for the existence of 107Pd in the early solar system. Geophysical Research Letters, 5, 10791082.Google Scholar
Kohman, T. P. (1954) Geochronological significance of extinct natural radioactivity. Science, 119, 851852.CrossRefGoogle ScholarPubMed
Kita, N. T., Fukuda, K., Siron, G., and Kimura, M. (2020) Younger Al-Mg ages of chondrules in CO chondrites than L/LL chondrites. Goldschmidt Abstracts, 2020, 1329.CrossRefGoogle Scholar
Kleine, T., and Walker, R. J. (2017) Tungsten isotopes in planets. Annual Review of Earth & Planetary Sciences, 45, 389417.Google Scholar
Kleine, T., Mezger, K., Palme, H., et al. (2005) Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf–182W in CAIs, metal-rich chondrites, and iron meteorites. Geochimica et Cosmochimica Acta, 69, 58055818.Google Scholar
Korschinek, G., Bergmaier, A., Faestermann, T., et al. (2010) A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials & Atoms, 268, 187191.CrossRefGoogle Scholar
Kruijer, T. S., Kleine, T., Fischer-Godde, M., Burkhardt, C., and Wieler, R. (2014) Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions. Earth & Planetary Science Letters, 403, 317327.CrossRefGoogle Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. (2011) Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophysical Journal Letters, 735, L37.Google Scholar
Larsen, K. K., Wielandt, D., Schiller, M., et al. (2020) Episodic formation of refractory inclusions in the solar system and their presolar heritage. Earth & Planetary Science Letters, 535, 116088.Google Scholar
Lee, T., and Papanastassiou, D. A. (1974) Mg isotopic anomalies in the Allende meteorite and correlation with O and Sr effects. Geophysical Research Letters, 1, 225228.CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: Fossil or fuel? Astrophysical Journal Letters, 211, L107L110.CrossRefGoogle Scholar
Lindner, M., Leich, D. A., Russ, G. P., et al. (1989) Direct determination of the half-life of 187Re. Geochimica et Cosmochimica Acta, 53, 15971606.Google Scholar
Liu, M.-C. (2017) The initial 41Ca/40Ca ratios in two type A Ca-Al-rich inclusions: Implications for the origin of short-lived 41Ca. Geochimica et Cosmochimica Acta, 201, 123135.Google Scholar
Liu, M.-C., Chaussidon, M., Srinivasan, G., and McKeegan, K. D. (2012) A lower initial abundance of short-lived 41Ca in the early solar system and its implications for solar system formation. Astrophysical Journal, 761, 137.Google Scholar
Luck, J.-M., and Allègre, C. J. (1983) 187Re-187O systematics in meteorites and cosmochemical consequences. Nature, 302, 130132.CrossRefGoogle Scholar
Luck, J.-M., Birck, J. L., and Allègre, C. J. (1980) 187Re-187O systematics in meteorites: Early chronology of the solar system and age of the galaxy. Nature, 283, 256259.CrossRefGoogle Scholar
Ludwig, K. R. (2003) Isoplot-3.00, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 4, 70 pp.Google Scholar
Lugmair, G. W., and Galer, S. J. G. (1992) Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochimica et Cosmochimica Acta, 56, 16731694.CrossRefGoogle Scholar
Lugmair, G. W., and Shukolyukov, A. (1998) Early solar system timescales according to the 53Mn-53Cr system. Geochimica et Cosmochimica Acta, 62, 28632886.Google Scholar
Lugmair, G. W., Scheinin, N. B., and Marti, K. (1975a) Sm-Nd age and history of Apollo 17 basalt 75075: Evidence for early differentiation of the lunar exterior. Proceedings of the 6th Lunar Science Conference, Geochimica et Cosmochimica Acta Supplement, 6, 14191429.Google Scholar
Lugmair, G. W., Scheinin, N. B., and Marti, K. (1975b) Search for extinct 146Sm, 1. The isotopic abundance of 142Nd in the Juvinas meteorite. Earth & Planetary Science Letters, 27, 7984.Google Scholar
MacPherson, G. J., Huss, G. R., and Davis, A. M. (2003) Extinct 10Be in type A calcium-aluminum-rich inclusions from CV chondrites. Geochimica et Cosmochimica Acta, 67, 31653179.Google Scholar
Mahon, K. I. (1996) The new “York” regression: Application of an improved statistical method to geochemistry. International Geology Review, 38, 293303.Google Scholar
Makide, K., Nagashima, K., Krot, A. N., et al. (2011) Heterogeneous distribution of 26Al at the birth of the solar system. Astrophysical Journal Letters, 733, L31.CrossRefGoogle Scholar
Marhas, K. K., Goswami, J. N., and Davis, A. M. (2002) Short-lived nuclides in hibonite grains from Murchison: Evidence for solar system evolution. Science, 298, 21822185.Google Scholar
Marks, N. E., Borg, L. E., Hutcheon, I. D., et al. (2014) Samarium-neodymium chronology and rubidium-strontium systematics of an Allende calcium-aluminum-rich inclusion with implications for 146Sm half life. Earth & Planetary Science Letters, 405, 1524.Google Scholar
Mattauch, J. (1937) Das Paar Rb87-Sr87 and die Isobarenregel. Naturwissenschaften, 25, 189191.CrossRefGoogle Scholar
McDougall, I., and Harrison, M. T. (1988) Geochronology and Thermochronology by the 40Ar/39Ar method. In Oxford Monographs on Geology and Geophysics No. 9, Oxford University Press, Oxford, 212 pp.Google Scholar
McKeegan, K. D., Chaussidon, M., and Robert, F. (2000) Incorporation of short-lived 10Be in a calcium-aluminum-rich inclusion from the Allende meteorite. Science, 289, 13341337.CrossRefGoogle Scholar
Meisel, T., Walker, R. J., and Morgan, J. W. (1996) The osmium isotopic composition of the Earth’s primitive upper mantle. Nature, 383, 517520.CrossRefGoogle Scholar
Merrihue, C. M., and Turner, G. (1966) Potassium-argon dating by activation with fast neutrons. Journal of Geophysical Research, 71, 28522857.Google Scholar
Minster, J. F., and Allègre, C. J. (1981) 87Rb-87Sr dating of LL chondrites. Earth & Planetary Science Letters, 5, 361376.Google Scholar
Misawa, K., Shih, C.-Y., Reese, Y., et al. (2006) Rb-Sr, Sm-Nd and Ar-Ar isotopic systematics of Martian dunite Chassigny. Earth & Planetary Science Letters, 246, 90101.Google Scholar
Mishra, R. K., Marhas, K. K., and Sameer, L. (2016) Abundance of 60Fe inferred from nanoSIMS study of QUE 97008 (L3.05) chondrules. Earth & Planetary Science Letters, 436, 7181.Google Scholar
Mostefaoui, S., Lugmair, G. W., and Hoppe, P. (2005) 60Fe: A heat source for planetary differentiation from a nearby supernova explosion. Astrophysical Journal, 625, 271277.Google Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2014) 26Al in chondrules from CR2 chondrites. Geochemical Journal, 48, 561570.Google Scholar
Nagashima, K., Krot, A. N., and Komatsu, M. (2017) 26Al-26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites. Geochimica et Cosmochimica Acta, 201, 303319.Google Scholar
Nichols, R. H., Hohenberg, C. M., Kehm, K., et al. (1994) I-Xe studies of the Acapulco meteorite: Absolute ages of individual phosphate grains and the Bjurböle standard. Geochimica et Cosmochimica Acta, 58, 25232561.Google Scholar
Nier, A. O. (1935) Evidence for the existence of an isotope of potassium of mass 40. Physical Review, 48, 283284.Google Scholar
Nier, A. O. (1939a) The isotopic composition of uranium and the half-lives of uranium isotopes. Physical Review, 55, 150153.Google Scholar
Nier, A. O. (1939b) The isotopic constitution of radiogenic leads and the measurement of geological time. II. Physical Review, 55, 153163.Google Scholar
Nier, A. O. (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Physical Review, 77, 789793.Google Scholar
Nyquist, L. E., Bogard, D. D., Shih, C.-Y., et al. (2001b) Ages and geologic histories of martian meteorites. Space Science Reviews, 96, 105164.Google Scholar
Nyquist, L., Lindstrom, D., Mittlefehldt, D., et al. (2001c) Manganese-chromium formation intervals for chondrules from the Bushunpur and Chainpur meteorites. Meteoritics & Planetary Science, 36, 911938.CrossRefGoogle Scholar
Nyquist, L. E., Kleine, T., Shih, C.-Y., and Reese, Y. D. (2009) The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary mineralization. Geochimica et Cosmochimica Acta, 73, 51155136.Google Scholar
Ogliore, R. C., Huss, G. R., and Nagashima, K. (2011) Ratio estimation in SIMS analysis. Nuclear Instruments & Methods in Physics Research, Section B: Beam interactions with Materials & Atoms, 269, 19101918.Google Scholar
Papanastassiou, D. A., and Wasserburg, G. J. (1969) Initial strontium isotopic abundances and the resolution of small time differences in the formation of planetary objects. Earth & Planetary Science Letters, 5, 361376.Google Scholar
Papanastassiou, D. A., and Wasserburg, G. J. (1971) Rb-Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro Formation. Earth & Planetary Science Letters, 12, 3648.Google Scholar
Papanastassiou, D. A., Wasserburg, G. J., and Burnett, D. S. (1970) Rb-Sr ages of lunar rocks from the Sea of Tranquility. Earth & Planetary Science Letters, 8, 119.Google Scholar
Patchett, P. J., and Tatsumoto, M. (1980) Lu-Hf total-rock isochron for eucrite meteorites. Nature, 288, 571574.Google Scholar
Patterson, C. C. (1955) The Pb207/Pb206 ages of some stone meteorites. Geochimica et Cosmochimica Acta, 7, 151153.Google Scholar
Patterson, C. C. (1956) Age of meteorites and the earth. Geochimica et Cosmochimica Acta, 10, 230237.Google Scholar
Pravdivtseva, O., Krot, A. N., and Hohenberg, C. M. (2018) I-Xe dating of aqueous alteration in the CI chondrite Orgueil: I. Magnetite and ferromagnetic separates. Geochimica et. Cosmochimica Acta, 227, 3847.Google Scholar
Prinzhofer, A., Papanastassiou, D. A., and Wasserburg, G. J. (1992) Samarium-neodymium evolution of meteorites. Geochimica et Cosmochimica Acta, 56, 797815.Google Scholar
Reynolds, J. H. (1960a) Determination of the age of the elements. Physical Reviews Letters, 4, 810.Google Scholar
Reynolds, J. H. (1960b) Isotopic composition of xenon from enstatite chondrites. Zeitschrift für Naturforschung, 15a, 11121114.Google Scholar
Riches, A. J. V., Day, J. M. D., Walker, R. J., et al. (2012) Rhenium-osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites. Earth & Planetary Science Letters, 353354, 208218.Google Scholar
Rugel, G., Faestermann, T., Knie, K., et al. (2009) New measurement of the 60Fe half life. Physical Review Letters, 103, 072502.Google Scholar
Schönbächler, M., Carlson, R. W., Horan, M. F., et al. (2008) Silver isotope variations in chondrites: Volatile depletion and the initial 107Pd abundance of the solar system. Geochimica et Cosmochimica Acta, 72, 53305341.Google Scholar
Schumacher, E. (1956) Alterbestimmung von Steinmeteoriten mit der Rubidium-Strontium-Methode. Zeitschrift für Naturforschung, 11a, 206.Google Scholar
Shen, J. J., Papanastassiou, D. A., and Wasserburg, G. J. (1996) Precise Re-Os determinations and systematics of iron meteorites. Geochimica et Cosmochimica Acta, 60, 28872900.Google Scholar
Shimizu, N., Semet, M. P., and Allègre, C. J. (1978) Geochemical applications of quantitative ion microprobe analysis. Geochimica et Cosmochimica Acta, 42, 13211334.Google Scholar
Shirey, S. B., and Walker, R. J. (1995) Carius tube digestions for low-blank rhenium-osmium analysis. Analytical Chemistry, 67, 21362141.Google Scholar
Shirey, S. B., and Walker, R. J. (1998) The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Reviews of Earth & Planetary Science, 26, 423500.Google Scholar
Shukolyukov, A., and Lugmair, G. W. (1993a) Live iron-60 in the early solar system. Science, 259, 11381142.Google Scholar
Shukolyukov, A., and Lugmair, G. W. (1993b) 60Fe in eucrites. Earth & Planetary Science Letters, 119, 159166.Google Scholar
Siron, G., Fukuda, K., Kimura, M., and Kita, N. T. (2020) Al-Mg chronology of anorthite-bearing chondrules from unequilibrated ordinary chondrites: Clues on short duration of chondrules formation. Lunar and Planetary Science, 51, 1574.Google Scholar
Smoliar, M. I., Walker, R. J., and Morgan, J. W. (1996) Re-Os ages of Groups IIA, IIIA, IVA, and IVB iron meteorites. Science, 271, 10991102.CrossRefGoogle Scholar
Smythe, W. R., and Hemmendinger, A. (1937) The radioactive isotope of potassium. Physical Review, 51, 178182.Google Scholar
Srinivasan, G., and Chaussidon, M. (2013) Constraints on 10B and 41Ca distribution in the early solar system from 26Al and 10Be studies of Efremovka CAIs. Earth & Planetary Science Letters, 374, 1123.Google Scholar
Srinivasan, G., Ulyanov, A. A., and Goswami, J. N. (1994) 41Ca in the early solar system. Astrophysical Journal, 431, L67L70.Google Scholar
Srinivasan, G., Sahijpal, S., Ulyanov, A. A., and Goswami, J. N. (1996) Ion microprobe studies of Efremovka CAIs: II. Potassium isotope compositions and 41Ca in the early solar system. Geochimica et Cosmochimica Acta, 60, 18231835.Google Scholar
Steiger, R. H., and Jäger, E. (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth & Planetary Science Letters, 36, 359362.Google Scholar
Stewart, B. W., Papanastassiou, D. A., and Wasserburg, G. J. (1994) Sm-Nd chronology and petrogenesis of mesosiderites. Geochimica et Cosmochimica Acta, 58, 34873509.Google Scholar
Tachibana, S., and Huss, G. R. (2003) The initial abundance of 60Fe in the solar system. Astrophysical Journal Letters, 588, L41L44.CrossRefGoogle Scholar
Tachibana, S., Huss, G. R., Kita, N. T., et al. (2006) 60Fe in chondrites: Debris from a nearby supernova in the early solar system? Astrophysical Journal Letters, 639, L87L90.CrossRefGoogle Scholar
Tang, H., and Dauphas, N. (2012) Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth & Planetary Science Letters, 359360, 248263.Google Scholar
Tang, H., Liu, M-C., McKeegan, K. D., et al. (2017) 36Cl-36S in Allende CAIs: Implications for the origins of 36Cl in the early solar system. Lunar and Planetary Science, 48, #2618.Google Scholar
Telus, M., Huss, G. R., Ogliore, R. C., et al. (2016) Mobility of iron and nickel at low temperatures: Implications for 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 178, 87105.Google Scholar
Telus, M., Huss, G. R., Nagashima, K., et al. (2018) In situ 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 221, 342357.Google Scholar
Tera, F., and Wasserburg, G. J. (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth & Planetary Science Letters, 14, 281304.Google Scholar
Tera, F., and Wasserburg, G. J. (1974) U-Th-Pb systematics on lunar rocks and inferences about lunar evolution and the age of the Moon. Proceedings of the 5th Lunar Science Conference, Geochimica et Cosmochimica Acta Supplement, 5, 15711599.Google Scholar
Tera, F., and Carlson, R. W. (1999) Assessment of the Pb-Pb and U-Pb chronometry of the early solar system. Geochimica et Cosmochimica Acta, 63, 18771889.Google Scholar
Theis, K. J., Schönbächler, M., Benedix, G. K., et al. (2013) Palladium-silver chronology of IAB iron meteorites. Earth & Planetary Science Letters, 361, 402411.Google Scholar
Trappitsch, R., Boehnke, P., Stephan, T., et al. (2018) New constraints on the abundance of 60Fe in the early solar system. Astrophysical Journal Letters, 857, L15.Google Scholar
Turner, G., Huneke, J. C., Podosek, F. A., and Wasserburg, G. J. (1971) 40Ar-39Ar ages and cosmic-ray exposure ages of Apollo 14 samples. Earth & Planetary Science Letters, 12, 1935.Google Scholar
Urey, H. C. (1955) The cosmic abundances of potassium, uranium and thorium and the heat balances of the Earth, the Moon and Mars. Proceedings of the National Academy of Sciences, USA, 41, 127144.Google Scholar
Völkening, J., Köppe, M., and Heumann, K. G. (1991) Tungsten isotope ratio determinations by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry & Ion Processes, 107, 361368.Google Scholar
Wadhwa, M., Zinner, E., and Crozaz, G. (1997) Mn-Cr systematics in sulfides of unequilibrated enstatite chondrites. Meteoritics & Planetary Science, 32, 281292.Google Scholar
Wasserburg, G. J., and Hayden, R. J. (1955) Age of meteorites by the A40-K40 method. Physical Review, 97, 8687.Google Scholar
Wasserburg, G. J., Busso, M., Gallino, R., and Nollett, K. M. (2006) Short-lived nuclei in the early solar system: Possible AGB sources. Nuclear Physics A, 777, 569.Google Scholar
Wetherill, G. W., Aldrich, L. T., and Davis, G. L. (1955) 40Ar/40K ratios of feldspars and micas from the same rock. Geochimica et Cosmochimica Acta, 8, 171172.Google Scholar
Wetherill, G. W. (1956) Discordant uranium-lead ages. Transactions – American Geophysical Union, 37, 320326.Google Scholar
Williamson, J. H. (1968) Least-squares fitting of a straight line. Canadian Journal of Physics, 46, 18451847.Google Scholar
York, D. (1966) Least-squares fitting of a straight line. Canadian Journal of Physics, 44, 10791086.Google Scholar
York, D. (1969) Least squares fitting of a straight line with correlated errors. Earth & Planetary Science Letters, 5, 320324.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×